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Nonlocal compensation of magnetic damping by spin injection has been theoretically shown to
establish dynamic, noncollinear magnetization states that carry spin currents over micrometer dis-
tances. Such states can be generically referred to as dissipative exchange flows (DEFs) because
spatially diffusing spin currents are established by the mutual exchange torque exerted by neigh-
boring spins. Analytical studies to date have been limited to the weak spin injection assumption
whereby the equation of motion for the magnetization is mapped to hydrodynamic equations de-
scribing spin flow and then linearized. Here, we analytically and numerically study easy-plane
ferromagnetic channels subject to spin injection of arbitrary strength at one extremum under a
unified hydrodynamic framework. We find that DEFs generally exhibit a nonlinear profile along the
channel accompanied by a nonlinear frequency tuneability. At large injection strengths, we fully
characterize a novel magnetization state we call a contact-soliton DEF (CS-DEF) composed of a
stationary soliton at the injection site, which smoothly transitions into a DEF and exhibits a neg-
ative frequency tuneability. The transition between a DEF and a CS-DEF occurs at the maximum
precessional frequency and coincides with the Landau criterion: a subsonic to supersonic flow tran-
sition. Leveraging the hydraulic-electrical analogy, the current-voltage characteristics of a nonlinear
DEF circuit are presented. Micromagnetic simulations of nanowires that include magnetocrystalline
anisotropy and non-local dipole fields are in qualitative agreement with the analytical results. The
magnetization states found here along with their characteristic profile and spectral features provide
quantitative guidelines to pursue an experimental demonstration of DEFs in ferromagnetic materials
and establishes a unified description for long-distance spin transport.

I. INTRODUCTION

Noncollinear magnetization states represent a new
paradigm for the transport of spin currents over microm-
eter distances [1–10]. A key concept that has enabled
the study of these states is the hydrodynamic interpre-
tation of magnetization dynamics, originally proposed in
the seminal paper by Halperin and Hohenberg [11] in the
context of the spin wave dispersion relation for ferromag-
nets and antiferromagnets. Almost four decades later,
a similar fluid-like interpretation was used to identify
the relationship between an infinite-length, static non-
collinear magnetization state in easy-plane ferromagnets
and dissipationless spin transport [12]. These states were
characterized by a homogeneous normal-to-plane mag-
netization and a winding in-plane magnetization. More
importantly, energy dissipation via damping was inoper-
ative because the texture was assumed to be static. As
a consequence, the mutual exchange torque exerted by
neighboring spins could be interpreted as an equilibrium
spin current or exchange flow [13] that did not exhibit
any dissipation.
While the prospect of a dissipationless spin current is

tantalizing for novel energy-efficient applications [6, 14–
18], any magnetization dynamics are subject to dissi-
pation via magnetic damping [19]. An example is the
interface between a magnetic material and a spin sink
that results in spin pumping [20]. To circumvent this
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problem, it is necessary to introduce energy into the sys-
tem. From an analysis of the linearized hydrodynamic
equations for a ferromagnet, it was predicted that spin
injection at one extremum of a one-dimensional chan-
nel could sustain a dynamic, noncollinear magnetization
state that was termed a spin superfluid [1, 2]. Despite
the fact that this is a solution to the linearized, long-
wavelength hydrodynamic equations, the magnetization
vector itself exhibits fully nonlinear spatio-temporal ex-
cursions in the form of complete planar rotations. As
we will later show, this solution results from a linearized
analysis of the equations of motion. The usage of the
term superfluid was borrowed from a similarity between
the order parameters that describe spin transport in a
magnet and mass transport in, e.g., superfluid He4 as
well as the fact that the normal-to-plane magnetization is
approximately constant along the channel, although very
small. However, this so-called spin superfluid experiences
energy loss via a spatially diffusing spin current, yet its
uniform precessional frequency and linearly decaying spin
current profile present potential advantages to the expo-
nential decay property of magnons. Similar states have
been predicted for antiferromagnets [7, 8, 21, 22] and
their experimental evidence in such materials has been
recently presented [9, 23].

In order to avoid potential misinterpretation of the
term spin superfluid and to emphasize the nonlocal com-
pensation of damping along the channel by the exchange
torque that originates from spin injection at the device
boundary, we will refer to spin superfluids and their gen-
eralizations as dissipative exchange flows or DEFs for
short.
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A more realistic setting for easy-plane ferromagnetic
materials must consider the effect of in-plane anisotropy
that breaks axial symmetry. For this configuration, it was
shown that the hydrodynamic equations of motion map
to a damped sine-Gordon equation, with a nonlinear term
proportional to the in-plane anisotropy strength [1, 5].
Because of the broken symmetry imposed by in-plane
anisotropy, the structure of a DEF is that of a translat-
ing train of Néel domain walls or a soliton lattice with
the same chirality and whose inter-wall spacing increases
as each domain wall propagates from the spin injection
edge to the opposite free spin edge. In the limit of van-
ishing anisotropy, the train of domain walls smooths into
a sinusoidal profile, equivalent to the previously studied,
axially symmetric case [1, 2].

The most striking feature of a DEF is that its spatial
structure and coherent precessional frequency depend on
the length of the channel. It is a solution to a boundary
value problem whereby the channel’s extrema are subject
to spin injection and spin pumping or free spin bound-
ary conditions. As a result, these solutions exhibit pecu-
liar characteristics of technological relevance, namely [5]:
the spin injection threshold is proportional to the square
root of the in-plane anisotropy field for long channels
and the homogeneous frequency is inversely proportional
to damping and the channel’s length. For comparison,
spin waves [24] excited on a homogeneous magnetization
background exhibit a spin injection threshold that is pro-
portional to damping, a frequency proportional to both
spin injection and the magnet’s internal field, and an
exponential decay rate that is proportional to damping.
The exponential decay of spin waves imposes the ulti-
mate limitation on their propagation length and coherent
spin transport, although detection at micrometer length
scales has been achieved in low-damping materials such
as YIG [25], amorphous YIG [26], and haematite [27].

The analytical predictions and characteristics of DEFs
are promising for long-distance spin transport. However,
the required spin injection has emerged as a practical
barrier for their experimental realization. In recent ex-
perimental studies, spin injection was realized from quan-
tum Hall edge states in antiferromagnetic graphene [9]
and the spin-Hall effect in Pt [23]. A recent numerical
study proposes an alternative spin-injection mechanism
based on the spin-transfer torque effect [28, 29], which
excites magnetization precession [5]. This method allows
for large spin injection magnitudes, breaking the weak
injection assumption that has been analytically assumed
to date [1, 2]. Signatures of distinct nonlinear, dispersive
dynamics exhibiting solitonic features were observed in
micromagnetic simulations that include non-local dipole
fields [5]. More recently, micromagnetic simulations that
incorporate spin-transfer torque along a confined, central
strip of a ferromagnet have similarly shown evidence of
strongly nonlinear features including a soliton nucleated
at the injection site in the large injection regime termed
a soliton screened spin superfluid [10].

While the numerical studies to date by a variety

of groups unambiguously demonstrate that long-range
spin transport can in principle be achieved with non-
collinear magnetization states in magnetic materials, an
analysis that incorporates short-wavelength exchange
dispersion and large-amplitude nonlinearities due to
anisotropy—such as those necessarily present for the
existence of a soliton—as well as a description of the ef-
fect of damping on spin flows is lacking. Here, we provide
a unified analytical framework in the context of a disper-
sive hydrodynamic (DH) formulation of magnetization
dynamics [3, 4]. This formulation is an exact transfor-
mation of the Landau-Lifshitz equation and, therefore,
captures the essential physics that are relevant to de-
scribe fully nonlinear, noncollinear magnetization states:
exchange, anisotropy, and damping.

The DH formulation gives rise to two equations of
motion for a longitudinal spin density and its associ-
ated fluid velocity that are analogous to the Navier-
Stokes’ mass and momentum equations for a compress-
ible fluid [3, 4]. From a fluid perspective, exchange,
anisotropy, and damping give rise to dispersion, nonlin-
earity, and viscosity, respectively. In contrast to typi-
cal fluids, the equivalent magnetic fluid exhibits a non-
conserved density, i.e., the mass can be lost. Therefore,
noncollinear magnetization states—DEFs—can be inter-
preted as forced fluid flows that compensate the density
and viscous losses manifesting in a profile that balances
dispersion and nonlinearity.

In this paper, we find that DEFs are generally char-
acterized by a nonlinear profile in both density and fluid
velocity. In the weak spin injection regime, the DH equa-
tions reduce to the forced diffusion equation and lead
to a linear DEF solution that is equivalent to a spin
superfluid [1, 2]. Using boundary layer theory in the
strong spin injection regime, we find a novel dynami-
cal state characterized by the nucleation of a station-
ary soliton at the injection site that smoothly transitions
into a nonlinear DEF. We term this dynamical solution
as a contact soliton DEF or CS-DEF, which is an an-
alytical representation of the numerically identified
soliton screened spin superfluid [10]. From a hydrody-
namic perspective, the soliton nucleated at the injec-
tion site occurs precisely when the injection crosses the
subsonic to supersonic flow boundary, equivalent to the
Landau criterion [3, 4]. Moreover, transition between a
DEF and a CS-DEF corresponds to the maximum preces-
sional frequency achieved by spin injection, setting an up-
per bound to the efficiency of DEF-mediated spin trans-
port. Thus, further spin injection enhances the coherent,
superfluid-like soliton at the expense of larger spin trans-
port, which is in sharp contrast to classical fluids where
strong channel flows are subject to drag at the boundaries
that, above a critical Reynolds number, develop into an
incoherent, turbulent state [30].

The presented results pertain to an ideal geometry
whereby the magnetic material is defect-free and the
boundaries are perfect spin-current sources and drains.
Deviations from these conditions may result in qualita-



3

tive changes to the presented solutions, including insta-
bilities. Defects in the magnetic material can result in
magnetic topological defects that destabilize the DEFs,
e.g., vortex-antivortex pairs [4] or phase-slips [1, 16, 31].
Non-ideal boundaries can be incorporated by utilizing
mixed (Robin) boundary conditions from a circuit for-
malism that includes spin pumping [2]. In the case of
strong injection, recent numerical results suggest that
such boundaries can induce an instability in the DEF
to CS-DEF crossover region [10]. Our results aim to pro-
vide the analytical basis to further study these effects in
more detail.

Our analytical study also indicates that, for the physi-
cally relevant case of magnetic materials with low damp-
ing, DEFs can be interpreted as an adiabatic spatial
evolution of conservative dynamic solutions, previously
termed uniform hydrodynamic states (UHSs) [3] in or-
der to highlight their non-dissipative, flowing character.
DEF magnetization states sustained in channels subject
to subsonic spin injection conditions can be conveniently
represented as curves of constant frequency in the UHS
phase space of spin density and fluid velocity. From
an applications perspective, the fluid interpretation also
lends itself to a circuit analogy, from which we can define
the current-voltage (I-V ) characteristics of the coherent
states studied here. Micromagnetic simulations support
the analytical results even in the presence of in-plane
anisotropy and non-local dipole fields in a thin film.

The remainder of the paper is organized as follows.
In Sec. II, we summarize the dispersive hydrodynamic
formulation and main features of uniform hydrodynamic
states. In Sec. III, we introduce the boundary value prob-
lem that describes a channel subject to spin injection at
one extremum and derive analytical expressions for lin-
ear DEFs, DEFs, and CS-DEFs. In the same section,
we study the DEF to CS-DEF transition in the context
of a subsonic to supersonic flow transition. In Sec. IV,
we establish that the hydrodynamic states sustained in
channels realize a nonlinear resistor in the hydraulic anal-
ogy of electrical circuits. Micromagnetic simulations of
nanowires incorporating STT as a spin injection mech-
anism, in-plane magnetocrystalline anisotropy, and non-
local dipole fields are discussed in Sec. V. Finally, we
provide our concluding remarks in Sec. VI.

II. DISPERSIVE HYDRODYNAMIC

FORMULATION AND UNIFORM

HYDRODYNAMIC STATES

Magnetization dynamics in a continuum approxima-
tion can be described by the Landau-Lifshitz (LL) equa-
tion

∂tm = −m× heff − αm ×m× heff , (1a)

heff = ∆m
︸︷︷︸

exchange

− mzẑ
︸︷︷︸

local dipole

, (1b)

where m = (mx,my,mz) is the magnetization vector
normalized to the saturation magnetization Ms, α is the
phenomenological Gilbert damping parameter, and heff

is an effective field, normalized by Ms, that incorporates
exchange and local (zero-thickness) dipole field as a min-
imal model for dispersion and nonlinearity, respectively.
The dimensionless form of Eq. (1a) is achieved by scaling
time by |γ|µ0Ms and space by λ−1

ex , where γ is the gyro-
magnetic ratio, µ0 is the vacuum permeability, and λex is
the exchange length. A dispersive hydrodynamic repre-
sentation of Eqs. (1a) and (1b) can be achieved by map-
ping the magnetization vector into hydrodynamic vari-
ables [3–5], namely, a longitudinal spin density n = mz

and a fluid velocity u = −∇Φ = −∇ arctan (my/mx). In
this work, we are interested in effectively one-dimensional
dynamics along a channel whose length is oriented in the
x̂ direction. Therefore, the fluid velocity can be written
as a scalar quantity u = u · x̂ and the spatial derivatives
taken only along x̂. The resulting dispersive hydrody-
namic equations are

∂tn = (1 + α2)∂x
[
(1− n2)u

]
+ α(1 − n2)∂tΦ, (2a)

∂tΦ = −(1− u2)n+
∂xxn

1− n2
+

n(∂xn)
2

(1− n2)2

− α

1− n2
∂x
[
(1 − n2)u

]
. (2b)

The simplest solutions to Eq. (2a) and (2b) are spin-
density waves (SDWs). These are static (∂tΦ = 0), tex-
tured magnetization states parametrized by a constant
density and fluid velocity, (n0, u0). SDWs are magne-
tization states that support dissipationless spin trans-
port [12]. A dynamic SDW can only be obtained as a
transient state or in the conservative limit, where α = 0
and ∂tΦ 6= 0. We refer to this state as a uniform hy-
drodynamic state (UHS). For both SDWs and UHSs, the
density is limited by its deviation from the magnetiza-
tion’s unit sphere poles (n = ±1 corresponds to vac-
uum) while the fluid velocity is an unbounded quantity.
However, it was shown in Ref. 3 that modulational in-
stability [32] (the exponential growth of perturbations)
ensues when |u0| > 1, i.e., for SDWs and UHSs with sub-
exchange length, in-plane magnetization rotation wave-
lengths. Therefore, modulationally stable SDWs and
UHSs are defined in the phase space spanned by |n0| < 1
and |u0| < 1. UHSs exhibit a precessional frequency
given by

Ω0 = ∂tΦ = −
(
1− u2

0

)
n0, (3)

obtained directly from Eq. (2b). The negative sign of
the frequency for n0 > 0 indicates that the precession is
clockwise about the ẑ direction.
It is important to emphasize that UHSs are dynamic,

textured magnetization states. This is markedly dif-
ferent from small-amplitude perturbations about a ho-
mogeneous state that are typically associated with spin
waves. Interestingly, UHSs support small-amplitude per-
turbations that exhibit a dispersion relation that is non-
reciprocal for n 6= 0 [3, 4]. This nonreciprocity leads
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FIG. 1. UHS phase space for density |n0| ≤ 1 and fluid ve-
locity |u0| ≤ 1. The sonic curve that separates the subsonic
and supersonic regions is shown by a solid black curve. The
dashed black curves represent isofrequency contours, labeled
by the corresponding frequency.

to conditions where long-wavelength perturbations can
propagate in either two directions or one direction with
respect to the UHS fluid velocity u0 and can be hydro-
dynamically interpreted as subsonic or supersonic flow,
respectively. The transition between subsonic and super-
sonic flow is known as the sonic curve. For UHSs, the
sonic curve is given by

|u0| =
√

1− n2
0

1 + 3n2
0

, (4)

and it is shown in Fig. 1 by a solid black curve in the
UHS phase space. Equation (4) is formally equivalent
to the Landau criterion for superfluidity in the limit of
perpendicularly magnetized easy-plane ferromagnets [4]
and for linear DEFs or spin superfluids [8]. Isofrequency
contours determined from Eq. (3) are shown by dashed
black curves. As we will demonstrate below, the UHS
phase space provides information regarding the form of
dynamic magnetization states in ferromagnetic channels
sustained by spin injection.

III. BOUNDARY VALUE PROBLEM FOR

EASY-PLANE FERROMAGNETIC CHANNELS

The steady magnetization states sustained by spin in-
jection can be analytically obtained by solving Eqs. (2a)
and (2b) subject to appropriate boundary conditions
(BCs). For this, we consider a channel of length L and
introduce spin injection at x = 0 and free spin bound-
ary conditions at x = L. For simplicity, we disregard spin
pumping [2], but our analysis is sufficiently general
that more complex BCs that incorporate metal /

magnetic interfacial effects could be studied in a
similar manner.
We seek steady, precessional solutions to

0 = (1 + α2)
d

dx

[
(1− n2)u

]
+ α(1 − n2)Ω, (5a)

Ω = −(1− u2)n+
1

1− n2

d2n

dx2
(5b)

+
n

(1− n2)2

(
dn

dx

)2

− α

1− n2

d

dx

[
(1− n2)u

]
.

with BCs

dn

dx
(0) = 0,

dn

dx
(L) = 0, (6a)

u(0) = ū, u(L) = 0, (6b)

where ū is proportional to the injected spin current [5].
These boundary conditions are enforced upon n = n(x),
u = u(x) by introducing the homogeneous precessional
frequency Ω = ∂tΦ. Below, we find solutions of this
boundary value problem (BVP) with nonlinearity, disper-
sion, and damping. A more detailed, mathematical
analysis leading to these approximate solutions is
provided in the Appendices.

A. Linear DEFs

We begin our analysis by revisiting the weak spin injec-
tion regime 0 < |ū| ≪ min(1, αL), first presented in [1, 2].
For this, we assume that u is small and n is constant in
Eqs. (5a) and (5b), so that the linearized equations are

αΩ̃ = −du

dx
, (7a)

Ω̃ = −n, (7b)

where Ω̃ = Ω/(1 + α2).
Noting that u = −∂xΦ and Ω = ∂tΦ, we can rewrite

Eqs. (7) as the diffusion equation

α

1 + α2
∂tΦ = ∂xxΦ, (8)

subject to the boundary conditions

∂xΦ(0) = −ū, ∂xΦ(L) = 0. (9)

For weak damping, 1+α2 ∼ 1, Eq. (8) is the linearized
hydrodynamic diffusion equation for easy-plane ferro-
magnets from previous studies [1, 2]. By direct integra-
tion, Eq. (8), subject to Eq. (9), exhibits the linear DEF
solution

ulDEF = ū(1− x

L
), Ω̃lDEF = −nlDEF =

ū

αL
(10)

that exhibits a linear decay profile in the fluid velocity,
which corresponds to the algebraic diffusion of spin cur-
rent across the channel. Importantly, this approximate
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FIG. 2. (color online) Magnetization states in a channel of length L = 100 and α = 0.01 subject to the injection ū at the left
edge, x = 0. In (a) and (b), the panels represent the density n, fluid velocity u, and mx magnetization vectorial component at
an instant of time. (a) For the injection ū = 0.4, the numerical solution shown by solid black curves is in excellent agreement
with a DEF shown by dashed red curves. For comparison, the corresponding linear DEF solution is shown by dashed blue
curves. (b) For the injection ū = 0.8, the numerical solution shown by solid black curves is in good agreement with a CS-DEF
shown by dashed red curves. The solid green line indicates the boundary layer length where the soliton is established. (c)
Precessional frequency as a function of injection for a linear DEF (dashed black line), numerical solution of the BVP (solid

black curve), DEF (dashed blue curve), and CS-DEF (dashed red curve). The numerical maximum Ω̃max = 0.44 is found at
ū = 0.57. (d) Density at the injection site, n̄ = n(0), using the same color codes as (c).

solution exhibits a spatially homogeneous frequency and
density. with no assumptions on the magnitudes of
nonzero damping nor the channel length L. See
Appendix A 1 for additional details.
It is important to emphasize that damping plays a fun-

damental role in the stabilization of the linear DEF solu-
tion. It is for this reason that we refer to the solution as
a dissipative exchange flow. In fact, in the conservative
case where α = 0, the solution to Eq. (7a) (u = const)
cannot satisfy both boundary conditions (9).

B. Nonlinear DEFs

We now consider nonlinear but spatially smooth solu-
tions, i.e., slowly varying relative to the exchange length
for a long channel L ≫ 1. Consequently, the disper-
sive terms in Eq. (2b) can be neglected (both d2n/dx2

and (dn/dx)2). Upon simple algebraic manipulation,
Eqs. (5a) and (5b) reduce to

α(1 − n2)Ω̃ = − d

dx

[
(1− n2)u

]
, (11a)

Ω̃ = −(1− u2)n. (11b)

Inserting n from Eq. (11b) into (11a) leads, after some
algebra, to the differential equation

αΩ̃ =
du

dx

[

(αΩ̃u)2

(1− u2)(u4 − 2u2 + 1− Ω̃2)
− 1

]

, (12)

that relates the fluid velocity to the precessional fre-
quency. By integration, we obtain an implicit equation

for the fluid velocity (see Appendix A2)

αLΩ̃DEF

(

1− x

L

)

= uDEF + 4 tanh−1 (uDEF)

− 2N−(uDEF, Ω̃DEF)

− 2N+(uDEF, Ω̃DEF), (13)

where

N±(κ, ω) =
√
1± ω tanh−1

(
κ√
1± ω

)

. (14)

The precessional frequency is obtained by evaluating
Eq. (13) at x = 0 where uDEF(0) = ū, implying the
equation for the DEF’s frequency

αLΩ̃DEF = ū+ 4 tanh−1 (ū)

− 2
[

N−(ū, Ω̃DEF) +N+(ū, Ω̃DEF)
]

, (15)

while the density is obtained directly from Eq. (11b) as

nDEF = − Ω̃DEF

1− u2
DEF

. (16)

Equations (13), (15), and (16) indicate that the DEF’s
spatial profile is, in general, nonlinear and the frequency
is a nonlinear function of the spin injection ū. A numer-
ical solution for a nonlinear DEF is shown by dashed red
curves in Fig. 2(a) for the injection ū = 0.4, a channel of
length L = 100, and α = 0.01. The top and center panels
show the hydrodynamic variables n(x) and u(x), respec-
tively, while the bottom panel shows the x̂ magnetization
component, mx(x, t) =

√

1− n(x)2 cosΦ(x) at a given
instant of time (recall that ∂tΦ 6= 0). Excellent agree-
ment is obtained between the analytical solution and
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the numerical solution of the full BVP in Eqs. (2a), (2b),
(6a), and (6b), shown by solid black curves. The BVP is
numerically solved by a collocation method (MATLAB’s
bvp5c).
An important consequence of the DEF nonlinear pro-

file is the concomitant precessional frequency that is a
nonlinear function of the injection, ū, shown by a dashed
blue curve in Fig. 2(c). The frequency obtained by solv-
ing the full BVP is shown by a solid black curve. Excel-
lent agreement with Eq. (15) is found up to the maxi-

mum frequency Ω̃max = 0.44 at ūmax = 0.57, indicated by
a black circle. For ū > ūmax, the nonlinear solution no
longer describes the frequency dependence. The den-
sity at the injection site, equivalent to the magnetization
tilt due to spin injection, is shown in Fig. 2(d). Similar
to the precessional frequency, a good quantitative agree-
ment between the numerical solution (solid black curve)
and the DEF solution (dashed blue curve) is observed
up to ūmax = 0.57, where n̄max = −0.64. As we show
below, these qualitative changes indicate the initiation of
supersonic flow and of a stationary soliton.
The linear DEF solution can be obtained from the non-

linear DEF solution in the weak injection regime. For
this, we note that tanh−1(κ) ≈ κ and N±(κ, ω) ≈ κ for
small κ. Introducing these approximations in Eqs. (13),
(15), and (16) leads to Eq. (10).
The linear DEF approximation is shown by dashed

blue curves in Fig. 2(a) for the same parameters as the
DEF and numerical solutions. It is interesting that while
the difference between the linear and nonlinear spatial
profiles for the fluid velocity (middle panel) is impercep-
tible, the density in a linear approximation does not
conform to the spatial profile. A consequence is that
the linear DEF frequency tuneability is likewise a lin-
ear function of injection and quantitatively agrees with
the nonlinear solution up to ū ≈ 0.3 for L = 100 and
α = 0.01, shown in Fig. 2(c) by a dashed black line.

C. Contact soliton DEFs

The qualitative change in the frequency dependence
observed in Fig. 2(c) is an indication that the inclusion
of nonlinearity and lowest order dispersion are not
sufficient to describe DEF solutions sustained at an arbi-
trary injection strength. In such a regime, higher order
dispersive terms must be taken into account in Eqs. (5a)
and (5b). An analytical methodology for this task is
boundary layer theory [33]. This method allows one to
separate the system into regimes dominated by differ-
ent physics that can be asymptotically matched. Below
we outline the most important features and results ob-
tained from the calculation. Details can be found in
Appendix A3.
For Eqs. (5a) and (5b) subject to the BCs (6a) and

(6b), it is possible to identify two regimes. Close to the
left edge subject to strong injection, the spatial profile
of the solution can vary rapidly. In other words, we as-

sume that dispersion dominates over damping. Asymp-
totically, this is equivalent to an expansion with small
damping while considering short spatial varia-
tions, as discussed in the Appendix. We refer to this
region as the inner region. Far from the left edge, we as-
sume that the spatial profile of the solution varies slowly,
so that damping dominates over dispersion. We refer to
this region as the outer region. A matching condition
is invoked to obtain a smooth solution across both re-
gions. Mathematically, this is achieved by introducing
BCs for the inner region

d

dx
nin(0) = 0, lim

x→∞
nin(x) = n∞, (17a)

uin(0) = ū, lim
x→∞

uin(x) = u∞, (17b)

and the outer region,

lim
x→0

nout(x) = n∞,
d

dx
nout(L) = 0, (18a)

lim
x→0

uout(x) = u∞, uout(L) = 0, (18b)

where n∞ and u∞ are matching parameters to be de-
termined.

The equations of motion for the inner region are dom-
inated by dispersion so that the dissipative terms are
neglected

0 =
d

dx

[
(1− n2)u

]
, (19a)

Ω̃ = −(1− u2)n+
1

1− n2

d2n

dx2
+

n

(1− n2)2

(
dn

dx

)2

.(19b)

The solution of this system of differential equations
involves a series of steps detailed in Appendix A3. Ulti-
mately, Eqs. (19a) and (19b) can be integrated to obtain
the soliton solution, e.g., see Ref. 34

nin =
aν1tanh

2(θx) + ν2(n∞ − a)

atanh2(θx) + ν2
, (20a)

uin = u∞

1− n2
∞

1− n2
in

, (20b)

Ω̃in = −n∞(1− u2
∞), (20c)

with two free parameters: n∞, u∞. The coefficients ν1,
ν2, θ, and a are given in Appendix A3 and all BCs
in Eqs. (17a) and (17b) were used. In other words,
Eqs. (20a) and (20b) describe, respectively, solitons of
density amplitude a on a nonzero density background
n∞ and fluid velocity background u∞.

In contrast, the slowly varying outer region is domi-
nated by damping, leading to Eqs. (11a) and (11b) with
DEF solutions given by Eqs. (13) and (16) we term uout

and nout, respectively. We note that this solution is ob-
tained by evaluating the BCs of Eqs. (18a) and (18b) at
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x = L, yielding a two-parameter family of solutions

nout = − Ω̃out

1− u2
out

, (21a)

αLΩ̃out

(

1− x

L

)

= uout + 4 tanh−1 (uout)

− 2
[
N−(uout) +N+(uout)

]
.(21b)

To apply boundary layer theory, the inner and outer
solutions must asymptotically match and exhibit a single
precessional frequency Ω̃cs = Ω̃in = Ω̃out. For the left
edge of the channel subject to spin injection, we evaluate
the inner region solution, Eqs. (20a) and (20b) at x = 0,
to obtain

ū = u∞

1− n2
∞

1− (n∞ − a)2
. (22)

Then, we evaluate the matching conditions applied
to the outer solution , Eqs. (18a) and (18b), by eval-
uating Eqs. (21a), (21b) at x = 0 and identifying
uout(0) = u∞ and nout(0) = n∞.
We now have all the ingredients to construct a uni-

formly valid solution along the length L of the channel.
Such a solution can be written as

ucs(x) = uin(x) + uDEF(x) − u∞, (23a)

ncs(x) = nin(x) + nDEF(x)− n∞, (23b)

which describes a soliton located at the injection site
smoothly connected to a nonlinear DEF. We call this
solution a contact soliton dissipative exchange flow
(CS-DEF).
A CS-DEF is shown by dashed red curves in Fig. 2(b)

for the injection ū = 0.8, a channel of length L = 100,
and α = 0.01. The numerical solution of the full BVP is
shown by solid black curves and it is in excellent quan-
titative agreement to the boundary layer approach. The
frequency dependence on the injection ū is shown by a
dashed red curve in Fig. 2(c). In contrast to the DEF fre-
quency tuneability, the CS-DEF precessional frequency is
decreasing with ū. Additionally, we observe that the
numerically obtained frequency tuneability, solid black
line, approaches the CS-DEF frequency above ūmax. A
similar behavior is observed for the density at the injec-
tion site, shown in Fig. 2(d) by the dashed red curve.
These observations indicate that the full solution pro-
file as a function of injection ū transitions from a DEF
into a CS-DEF. In the following section, we investigate
this transition and its hydrodynamic interpretation.
Qualitatively, CS-DEFs are similar to the soliton

screened spin superfluid recently calculated in micro-
magnetic simulations [10]. An important difference is
that our free-spin boundary conditions model a perfect
spin sink so that magnon reflections are inhibited.

D. DEF to CS-DEF transition

In the previous section, a transition from a DEF into
a CS-DEF was evidenced by a qualitative change in the

frequency tuneability to injection. In particular, it is
observed in Fig. 2(c) that the full numerical solution
(solid black curve) approaches the DEF and CS-DEF
frequency tuneabilities in the small and large injection
limits, respectively. Whereas a first-order transition is
not observed, it is insightful to find an analytical ex-
pression for a practical observable, such as the maximum
precessional frequency, Ω̃max. For this, we can utilize
the implicit equation for a DEF fluid velocity profile,
Eq. (15), to take the derivative with respect to u and

equate d/dū(Ω̃DEF) = 0. Because Eq. (15) is implicit,
the maximum frequency will be an implicit equation as
well. Utilizing Eq. (16), we can eliminate Ω̃DEF and,
after some algebra, we obtain the injection at maxi-
mum frequency, ūmax, that depends on the input
density at maximum frequency , n̄max, according to

|ūmax| =
√

1− n̄2
max

1 + 3n̄2
max

. (24)

Interestingly, this is precisely the sonic curve, Eq. (3).
This relation is a central result of this work.
There are three physical implications of Eq. (24).

First, the relation bounds the phase space for DEFs to
the UHS subsonic regime, below the solid curve in
Fig. 1. Second, it suggests that DEFs can be interpreted
as the adiabatic spatial evolution through a family of
UHSs parametrized by spatially-dependent densities and
fluid velocities. An adiabatic interpretation is valid as
long as α ≪ 1, which is physically true for magnetic
materials of interest. Third, exceeding ūmax implies su-
personic flow and coincides with the development of a
soliton at the injection site.
A consequence of the adiabatic interpretation of DEF

solutions is that the solution’s profiles can be visualized
within UHS phase space. In Fig. 3(a), we show numer-
ical solutions of the BVP for L = 100 and α = 0.01
by solid blue curves. The input conditions for each case
are marked by blue circles. The solid and dashed gray
curves represent the UHS sonic curve and isofrequency
contours, respectively. We observe that the density and
fluid velocity of several DEFs lie on UHS isofrequency
contours. When the injection and its corresponding den-
sity enter the supersonic regime, CS-DEFs ensue and the
adiabatic interpretation breaks down. Numerical solu-
tions for CS-DEFs visualized in the UHS phase space are
shown by dashed red curves in Fig. 3(a) where the input
conditions are marked by red circles. Close to the in-
jection site, where the soliton is established, the profile
does not follow the isofrequency contours. However, once
the sonic curve is crossed, the profile transitions into that
of a DEF and spatially evolves adiabatically along an
isofrequency contous in UHS phase space.
From a hydrodynamic perspective, the UHS phase

space visualization emphasizes a remarkable quality of
CS-DEFs. In classical fluids, high speed flow with
boundaries is subject to instabilities that result in turbu-
lent flow, i.e., characteristic spatial scales become smaller
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FIG. 3. (color online) (a) DEFs (solid blue curves) and
CS-DEFs (dashed red curves) represented in the UHS phase
space. The sonic curve and isofrequency contours are shown
by a solid and dashed gray curves, respectively. The DEFs lie
on the isofrequency contours, in agreement with an adiabatic
interpretation. CS-DEFs behave markedly different when
the parameters are in the supersonic regime. The density
and injection at the frequency maximum for L = 100,
(n̄max, ūmax), is shown by a black circle. (b) injection (left
axis, solid curves) and frequency (right axis, dashed curves) at
which a DEF transitions into a CS-DEF as a function of the
channel length L and setting α = 0.01 (black) and α = 0.005
(blue). Analytical estimates obtained from an asymp-
totic expansion in ū of the nonlinear DEF solution are
shown by circles with the color code described above.

downstream. Instead, the soliton established at the injec-
tion site is a coherent structure that expands the spatial
scales to a slowly varying DEF, precluding turbulence
and ultimately establishing a slower subsonic flow. This
feature is possible at the expense of reducing the homoge-
neous precessional frequency and, consequently, the mag-
nitude of spin currents pumped into a reservoir located,
e.g., at the right edge of the channel. It must be noted
that supersonic conditions close to the left edge of the
channel make this region susceptible to instabilities via
phase slips [1] or vortex-antivortex pair creation [4] at
defect sites. A detailed study of CS-DEF instabilities as
well as the conditions that trigger such instabilities is a

separate study .

As discussed above, the distinction between DEFs and
CS-DEFs from a hydrodynamic perspective can be linked
to the flow conditions at the injection site. However,
Eq. (24) is expressed as a function of n̄max, which is an
a priori unknown quantity that is determined by solv-
ing for a DEF. In other words, Eq. (24) cannot predict
which isofrequency contour in Fig. 3(a) will be followed
by a DEF given only the injection ū. A practical con-
sequence is that the actual maximum injection and pre-
cessional frequency will depend on L and α. By numer-
ically solving the BVP as a function of L, we find the
maximum injection ūmax and frequency Ω̃max shown, re-
spectively, by solid and dashed curves in Fig. 3(b) for
α = 0.01 (blue) and α = 0.005 (black). The den-
sity and injection at the frequency maximum for
L = 100, (n̄max, ūmax), is shown by a black circle in
Fig. 3(a). These results have a clear physical interpre-
tation. For short channels, the problem limits to a local
balance between injection and damping. Therefore, the
energy introduced into the system is primarily invested
in spin precession. In the opposite limit of long channels,
the energy is mainly invested in establishing a DEF to
compensate damping nonlocally and ūmax is large.

Analytical expressions for for both ūmax and
Ω̃max can be obtained from the asymptotic expan-
sion in ū of the nonlinear DEF solution, written
in the Appendix A 2. Following the same proce-
dure outline above, we obtain

ūmax ≈
(

3

20

)1/4 √
αL ≈ 0.6223

√
αL, (25a)

Ω̃max ≈
(

3

20

)1/4
4

5

1√
αL

≈ 0.4979
1√
αL

. (25b)

These solutions are valid for small αL. Com-
parison to our analytical results are shown in
Fig. 3(b) with black and blue circles for, respec-

tively, ūmax and Ω̃max. For the typical small values
of α, good agreement is observed up to L ≈ 200.

We emphasize that neither in-plane anisotropy nor
non-local dipole fields have been included in the anal-
ysis. For short channels, these fields will most likely
change the easy axis direction, which could destroy the
onset of magnetization textures. However, for long chan-
nels, it has been shown that such symmetry-breaking
fields primarily introduce a threshold for the onset of
DEFs [5]. This implies that the large injections required
to trigger a transition into a CS-DEF will be negligibly
affected, as recently observed by simulations [10]. In sec-
tion V, we explore this transition by micromagnetic sim-
ulations in nanowires where the injection is parametrized
by STT.
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FIG. 4. (color online) Boundary layer width as a function of
the injection strength ū

E. Boundary layer width

The CS-DEF solution presented in Eqs. (23a) and
(23b) was obtained by separating the problem into two
distinct regions, inner and outer, followed by asymptotic
matching. A relevant parameter to identify is the width
of the solitonic inner region as a function of the injec-
tion ū.
The boundary layer width is linked to the soliton

width, whose profile is given in Eq. (20a). Because soli-
tons decay exponentially, its width can be estimated from
the profile’s half-width at half-maximum. We will use
this metric to estimate the boundary layer width , l.
The soliton solution Eq. (20a) has an amplitude a over

a background n∞. Therefore, the half-width at half-
maximum can be calculated by imposing nin(x = l) =
−a/2 + n∞. After some algebra, we obtain the implicit
equation for l

tanh2 (θl) =
ν2

2(ν1 − n∞) + a
, (26)

that can be solved numerically as a function of ū given
the boundary and matching conditions (21a), (21b), and
(22). Figure 4 depicts the boundary layer width as
a function of ū larger than ūmax, where the CS-DEF
solution occurs in a channel of length L = 100. We
observe that the boundary layer width decreases, i.e.,
the soliton becomes sharper, with injection strength. For
the particular case of ū = 0.8, the solution to Eq. (26)
predicts a boundary layerwidth of ≈ 5. This is shown by
the vertical solid green line in Fig. 2, in good agreement
with both the numerical calculation and the analytical
solution.
The boundary layer width of Fig. 4 is presented in

units of exchange length, valid for easy-plane anisotropy
materials. For Permalloy with a typical exchange length
of 5 nm, the boundary layer width lies between 22 nm
and 47 nm in a channel of 500 nm. For parameters
associated with YIG [10], A = 3.5 pJ/m and Ms =
130 kA/m, the exchange length is ≈ 18 nm. This leads
to a boundary layer width between 78 nm and 172 nm in

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

FIG. 5. I-V characteristics for a channel of length L = 100
and α = 0.01 subject to a spin injection u0 at x = 0. The
gray and white area indicate the regions where, respectively,
DEFs and CS-DEFs are sustained.

a channel of 1.8 µm. The boundary layer widht of Fig. 4
is presented in units of exchange length, valid for easy-
plane anisotropy materials. For Permalloy with a typical
exchange length of 5 nm, the boundary layer width lies
between 22 nm and 47 nm in a channel of 500 nm. For
parameters associated with YIG [10], A = 3.5 pJ/m
and Ms = 130 kA/m, the exchange length is ≈ 18 nm.
This leads to a boundary layer width between 78 nm and
172 nm in a channel of 1.8 µm.

IV. ELECTRICAL CIRCUIT ANALOGY

An alternative interpretation that captures the behav-
ior of the channel subject to injection as a two-terminal
device is the hydraulic analogy to electrical circuits. This
analogy allows one to classify the DEFs and CS-DEFs
in the context of electrical elements that provide build-
ing blocks to construct devices with a given functional-
ity. For this, we define hydrodynamic quantities that are
analogous to a voltage and a current, and from which the
I-V characteristics of the device can be obtained.
In the electric to hydraulic analogy, a voltage maps

to pressure difference. Using the hydrodynamic formula-
tion of magnetization dynamics, the spatially-dependent
pressure P (x) was derived in Ref. 3 as

2P (x) = [1 + n(x)2][1− |u(x)|2]− 1, (27)

from which the pressure difference or voltage V = P (x =
L)−P (x = 0) in a channel of length L subject to BCs (6b)
is

V =
1

2

[
(n2

L − n̄2) + (1 + n̄2)ū2
]
, (28)

where nL = n(x = L) and n̄ = n(x = 0) are the densities
at the channel’s extrema.
The current I is equivalent to the density flux . In

the steady state modes studied here, the density flux is
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(1 − n2)u, whose magnitude corresponds to the pre-
cessional frequency, Eq. (3). Note that the precessional
frequency is the only spatially-homogeneous quantity of
both DEFs and CS-DEFs, just as a current is an equilib-
rium, constant quantity in electric circuits. Additionally,
in the case of a neighboring spin reservoir, the preces-
sional frequency is linearly dependent on the pumped
spin current that can give rise to a transverse charge cur-
rent by the inverse spin-Hall effect [35].
Using Eq. (28) and Eq. (3), we numerically calculate

the I-V characteristics shown in Fig. 5 for a channel of
length L = 100 and α = 0.01. The gray and white ar-
eas indicate the sustenance of, respectively, a DEF or a
CS-DEF. The I-V characteristic is nonlinear for all cases
and its finite value indicates that both DEFs and CS-
DEFs are resistive. In other words, hydrodynamic states
sustained in channels subject to spin injection can be
classified as nonlinear resistors.
We note that in this representation, even the linear

DEF solution Eq. (10), results in a nonlinear I-V curve.
In fact, the linear solution establishes a spatially constant
density, so that nL = n̄. Additionally, |n̄| ≪ 1, leading
to a voltage given simply by V = ū2/2. The precessional
frequency is given in Eq. (10) so that I = ū/(αL). There-

fore, the resistance is R = V/I = αLū/2 = αL
√

V/2.
A notable feature of the I-V curve is the change in

slope from positive when a DEF is sustained to nega-
tive when a CS-DEF is sustained. This agrees with the
frequency tuneability shown in Fig. 2(c). In terms of
the differential conductivity, dI/dV, this implies a pos-
itive or negative sign for, respectively, DEFs and CS-
DEFs. While the I-V characteristic is positive every-
where, the negative differential conductivity of CS-DEFs
implies that these states can potentially amplify oscilla-
tory inputs.

V. MICROMAGNETIC SIMULATIONS

In this section, we explore the DEF solutions estab-
lished in a nanowire by micromagnetic simulations in-
cluding both non-local dipole fields and magnetocrys-
talline anisotropy. We utilize the GPU-based code mu-
max3 [36]. We consider material parameters for
Py, namely, Ms = 790 kA/m, exchange stiffness A =
10 pJ/m, in-plane anisotropy field HA = 400 A/m, and
α = 0.01. The corresponding exchange length for these
parameters is λex = 5.05 nm.
We simulate a nanowire of dimensions

512 nm × 100 nm × 1 nm. Spin injection is achieved
by STT acting on a 10 nm × 100 nm contact located
at the left extremum of the nanowire. Therefore, the
nanowire length subject to spin injection is 502 nm
that corresponds to a dimensionless length of L = 99.4.
We use a symmetric STT with polarization P = 0.65
and assume that the charge current is spin-polarized
along the ẑ direction, e.g., by a magnetic material with
perpendicular magnetic anisotropy [37]. From a previous

FIG. 6. (a) Magnetization states shown in the UHS phase
space obtained from micromagnetic simulations of a Py
nanowire of dimensions 512 nm × 100 nm × 1 nm subject to
STT at the left extremum. The injection conditions are iden-
tified by circles and the corresponding solutions are plotted
as solid curves. Sub -threshold solutions are shown in black,
DEFs in blue, and CS-DEFs in red. The solid and dashed
gray curves represent the sonic curve and isofrequency con-
tours for a UHS, respectively. (b) Frequency tuneability as a
function of J̄ .

study [5], it was found that DEFs can be excited by
STT in the presence of symmetry-breaking terms by
charge current densities on the order or 1011 A/m2. We
numerically find a threshold of J̄ = 4 × 1011 A/m2.
To explore the dynamical regimes discussed in Sec. III,
we vary the charge current density at the left contact,
between 1 × 1011 A/m2 and 20 × 1011 A/m2 in steps
of 1 × 1011 A/m2. The simulation was set to run for
20 ns for each current, which was found to be sufficient
to stabilize a steady state regime.
The results can be visualized in the UHS phase space

shown in Fig. 6(a). Because of the oscillations and trans-
verse non-uniformity introduced by anisotropy and non-
local dipole fields [5], respectively, we plot averaged den-
sities and fluid velocities. The average is performed both
in space across the width of the nanowire and in time for
the range 15 ns to 20 ns. To directly compare with
the analytical results, we disregard the region sub-
ject to STT. In other words, the boundary condi-
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FIG. 7. (color online) Boundary layer width as a function of
the injection strength ū

tions are determined just outside the region sub-
ject to STT in the nanowire and the nanowire’s
right extremum. A current density threshold for the
stabilization of hydrodynamic states is observed. At
sub-threshold current densities, a partial domain wall is
formed at the injection site [5], evidenced by a solid black
vertical line at n = 0.

We observe a remarkable qualitative agreement be-
tween the micromagnetic simulations and the analytical
results shown in Fig. 3. In particular, we observe DEFs
that follow the UHS isofrequency contours obtained in
Sec. III without non-local dipole and in-plane anisotropy
(solid blue curves) and CS-DEFs when the injection con-
ditions are supersonic (solid red curves). Only three CS-
DEFs are shown for clarity. The corresponding frequen-
cies are shown in Fig. 6(b) in physical units as a function
of J̄ and color-coded as in panel (a). We emphasize
that a linear relation between J̄ and ū is not possible to
obtain because of the particularities of the energy land-
scape imposed by the magnetization texture, anisotropy,
and non-local dipole fields. Nonetheless, a maximum fre-
quency is observed at the transition between DEFs and
CS-DEFs.

The boundary layer width is difficult to calculate

in micromagnetic simulations. This is because the fre-
quency does not match exactly to the analytical results
when nonlocal dipole and anisotropy fields are included
and, therefore, the determination of the parameter n∞

is inaccurate. However, we can estimate the boundary
layer size from the spatial profile of n. We determine
the boundary layer width as the region in space where
the slope of n is larger than a threshold value of 0.005
in units of 1/λex. In Fig. 7(a), we show the boundary
layer width as a function of injection current J̄ . The de-
creasing trend qualitatively agrees with the analytical re-
sults presented in Fig. 4 and the boundary layer width is
within the predicted values for Py. Because the criterion
used for spin injection in micromagnetic simulations
is different than the analytical boundary conditions,
we show the profile of n close to the injection site for
J̄ = 10× 1011 A/m and 15× 1011 A/m in Fig. 7(b) and
(c), respectively. A reasonable estimation of the bound-
ary layer width , c.f. with Fig. 2, is observed.

VI. CONCLUSIONS

In this paper, we analytically determined the form
and qualitative features of magnetization states sustained
by spin injection of arbitrary strength in ferromagnetic
channels with easy-plane anisotropy. For this, we utilize
a dispersive hydrodynamic formulation that captures the
necessary physical terms without approximations while
being analytically tractable. Our analytical study fully
characterizes the possible solutions that support long-
distance spin transport under a unified framework.
We find that DEFs are generally nonlinear in profile

and frequency tuneability. Additionally, we characterize
a novel solution, a CS-DEF, composed of a stationary
soliton nucleated at the injection site that smoothly tran-
sitions into a nonlinear DEF. A notable consequence of
the onset of CS-DEFs is that the frequency redshifts to
injection. This feature is important for spintronic appli-
cations because it leads to a saturation of frequency and,
therefore, of spin current magnitudes pumped into adja-
cent spin reservoirs. It is numerically found that the max-
imum frequency monotonically decayswith the channel’s
length, indicating the increased energy that must be in-
vested in the nonlocal compensation of damping to sus-
tain DEFs. In other words, there is a compromise be-
tween the spin transport capacity and the length of the
channel.
The adiabatic UHS interpretation introduced in this

paper allows one to utilize the UHS phase space’s
isofrequency contours as a chart to categorize the
magnetization states sustained in a ferromagnetic chan-
nel. This chart could be utilized to explore the profile
of magnetization states induced in channels with two or
more boundary conditions, e.g., contacts for STT and
adjacent spin current reservoirs [10]. The methodology
presented here will be valuable for further analytical and
numerical studies as well as to aid the design of an experi-
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mental realization of extended magnetization textures for
microscopic spin transport.
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Appendix A: Asymptotic analysis

In this appendix, we implement an asymptotic analysis
of the nonlinear ordinary differential equations (ODEs)
(5a) and (5b) subject to the boundary conditions (6a)
and (6b) that leads to the dissipative exchange flow
regimes identified in this work: linear, nonlinear, and
contact DEF solutions.
For this, we introduce the spatial rescaling

y =
x

L
, (A1)

and use equation (5a) to simplify equation (5b) and ob-
tain the equivalent ODEs

0 =
[
(1− n2)u

]′
+ αL(1 − n2)Ω̃, (A2a)

Ω̃ = −(1− u2)n+
n′′(1− n2) + n(n′)2

L2(1− n2)2
, (A2b)

where the prime ′ denotes a spatial derivative with re-
spect to y, Ω̃ = Ω/(1 + α2) as before, and the boundary
conditions (6) become

n′(0) = 0, n′(1) = 0, (A3a)

u(0) = ū, u(1) = 0. (A3b)

1. Linear DEF solution: weak injection

The parameter regime that leads to the linear DEF
solution requires sufficiently weak injection, therefore we
introduce the small parameter 0 < |ū| ≪ 1 and the
asymptotic expansions

u = ūu1 + ū3u3 + · · · , n = ūn1 + ū3n3 + · · · ,
Ω̃ = ūΩ̃1 + ū3Ω̃3 + · · · , 0 < |ū| ≪ 1.

(A4)

Inserting them into equations (A2), and equating like
powers of u, we obtain the two equations

u′

1 = −αLΩ̃1, (A5a)

1

L2
n′′

1 − n1 = Ω̃1, (A5b)

at leading order O(ū). The boundary conditions (A3b)

and Eq. (A5a) imply u1(y) = 1 − y, Ω̃1 = 1/(αL).
The boundary conditions (A3a) and Eq. (A5b) imply
n1(y) = −1/(αL). Inserting this approximate leading
order solution into the expansions (A4) give the linear
DEF solution (10).
We note that equating the next order terms O(ū3) in

Eqs. (A2) leads to

u′

2 = αL(n2
1Ω̃1 − Ω̃2) + (n2

1u1)
′, (A6a)

1

L2
n′′

2 − n2 = Ω̃2 − u2
1n1 −

1

L2
n1(n

′

1)
2. (A6b)

Inserting the leading order solution for n1, u1, and Ω̃1

into Eq. (A6a) results in u′
2 = −αLΩ̃2. Applying the

boundary conditions (A3b) (u2(0) = u2(1) = 0) imply

u2(y) = 0 and Ω̃2 = 0. Equation (A6b) and the boundary
conditions (A3a) (n′

2(0) = n′
2(1) = 0) are solved with

a spatially varying n2(y) (superposition of exponentials
and a quadratic polynomial in y). This means that the
linear DEF solution (10) approximates the velocity and
frequency to high accuracy, O(ū5), but the density has a
spatially varying correction that scales with ū3.
It is important to note that the linear DEF solution

only requires sufficiently weak injection. Inspection of
the asymptotic solution implies 0 < |ū| ≪ min(1, αL)
in order to maintain a well-ordered asymptotic series in
the expansions (A4). Notably, there is no assumption on
the magnitude of the damping coefficient α nor channel
length L.

2. Nonlinear DEF solution: long channel, subsonic

injection

In this section, we provide the detailed derivation of
Eqs. (13), (15), and (16). The assumption of weak in-
jection for the linear DEF solution is relaxed and now
we require a long channel, i.e., L ≫ 1. To this end, we
assume the asymptotic expansions

u = u0 +
1

L2
u2 + · · · , n = n0 +

1

L2
n2 + · · · ,

Ω̃ = Ω̃0 +
1

L2
Ω̃2 + · · · , L ≫ 1,

(A7)

insert them into equations (A2) and obtain the leading
order equations

0 = u′

0 −
2u0n0n

′
0

1− n2
0

+ αLΩ̃0, (A8)

Ω̃0 = −(1− u2
0)n0. (A9)

Using Eq. (A9), we can eliminate n0 from Eq. (A8) to
obtain an ODE for u0

αLΩ̃0 = u′

0

[

4Ω̃2
0u

2
0

(1− u2
0)(u

4
0 − 2u2

0 + 1− Ω̃2
0)

− 1

]

, (A10)
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which is equivalent to Eq. (12) in the main text. To
integrate this expression, we perform partial fraction de-
composition

αLΩ̃0 = u′

0

[

− 1 +
4

u2
0 − 1

(A11)

− 2(1− Ω̃0)

u2
0 − (1 − Ω̃0)

− 2(1 + Ω̃0)

u2
0 − (1 + Ω̃0)

]

.

This solution must agree with the linear DEF solution
when |ū| is small so, from Eq. (10), we expect |Ω̃0| < 1
and we can integrate each term in Eq. (A11) to obtain
an implicit expression for u0(y)

αLΩ̃0y + C = −u0 − 4 tanh−1 u0 (A12)

+ 2

√

1− Ω̃0 tanh
−1

(

u0
√

1− Ω̃0

)

+ 2

√

1 + Ω̃0 tanh
−1

(

u0
√

1 + Ω̃0

)

,

where C is an integration constant. Evaluating the
boundary condition (A3b) (u0(1) = 0), we obtain the
integration constant

C = −αΩ̃0L. (A13)

Replacing C in Eq. (A12), we obtain the implicit solution
for the fluid velocity that is given in the main text as
Eq. (13). The frequency Ω0 in Eq. (15) and density n0 in
Eq. (16) follow from the boundary condition u0(0) = ū
and Eq. (A9), respectively.
This implicit solution satisfies the boundary conditions

for the velocity (A3b) but it only satisfies n′
0(1) = 0 and

not n′
0(0) = 0. While this could be resolved by consid-

ering a boundary layer adjacent to y = 0, the fact that
we are considering a long channel implies d

dxnDEF(0) =

O(L−1), which is negligibly small within the asymptotic
approximation (A7).
It is worth noting that the asymptotic expansion of the

nonlinear DEF solution for small |u| is

uDEF(x) = ū
(

1− x

L

)

(A14)

+ ū5
4 x
L

(
1− x

L

)

3(αL)2

( x

L
− 2
)

+O(ū7),

nDEF(x) = − ū

αL
− ū3

(
1− x

L

)2

αL
+O(ū5), (A15)

Ω̃DEF =
ū

αL
− 4ū5

3(αL)3
+O(ū7), (A16)

which agrees with the linear DEF solution at leading or-
der and at O(ū3) for L ≫ 1. A useful result is obtained
by evaluating the nonlinear DEF solution at x = 0, which
gives the relationship nDEF(0) = −(ū+ ū3)/(αL)+O(ū5)
between the spin density at the injection site and the in-
jection velocity.
Although we have assumed L ≫ 1, we have made

no assumption on magnetic damping α. As noted in

Sec. III D, the DEF frequency Ω̃ saturates when injec-
tion achieves the local speed of sound [Eq. (24)]. This
sets the maximum injection ū—which can still be rela-
tively large—for the nonlinear DEF solution, i.e., injec-
tion must be subsonic.

3. CS-DEF solution: weak damping, long channel,

supersonic injection

In order to investigate the supersonic injection regime,
we need to introduce a boundary layer near y = 0 in
Eqs. (A2) (see, e.g., Ref. 33). For this, we consider two
separate solution regions: an inner region close to the
injection site and an outer region that extends to the
unforced edge of the channel. The solutions from these
two regions are then asymptotically matched in order
to obtain a uniformly valid asymptotic approximation
across the entire channel.

a. Inner region

In the inner region, we are interested in the solution
profile close to y = 0. Therefore, we “zoom” into this
region for Eqs. (A2) by returning to the x = yL scale
(A1) where L is assumed large

0 =
[
(1− n2)u

]′
+ α(1 − n2)Ω̃, (A17a)

Ω̃ = −(1− u2)n+
n′′(1− n2) + n(n′)2

(1− n2)2
. (A17b)

Now, the prime ′ is a derivative with respect to x. As we
will see, only the leftmost boundary conditions in (A3a)
and (A3b) will be satisfied in the inner region. Antic-
ipating the behavior of the solution in the outer region
that we will match to, we use the following boundary
conditions

n′(0) = 0, lim
x→∞

n′(x) = n∞, (A18a)

u(0) = ū, lim
x→∞

u(x) = u∞, (A18b)

with n∞ and u∞ to be determined.
To approximately solve Eqs. (A17) subject to the

boundary conditions (A18), we assume weak damping
0 < α ≪ 1 and expand in the asymptotic series

u = u0 + αu1 + · · · , n = n0 + αn1 + · · · ,
Ω̃ = Ω̃0 + αΩ̃1 + · · · , 0 < α ≪ 1.

(A19)

This implies that in the inner region, the dynamics are
effectively conservative to leading order

0 =
[
(1 − n2

0)u0

]′
, (A20a)

Ω̃ = −(1− u2
0)n0 +

n′′
0 (1− n2

0) + n0(n
′
0)

2

(1− n2
0)

2
.(A20b)
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To continue, we integrate Eq. (A20a) to obtain u0 in
terms of n0

u0 =
C

1− n2
0

, (A21)

where C is a constant of integration. We substitute this
into Eq. (A20b) and multiply by 2n′ to obtain

2Ω̃0n
′

0 + 2n0n
′

0 − C2

(
1

1− n2
0

)′

=

[
1

1− n2
0

(n′

0)
2

]′

.

(A22)
Every term in Eq. (A22) is a perfect derivative. There-
fore, upon integration, we obtain the first order ODE

(n′

0)
2
= −n4

0 − 2Ω̃0n
3
0 + (1−K)n2

0 + 2Ω̃0n0 − C2 +K,
(A23)

where K is an additional constant of integration. This
ODE can generally be integrated in terms of elliptic inte-
grals (see, e.g., Ref. 34) but we are interested in the local-
ized, stationary soliton solution that satisfies the bound-
ary conditions (A18), which is

nin =
aν1tanh

2(θx) + ν2(n∞ − a)

atanh2(θx) + ν2
, (A24a)

uin = u∞

1− n2
∞

1− n2
in

, (A24b)

Ω̃in = −n∞(1− u2
∞), (A24c)

where ν1 = a− n∞ − 2n∞u2
∞, ν2 = a− 2n∞ − 2n∞u2

∞,

θ =
√

1− u2
∞ − n2

∞(1 + 3u2
∞), and a = n∞(1 + u2

∞) +
√

(1− u2
∞)(1 − n2

∞u2
∞). The soliton’s density deviation

from its far-field value n∞ is the amplitude a. Note
that the soliton’s extremum is situated at x = 0 to
enforce the BC n′(0) = 0. An additional relation is
due to spin injection at the left boundary x = 0 where
the soliton’s extremum is attained

ū = uin(0) = u∞

1− n2
∞

1− (n∞ − a)2
. (A25)

This relation constrains n∞ and u∞. We require an ad-
ditional relation to fully determine the solution. This
comes from the asymptotic solution in the outer region,
far from the forced injection boundary at x = 0.
The soliton established in the inner region is therefore

given by Eqs. (A24a), (A24b), and (A25), reported in the
main text.

b. Outer region

For the outer region, we return to the scaled variable
y = x/L (A1) and Eqs. (A2). In order to match the
inner solution (A24), we need to modify the boundary
conditions (A2b) to

lim
y→0

n(y) = n∞, n′(1) = 0, (A26a)

lim
y→0

u(y) = u∞, u(1) = 0. (A26b)

The approximate outer solution to Eqs. (A2) subject to
the boundary conditions (A26) is the nonlinear DEF so-
lution described in Sec. A 2 with L ≫ 1, ū → u∞, which
satisfies the following [cf. Eqs.(13), (15), (16)]

αLΩ̃out (1− y) = uout + 4 tanh−1 (uout) (A27a)

− 2
[

N−(uout, Ω̃out) +N+(uout, Ω̃out)
]

,

nout(y) = − Ω̃out

1− uout(y)2
, (A27b)

αLΩ̃out = u∞ + 4 tanh−1 (u∞) (A27c)

− 2
[

N−(u∞, Ω̃out) +N+(u∞, Ω̃out)
]

,

However, the boundary condition n′(0) = 0 no longer
applies. Instead, we have a fixed value of the spin density

n∞ = nout(0) = − Ω̃out

1− u2
∞

. (A28)

This relation and Eq. (A24c) imply the equality of the
inner and outer precessional frequencies so we define

Ω̃ = Ω̃in = Ω̃out. (A29)

c. Matching

The full solution for the CS-DEF is obtained by match-
ing the inner solution to the outer solution. Actually, the
choice of boundary conditions in Eqs. (A18) and (A26)
encodes the matching of the two solutions. We now sum-
marize the three equations that uniquely determine n∞,
u∞, and Ω̃ in terms of the spin injection u. They are

Ω̃ = −n∞(1− u2
∞), (A30a)

ū =
u∞(1− n2

∞)

1− (n∞ − a)2
, (A30b)

αLΩ̃ = u∞ + 4 tanh−1 (u∞) (A30c)

− 2
[

N−(u∞, Ω̃) +N+(u∞, Ω̃)
]

,

coinciding with Eqs. (A24c), (A25), and (A27c), respec-
tively.

With all parameters determined, we can now obtain
a uniformly valid asymptotic approximation to the CS-
DEF with

ucs(x) = uin(x) + uout(x/L)− u∞, (A31a)

ncs(x) = nin(x) + nout(x/L)− n∞, (A31b)

which is the approximation used, for example, in
Fig. 2(b).
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