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We theoretically study the high-harmonic generation (HHG) in one-dimensional spin systems.
Wihile in electronic systems the driving by AC electric fields produces radiation from the dynamics
of excited charges, we consider here the situation where spin systems excited by a magnetic field
pulse generate radiation via a time-dependent magnetization. Specifically, we study the magnetic
dipole radiation in two types of ferromagnetic spin chain models, the Ising model with static lon-
gitudinal field and the XXZ model, and reveal the structure of the spin HHG and its relation to
spin excitations. For weak laser amplitude, a peak structure appears which can be explained by
time-dependent perturbation theory. With increasing amplitude, plateaus with well-defined cutoff
energies emerge. In the Ising model with longitudinal field, the thresholds of the multiple plateaus
in the radiation spectra can be explained by the annihilation of multiple magnons. In the XXZ
model, which retains the Zs symmetry, the laser magnetic field can induce a phase transition of
the ground state when it exceeds a critical value, which results in a drastic change of the spin ex-
citation character. As a consequence, the first cutoff energy in the HHG spectrum changes from a
single-magnon to a two-magnon energy at this transition. Our results demonstrate the possibility
of generating high-harmonic radiation from magnetically ordered materials and the usefulness of

high-harmonic signals for extracting information on the spin excitation spectrum.

I. INTRODUCTION

The dynamics induced by light-matter coupling is an
important problem in optical physics as well as nonequi-
librium condensed matter and statistical physics. The
application of strong laser pulses to a broad range of
materials, including metals, semiconductors, and super-
conductors, results in rich physics and new phenomena,
such as collective excitations’2, the control of order pa-
rameters®*, and fundamental changes in material prop-
erties®’. In particular, the high-harmonic generation
(HHG), which is a nonlinear optical phenomenon ob-
served in periodically driven systems, is attracting inter-
est because of the underlying nontrivial charge dynamics
and its technological relevance for attosecond laser sci-
ence and the spectroscopy of charge dynamics®?.

HHG has originally been observed and studied in
atoms and molecular gases'®'!. Its mechanism can be
understood by the so-called three step model, where
tunnel-ionization occurs in the presence of a strong elec-
tric field, the released electrons are accelerated by the
periodic field and eventually recombine with the ionized
atoms by emitting the high-harmonic light'?!3. Recently
the interest in this field has been renewed by the observa-
tion of HHG in various solids, in particular band insula-
tors'4 24, Although the HHG in this case also originates
from the dynamics of excited charges, the spatially peri-
odic arrangement of atoms in solids leads to qualitative
differences compared to atomic gases. Theoretical stud-
ies assuming weak correlations or employing an effective
single particle picture have been performed to discuss
the origin of the HHG in these band insulators!'#:2>-40,
(For recent reviews, see Refs.*1743.) Tt has been revealed
that HHG originates from the intraband charge dynam-

ics reflecting the non-parabolic shape of the bands!'#16:25

and the interband dynamics corresponding to the re-
combination of excited charges?®3!:3335  Furthermore,
the existence of multiple bands and the interference be-
tween different excitation paths can play an important
role?9:32:34:36  Even though the details of its mechanism
are still actively discussed, HHG in solids can be used to
obtain important information about these solids, such as
band and lattice structures'*19-22, In addition, potential
applications in new high-frequency laser sources are ex-
pected due to the high concentration of atoms compared
to atomic gases?’. Stimulated by these developments
and prospects, both experimentalists and theorists are
making intensive efforts to understand the mechanism of
HHG in greater detail and to explore new classes of ma-
terials, e.g., liquids®***, graphene*6  topological sys-
tems?”, strongly correlated systems*®°2, impurity-doped
systems® and magnetic metals®?.

In this paper, we explore a new avenue for HHG in
solids, by considering the dynamics of the spin-degree of
freedom in magnetic insulators, i.e. quantum spin sys-
tems. We theoretically study the excitation of these
systems by time-periodic external magnetic fields, and
evaluate the HHG signal resulting from the change of
the magnetic moments [Fig. 1(a)]. This setup is rel-
evant for materials with a large charge excitation gap
whose low energy excitations are governed by the spin
degrees of freedom. Recent developments in the field
of metamaterials®® and plasmonics®® enable the gener-
ation of strong magnetic field pulses with small electric
field, which can be used to realize the setup considered
in our study. The nonequilibrium dynamics of quan-
tum spin systems, especially the dynamical control of
the magnetization by laser fields, has been intensively
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FIG. 1. (a) Schematic picture of the HHG from quantum magnets discussed in this paper. The spins are excited by a magnetic
field pulse, and the induced magnetization dynamics results in electromagnetic radiation with high frequency components. (b)
Example of the correspondence between the spin HHG intensity and the spin excitation spectrum (XXZ model with J,, = 2
and J. = 10, pulse with @ = 1 and B = 4). The thresholds (vertical dashed lines) of the multiple plateaus in the HHG signal
correspond to multiples of the magnon excitation energy at ¢ = 0, see horizontal arrow. (Inset: The shape of the magnetic
field for the linearly polarized pulse laser with B = 4 and N¢ye = 9.) (c) Comparison between the HHG in electronic systems

and that in spin systems.

studied both in the experimental®°7°® and theoretical

communities®® %, In Refs.’?0 the magnetization dy-
namics in antiferromagnets has been calculated for laser
fields with a frequency comparable to the exchange cou-
pling. One the other hand, for the study of HHG, a lower
photon energy is advantageous since it results in spectra
with higher energy resolution and thus allows to eluci-
date the excitation structure. In this paper, we reveal
that the HHG signal from spin systems can be associ-
ated with elementary spin excitations like magnons, just
as the HHG in electronic systems reflects the dynamics
of excited charges, see Fig. 1(b). These results suggest
that the spin HHG can be potentially used as a probe
of spin dynamics as well as for new laser sources in the
THz regime. In Fig. 1(c), we summarize the similarities
and differences to HHG in electronic systems, which are
useful to keep in mind in the following discussion.

The present study focuses on one-dimensional ferro-
magnetic quantum spin systems described by the Ising
model with longitudinal field and the XXZ model. These
models are simple but fundamental, and can be real-
ized in materials such as Dy(CoH5SO04)3 - 9H2O, LiTbF 4,
LiHoF, %! and CoNbyOg%2. We numerically investigate
the nonequilibrium dynamics and the radiation spec-
trum resulting from the time-dependent magnetization
by means of the infinite time-evolving block decima-
tion (iTEBD)®?, exact diagonalization (ED) calculations,
and time-dependent mean-field theory (tdMF). To under-
stand the relation between the HHG signal and elemen-
tary spin excitations, we also calculate the low-energy
excitation structure of these systems by combining the
density matrix renormalization group (DMRG)%* and the
time-evolving block decimation (TEBD)%. When the
laser field is weak, a peak appears around the energy

of the single-magnon excitation in both models, which
can be explained by time-dependent perturbation the-
ory. With increasing strength of the laser field, this peak
structure changes to a plateau. We also find indications
for multiple plateaus, whose thresholds are associated
with the annihilation of (multiple) elementary spin ex-
citations (magnons).

This paper is organized as follows. In Sec. II, we dis-
cuss general properties of the HHG in quantum spin sys-
tems. Section IIT presents the HHG signals resulting from
the application of a linearly polarized laser to Ising mod-
els with longitudinal static field. Section IV is devoted
to an analysis of the HHG signal from the laser applica-
tion to the XXZ models. We summarize our results and
discuss future extensions in Sec. V.

II. HHG IN QUANTUM SPIN SYSTEMS

In this section, we present the theory of HHG in quan-
tum spin systems. In usual HHG, the electric field of
a laser pulse induces a change of the electric polariza-
tion, which in turn produces electromagnetic waves. The
total instantaneous radiated power is proportional to
|dj(t)/dt|?, where j(t) is the electric current. If j(t)
is a polarization current dP(t)/dt (with P the elec-
tric interband polarization), the power is proportional to
|d>P(t)/dt?|?. In a similar way, we can consider the ra-
diation of electromagnetic waves from a time-dependent
magnetic dipole. The total instantaneous radiated power
from the change of a localized magnetic dipole M (t) is
proportional to |d? M (t)/dt?|*5C.

To study quantum spin systems in the presence of
a time-dependent magnetic field B(t) we consider the



Hamiltonian

H(t) = Hspin — B(t) - Stot, (1)

where Hgpin is the spin Hamiltonian and the last term
represents the Zeeman coupling of the spins in the ma-
terial with the magnetic field produced by the laser.
We calculate the time evolution of the magnetization
M(t) = (Stot(t)), where Sor = 37, S; represents the
summation over all spins and St (t) = U~ 1(t) S0t U (t)
o) = Tf(f dt’ exp[—iH(¢')t'] is the time evolution op-
erator with 7 the time ordering). From this we ob-
tain the Fourier transform of the magnetization M (w) =
[ dte™* M (t) and the radiation power

I o [w? M (w)]2.

The symmetry of the system may impose constraints
on the structure of the HHG signal. For example, the
inversion symmetry limits the HHG signal in electronic
systems to odd harmonics. Now, let us consider the case
when the time dependent Hamiltonian has a symmetry
which can be represented as the combination of time
translation and 7 rotation around the S* axis

H(t) = H(t + Tper/2), @)
(Sr’ Sy) SZ) — (_Sm7 _Sya Sz)v
where Tpe, = 2w/ is the period of the laser. Then, the
magnetization satisfies

Mt + Tper/2) = —M(2),
My(t+Tper/2) = —My(t),
M=t + Tper/2) = M*(1),

if we assume a unique time-periodic steady state with the
period Tper. In this case, the temporal Fourier transform
of M* becomes 0 for w = 2n§) (n is an integer) since

Tper .
M?*(2nQ) x / dt e N ()
0
Tper
2 .
= dt e (M (t) + M (t 4 Tper/2)) = 0. (3)
0

In the same way, the temporal Fourier transform of M*
becomes 0 for w = (2n 4+ 1)) (n is an integer) since

Tper .
MZ((2n—|—1)Q)o</ dt et £ = ()
0
Tper

_ / T At TN (1) — MP (1 + Tper/2) = 0.
(4)

In the case of a finite pulse width, these arguments are
strictly speaking not valid. Still we will see that in prac-
tice, these rules are satisfied except for the higher har-
monics under weak magnetic fields.

In the following two sections, we will use numerical cal-
culations to study the HHG in specific one-dimensional
quantum spin systems.

IIT. HHG IN ISING MODELS

Let us start by investigating the HHG in Ising models,
which are among the simplest and most important mod-
els of magnets. In this case, the spin Hamiltonian Hgpin
in Eq. (1) explicitly reads

Hising = _JZS; ;+1 — HS, (5)
J

where J > 0 is the ferromagnetic exchange coupling and
H > 0 is a static external magnetic field. S*, SY, and
S* are spin-1/2 operators. The ground state of Higing
is a ferromagnetic state ((S7(0)) = 1/2 for all j ) and
this state is perturbed by the application of a linearly
polarized pulse laser B(t) = (B*(t),0,0) in the x di-
rection. Because of the longitudinal field H > 0, the
Z, symmetry of the system is broken. Hence, there is
no quantum phase transition as a function of the trans-
verse magnetic field, i.e., the ground state of the snapshot
Hamiltonian H(t) = Hising — B*(t)S{; remains gapped
at any time. Though the main objective of this section
is the theoretical analysis of the magnetization dynamics
and HHG mechanism, the obtained results are relevant
for materials having ferromagnetic dipole order such as
Dy(CQH5SO4)3 . 9H207 LlTbF4 and LiHOF461.
We consider a magnetic field pulse of the form

B(t) =

B'sin® ( Cyc) cos() (0 <t <Ty) L (6)

0 (otherwise)

where Tf = 27 Ny /€, € is the laser frequency, Ney. the
number of laser cycles, and Bsin®(; J{,ny) the envelope
of the pulse. In this paper, the parameters are fixed as
Neye =9 and Q =1 (Q is also used as the energy scale
by employing the units 7 = ¢ = 1). The magnetic field
pulse with B = 4 is shown in the inset of Fig. 1(b).

In this section, the other parameters are set to J = 2
and H = 6, so that the gap is much larger than 2 =1
and heating effects are suppressed. In addition, since we
anticipate that the width of the plateau in the HHG sig-
nal is of the order of the characteristic energy scales of
the spin system, we expect to observe several harmon-
ics if J and H are chosen large compared to 2. The
Ising model with smaller longitudinal field H, where the
lifting of the two-fold degeneracy and hence the gap is
smaller, is discussed in Appendix C1. We numerically
calculate the magnetization dynamics and report here-
after the normalized magnetizations m*¥* = M*¥* /N,
where N is the number of spins. As explained in Sec. II,
the radiation power of a magnetic dipole is proportional
to |w?m™(w)|?.

Before studying the dynamics induced by the laser
field, we investigate the excitation structure of the equi-
librium system. To study excitations, we numerically
calculate the dynamical structure factor (DSF), which is
the imaginary part of the dynamical susceptibility. The
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FIG. 2. DSFs (a)-(d) |Imx®*(q,w)| and (e)-(h) [Imx**(q,w)|
for the Ising model with J =2 and H = 6.

method is as follows. We first obtain the ground state
of the system by the DMRG%*, and then calculate the
retarded correlation function

X (rt) = =9 (1) ([S7 (1), S5 (0)]), (7)

where 9(t) is the step function, by the TEBD method®>
for finite size systems. The dynamical susceptibility is the
Fourier transform of the retarded correlation function,

g = [ @y ),

—0o0 r

In this paper, we consider systems with size N = 120,
which are large enough that finite size effects can be ne-
glected.

The DSFs |Imx**(¢q,w)| and |[Imx**(q,w)| for the
ground state of the Ising model in both longitudinal and
transverse fields

H = Hising — BSL, (8)

with H = 6 are shown in Fig. 2. Equation (8) represents
the snapshot Hamiltonian of H(t) = Hising — BT (t) S5,

FIG. 3. Time evolution of (a) m® and (b) m? calculated by
iTEBD for the Ising model with J =2 and H = 6.

at some fixed time ¢ corresponding to B*(t) = B. If
the transverse field is not present (B = 0), the spins
are completely localized and there is no dispersion since
the Hamiltonian only contains S*. The elementary ex-
citation corresponds to a single spin flip, which has a
gap J + H. In the presence of a nonzero transverse
field, this flipped spin can propagate and transform into
a magnon. The DSF shown in Fig. 2 represents the
magnon dispersion. In Figs. 2(a)-2(c), a weak inten-
sity is seen at twice of the energy of the lowest band
(single-magnon dispersion). This corresponds to the two-
magnon band. Since the single-magnon band has a cosine
structure F1(q) = ¢1 + ¢z cos(q), the two-magnon band
can be represented as

E(q) =2c1 + e2[cos(q’) + cos(q — q')]
q—2q
2
by considering the momentum conservation, and we ob-

tain

2¢1 — 2¢2] cos(q/2)| < Ea(q) < 2¢1 + 2¢2| cos(q/2)]. (9)

=2¢1 + 2¢3 cos (g) cos ( ) (0<¢ <2m)

This feature of the two-magnon band is observed more
evidently when the longitudinal field H is weak as men-
tioned in Appendix C1.

In Fig. 3, we show the time evolution of m* and m*
for the Hamiltonian H(t) = Hising — B*(t)Sg, with dif-
ferent values of the laser amplitude B = 2,4,6,8. As
the numerical method, we use the iTEBD®%, which uti-
lizes a matrix product state (MPS) representation. This
method enables the simulation of infinite size systems,
i.e., without finite-size effects, by assuming the transla-
tional invariance of the system. In this paper, we take
the matrix dimension of MPS as 100 and the time evo-
lution is performed by the fourth-order Trotter decom-
position with the time step At = 0.05. The shape of
the time evolving m? is similar to that of the applied
laser magnetic field (Eq. (6)) for all values of the laser
amplitude. The value of m* drops when |m®| grows, but
otherwise the magnetization in the z direction recovers to
m?* = 1/2. This demonstrates that the state of the sys-
tem closely follows the ground state of the instantaneous
Hamiltonian at each time. In other words, the laser fre-
quency is slow enough for an adiabatic time evolution of
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the magnetization. In the present case of H > J, the gap
is large (> ) even for B = 0, and it increases mono-
tonically with increasing B (Fig. 2). Thus, transitions
to excited states through the Landau-Zener process are
suppressed and the state remains in the snapshot ground
state. However, if B is further increased, the chain will
eventually be disordered after the laser application, sim-
ilarly to what is shown in Fig. 15(b) in Appendix C 1.

To investigate the HHG, we plot |w?m®(w)|*> and
|w?m?(w)|? on a logarithmic scale in Fig. 4. These spec-
tra were obtained by first differentiating m®(*)(¢) nu-
merically as m”"(t) = [m*@(t + At) + m*@ (¢t —
At) — 2m®)(t)]/(At)?, where At is the time step, and
then performing the Fourier transform. In the Fourier
transform, we apply the Blackman window Wg(t) =
0.42 — 0.5cos(2nt/Tt) + 0.08 cos(4nt/T¢) (0 < t < T¢)
and Wg(t) = 0 (otherwise). The result in Fig. 4 clearly
demonstrates the HHG for all values of B in both magne-
tization components m* and m?*. Since the system sat-

FIG. 5. Scaling of the magnitude of the Fourier components
for the magnetizations (a) |m”(w)| and (b) |m*(w)| in the
region of small B, in the Ising model with J =2 and H = 6.
The power of B agrees well with the prediction from the time-
dependent perturbation theory.

isfies the symmetry Eq. (2), m*(w) and m?*(w) become 0
at w = 2n) and w = (2n + 1)Q (n is an integer), respec-
tively, for steady states. Although the presented results
are for the transient case, the magnitudes of |w?m?®(w)|?
and |w?m?(w)|? drop at w = 2nQ) and w = (2n + 1)Q,
respectively. An exception occurs when B is small and
w around the value corresponding to the excitation gap,
as can be seen in Figs. 4(a), 4(b), 4(e), and 4(f) where
the spectra exhibit peaks at w = 6,8,10 in m?(w) and
at w="7,9 in m*(w) for B = 2,4. Since we consider the
application of a laser pulse, the system is in a transient
regime and does not reach a nonequilibrium steady state.
Hence the conditions Eqs. (3) and (4) are not necessarily
satisfied. The result for the peak position of the HHG
spectra is supported by by time-dependent perturbation
theory (Appendix A). The peaks resulting from the per-
turbation theory are located at w = H 4 J for m® and at
w=H + J £ Q for m?, i.e., they can appear at an arbi-
trary frequency (not necessarily an integer multiple of €2)
depending on the values of H and J. The validity of the
time-dependent perturbation theory is also confirmed by
the scaling of the radiation intensity with the laser am-
plitude B. In Fig. 5, we plot |m®(w)| and |m?*(w)]| in the
region of small B. |m?*(w)| and |m?*(w)| at w = n{ scale
as B", while at w = H + J £ nQ they scale as B"*!,
which agrees with the prediction from the perturbation
theory presented in Appendix A. This result indicates
that B < 2 is in the perturbative regime.

In Fig. 4, when the field strength is sufficiently large,
we can identify a frequency above which the intensity
drops rapidly as well as multiple plateau structures. We
can connect these cut-off energies with the excitation
structures of the snapshot Hamiltonians, in particular
those with the maximum value of B. In the dispersion
relation obtained from the data in Fig. 2, the energy has
a minimum (maximum) at ¢ = 0 (¢ = ), and the excita-
tion gap corresponds to the mass of a magnon at ¢ = 0.
We see that the intensity of |w?m?®(w)|? and |w?m?(w)|?
drops above the energies corresponding to integer multi-
ples of the magnon mass at ¢ = 0, as indicated by the
dashed lines in Fig. 4. This result suggests that for suf-
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ficiently large laser field amplitude, there occurs a spon-
taneous annihilation of n(= 1,2,3,...) magnons, which
leads to the emission of light with the frequency nA(B(t))
at time ¢, where A represents the single-magnon en-
ergy gap. This situation is analogous to electron-hole
or doublon-holon recombination in electron systems such
as Mott insulators?®#9, where the radiation originates
primarily from the interband transitions.

Further insights can be obtained from a subcycle anal-
ysis. The subcycle Fourier transform of the magnetic
moment is defined as

Dt = [, (o

sub

where Wq(t;t.) = exp| — %] (0 = Tper/8) is
a Gaussian window function. (An alternative way to
compute time-dependent spectra is the wavelet analy-
sis. We discuss the result of the wavelet analysis and
the difference to the window Fourier transform in Ap-
pendix E.) In Fig. 6, we show the subcycle radiation spec-
trum log |w2m:1§}? (w;t.)|? for B = 8 as a colormap and
the multiple magnon excitation energies of the snapshot
Hamiltonian at , by the solid lines. In the low-energy re-
gion (w < 10), although |w2m$g) (w; t.)|? does not much
depend on t,, one can roughly identify an enhanced HHG
signal following the one-magnon energy. This is due to
the fact that the single-magnon band changes only lit-
tle as a function of the transverse field (see Fig. 2). On
the other hand, in the high-energy region, a high inten-
sity signal is produced when the magnetic field is strong.
In particular, we can clearly identify an enhanced HHG
signal tracking the two-magnon and three-magnon lines,
both in the radiation produced by the x and z magneti-
zation components. These observations support the in-
terpretation that the plateaus and their thresholds in the
spin HHG originate from the annihilation of magnons.
We note that our discussion of the spin HHG so far has
been based on the eigenstates or the energy structure of
the snapshot Hamiltonians, as has been done for elec-
tronic systems using the Houston basis?® or assuming a
slowly changing field?"4%. To be more specific, let us ex-

pand the wave function as [¥(t)) = >, an(t)|P,(B(t))),
where |®,,(B(t))) is an eigenstate of the snapshot Hamil-
tonian with the eigenenergy E, (B(t)), and express the
magnetization as

M¥ I (t) =Y g, (Do (O)(@m (B(1) 15|, (B(1))).

(11)

We can then classify the contributions to the magnetiza-
tion dynamics according to the character of |®,,(B(t)))
and |®,,(B(t))). The time dependence of the coefficients
«,, follows from

D00, (1) =En (B(1))n (1
—i 3" (ABW) Fun(B))am(t),  (12)

m¥#n

where Fy,,(B) = (9,(B)|0g|®m(B)). If the variation
of B(t) (with excitation frequency ) is slow enough,
O B(t) is small and F,(B(t)) can be approximated
as a constant for a certain time interval. Hence the
second term on the right hand side of Eq. (12) can
be neglected and we can write a,(t) oc e *En(Bt))
for t around t,. If these approximations hold and
the time-dependence of |®,,(B(t))) (and hence that of
<<I>m(B(t))\Sg”(z)|<I>n(B(t))>2 is also small enough, the
main contribution to M*(*)(¢) [Eq. (11)] is proportional
to e HEn(B(t:)=Em (Bt for ¢ around t,, which oscil-
lates with (multiple) magnon energies. If |®,(B)) and
|®,,(B)) differ by I magnons, the radiation can be in-
terpreted as originating from an [-magnon annihilation.
However, in practice, there may be contributions from
the second term on the right hand side of Eq. (12) and
the time-dependence of |®,,(B(t))), which leads to devia-
tions from the simple magnon picture. Furthermore, the
magnetization curve of the ground states for the Hamil-
tonian Eq. (8) is a nonlinear function of B. Since m? for
the ground state with the field B is an odd function, we
see, by replacing B in this equation by B cos({2t), that
the Fourier component of n{) (with n an odd integer)
appears in m”(w) and its leading order is B™. This par-
tially explains the appearance of well-defined frequency
components even in the energy region lower than the ex-
citation gap seen in Fig. 4.

The above results suggest that for the parameters
chosen in this study, the magnon picture is essentially
valid and the dynamics is described in terms of well-
ordered magnetic moments, i.e. the effect of quantum
fluctuations is small. To confirm this point, we per-

form a tdMF analysis. The approximation Zj Sij_H ~

2m* Zj S5 — Nm?#? leads to the tdMF Hamiltonian
Hising(t) = —2Jm*(t)S* — HS* — B(t)S®,  (13)

where m*(t) = (S*(t)). We solve the Schrodinger equa-
tion with the Hamiltonian (13) by the fifth order Runge-
Kutta method with the Cash-Karp parameters, and cal-
culate the dynamics of m®(t) = (S®(t)) and m*(t).
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Imxi (q,w)| for the Ising model with J = 2, H = 6, and
B =28.

The discretized time step is At = 0.05. The result is
also shown in Fig. 4. The curves of |w?m®(w)|* and
|w?m?(w)|? calculated by the single spin dynamics agree
well with those calculated by iTEBD up to the first HHG
threshold. Note that there is no rescaling of the results
and the agreement is quantitative. The deviations be-
come larger above the first threshold. This indicates that
correlations between magnons beyond mean-field theory
are essential for the spontaneous recombination of mul-
tiple magnons.

Another useful perspectives on HHG can be obtained
from the Floquet picture*®:°°. The spectrum in the Flo-
quet theory is derived from the Floquet DSF |x1°§ﬁ (g, w)],
which is calculated in a similar way as |[x*?(q,w)|. Let
us consider the time-dependent Hamiltonian H(¢; ag) =
Ho— Bsin(Qt+ap)SE, and represent the ground state of
H(0; cg) by [¥(0; cp)), where o is the phase shift. We
calculate the Floquet retarded correlation function

(03

XeP (1,1 an) = —id(£) (W(0; ) | [SE (t o), S511%(0; ap))
(14)

[cf. Eq. (7)], where S¥(t;a0) = U~1(t;00)S8U (¢ cvo),
Ul(t; ) = Tfot dt'e=H(500)t"  The DSF 27 (¢, w; ag) is
defined as the Fourier transform of this correlation func-
tion, and we take the average relative to the phase shift
g over a single cycle as

X%B((Lw) = <X?‘B(qa wy a0)>a0~

Here we take ag = n7/8 (n = 0,1,...,15). In Fig. 7,
we show the Floquet DSF |Imxlg§x(zz)(q, w)| for B = 8.
We can see the appearance of Floquet subbands with
an energy splitting of 22 rather than 2. The subbands
of [Imx%*(¢q,w)| are located at (one magnon band) +
(odd integer)$2 while those of |[Imx%* (g, w)| are located at
(one magnon band) £ (even integer)$2. In [ImxE*(g,w)],
the Floquet subbands of the negative energy magnon dis-
persion appear around w ~ 1. These Floquet DSFs sug-
gest that we can also interpret the high-harmonic peaks
with energy below the magnon mass in terms of tran-
sitions between Floquet sidebands of the magnon spec-
trum.
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for the XXZ model with J,, =2 and J, = 10.

In this section, we have focused on the model with
strong longitudinal field (H > J) and large gap. With
decreasing H, the gap decreases and the HHG behavior
changes. We discuss the results of a weak H model (J =
4, H = 2) in Appendix C1. The emergence of HHG
plateaus with a close relation to magnon energies can
also be observed there.

IV. HHG IN XXZ MODELS

In this section we consider another fundamental model
of quantum magnets, the ferromagnetic XXZ model. The



spin Hamiltonian is

Hxxz = D [Juy(STST 1+ SYSY, ) — J.8;S7,4], (15)
J

where J, > J;y > 0. The difference to the Ising model
is the term STST,, + SYSY, | = 3(SF S, +575/,1),
which acts as a kinetic term for the magnons. Note
that the spins are completely frozen in the Ising model
without laser. The ground state of Eq. (15) is a fer-
romagnetic state for J, > J,, > 0 while it is a gap-
less Luttinger liquid for |J,| < [J4y|%". The low en-
ergy excitations of Eq. (15) are magnons with dispersion
E(q) = Jzycos(q) + J.. Since the Hamiltonian Eq. (15)
does not include the longitudinal static field HSZ,,, the
system has a Z, symmetry, and thus a quantum phase
transition can be induced by applying a transverse field.

Here we consider the case where Jg, is weak, J;, <
J., which is relevant for the modeling of quasi-one-
dimensional magnetic insulators such as CoNbyOg%2.
The parameters are set to J,, = 2, J, = 10, and Q@ = 1.
We take both J,, and J, to be larger than () so that
the HHG plateau contains several harmonics. For the
analysis of the model with strong Jyy, (Juy S J.), see
Appendix C2. In Fig. 8, we show the DSF in the ground
state of the XXZ model with a transverse field B, which
corresponds to the snapshot Hamiltonian of the system
under laser irradiation,

H = Hxxz — BSZ,. (16)

In contrast to the case of the Ising model, the low-energy
excitation spectrum is continuous due to the existence of
the kinetic term. The lower bound of the dispersion at
q = 0 decreases with increasing B. The gap closes and a
phase transition happens at B. ~ 6. Before the transi-
tion (B < B.), x*® shows a stronger intensity than x?**,
because the spins are primarily aligned in the z direction
in the ground state. When B is small enough, the DSF
has a strong intensity near the one magnon dispersion
for B = 0 (E(q) = Jyycos(q) + J.), and in particular
the strongest intensity is found at ¢ = m. On the other
hand, after the transition (B > B.), the intensity of x*?
becomes much stronger than x**, because the spins are
mainly aligned in the = direction in the ground state, and
the strongest intensity is observed at ¢ = 0. The disper-
sion captured by x?** is sharp, and it can be interpreted
as a single-magnon band in terms of the spin wave theory
(see Appendix B). We also note that the upper bound of
the continuous dispersion at ¢ = 0 captured by x** corre-
sponds to a two-magnon state since its energy is twice the
excitation energy at ¢ = w captured by x** for B > B, .

The time evolution of m* and m* calculated by iTEBD
is shown in Fig. 9. The time evolution of m® essentially
tracks the laser magnetic field Eq. (6) for small B, but
the shape changes especially near the peaks of the in-
tensity as B is increased. Higher frequency components
than €2 appear near the peaks, and these contribute to the
HHG (see the sub-cycle analysis below). The time evo-
lution of m?* drastically changes its behavior depending

FIG. 9. Time evolution of (a) m® and (b) m® for the XXZ
model with J;, = 2 and J, = 10.

on whether B is smaller or larger than B.. For B < B,
the magnitude of m?* decreases when the laser intensity
is strong, otherwise m* ~ 1/2, which demonstrates that
the state follows the ground state of the snapshot Hamil-
tonian, i.e., the time evolution is almost adiabatic. How-
ever, for B > B., m* suddenly decreases from 1/2, which
shows that the system makes transitions to excited states
of the snapshot Hamiltonian.

The HHG spectra |w?m?®(w)|? and |w?m?(w)|? are
shown in Fig. 10. Here the same Blackman window is
used as in the Ising case. The HHG structure is clear
for the weak field B while it is noisier after the transi-
tion. Since the system satisfies the symmetry Eq. (2),
the magnitudes of |w?m®(w)|? and |w?m?(w)|? drop at
w = 2nQ) and w = (2n + 1), respectively, except that
m®(w) has a peak and m*(w) has a dip around w = 12 for
B = 2. This energy corresponds to the upper bound of
the single-magnon band J,, +J., and we can explain the
peaks at w = Jyyy + J, for m*(w) and at w = Jpy +J, £Q
for m#(w) in the small B region in terms of the time-
dependent perturbation theory as shown in Appendix A.

As we increase B and leave the perturbative regime,
plateau structures develop in the low-energy region.
Again we can connect these cut-off energies (threshold
energies) with the spin excitation structure. As depicted
in Fig. 10, for B < B, the threshold of the HHG plateau
corresponds to A,—g, which is the upper bound of the
dispersion obtained from x** at ¢ = 0. For B > B,
the threshold of the first HHG plateau is determined by
2A4—r, where Ay—, is the excitation gap corresponding
to x** at ¢ = w. This energy scale is not very apparent
in |w?m?(w)|? but we can see that |w?m®(w)|? is larger
than |w?m?(w)|? by several orders near the threshold en-
ergy [dashed-dotted lines in Figs. 10(d), 10(e), 10(i), and
10(j)] and dominates the HHG. Note that for B > B, the
spins are mostly aligned in the x direction in the ground
state and S* works as a spin-flip (magnon generation) op-
erator. Even though A,—¢ = 2Aq:ﬂ and this mode can
also be excited by the S* operator, the intensity of y?**
is much larger than that of x** as seen in Fig. 8. Thus
it is more natural to regard it as a two-magnon process.

In the same way as we have done for the Ising model,
we can obtain further insight into the origin of the HHG
by performing a subcycle analysis for the XXZ model.
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In Fig. 11, we show the subcycle radiation spectrum
Eq. (10) for B = 4 and B = 10 (below and above
the critical field, respectively). In the case of B = 4
[Fig. 11(a)], the strong intensity in the HHG signal fol-
lows the single-magnon and two-magnon excitation en-
ergy (Ag=o and 2A,—¢) of the snapshot Hamiltonian at
each time, which suggests that again the threshold can
be associated with the annihilation of multiple magnons
at ¢ = 0 for B < B.. In the case of B = 10 [Fig. 11(b)],
the strong intensity in the HHG signal follows the two-
magnon excitation energy (2A,—,). There is also some
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FIG. 11. Colormap of the subcycle radiation spectrum
log,, [w?mZ,, (w; t«)|? for the XXZ model with J,, = 2 and
J. = 10 under the laser field (a) B =4 and (b) B = 10. The
solid lines show the single-magnon and two-magnon modes
of the snapshot Hamiltonian at time ¢, in (a) and the two-
magnon mode in (b).
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FIG. 12. (a) (®n|StHi|Pn) and (b) A, [Eq. (17)] calculated
by ED for the model (16) with J,, = 2, J, = 10, and B = 10.
The arrows show the energy E, — Eg = 24.5. Cross marks
are used for the states in the (®,|S{i|Pn) ~ —2 sector to
demonstrate the contribution to the HHG signal comes mainly
from this sector.

additional intensity in the energy range w = 25 — 40 in
Fig. 11(b), which may correspond to higher order excita-
tions such as four magnon processes.

To confirm that the threshold of the HHG plateaus cor-
responds to the magnetic excitation structure, especially
magnon modes, we perform an ED calculation for a sys-
tem of N = 8 sites. The system size is small, but the ED
calculations reproduce quantitatively the behavior of the
HHG spectra for small B as can be seen in Fig. 10. Al-
though there is a quantitative deviation from the iTEBD
results in the case of strong B, the HHG signals show a
qualitative agreement. In particular, the threshold en-
ergy of the first plateau is the same for ED and iTEBD.
We denote the eigenstates of the snapshot Hamiltonian
at the time when the laser intensity takes the maximum
(tpeak = TNeye/Q) by |®,) and their eigenenergies by
E,. In Fig. 12(a), we show (®,|SZ.|®,) calculated by
ED for large B. In the present model, though ST, is
not a conserved quantity, the spins basically align in the
S* direction in the ground state for large B and the
expectation values (®,|SE,|®,) are almost discretized
and distributed around integer values. The expectation
values near —2 are highlighted with cross markers in



Fig. 12. From Fig. 12(a), the energy threshold of the
first HHG plateau corresponds to the upper bound of
the (®,|SE,|P,) ~ —2 sector (E, — Ey = 24.5). Since
the ground state is in the (®,|SE,|®,) ~ —4 sector, two
spins are flipped, i.e., two magnons are generated. In
Fig. 12(b), we plot the quantity

An = |og,a0(Pn ]S [ Po)], (17)

where o, = (0,,|¥(tpeax)) represents the overlap between
the state at ¢t = tpeak and the n-th excited state |®,)
of the snapshot Hamiltonian (|®g) is the ground state).
This quantity is directly related to m® through Eq. (11).
We see that there is a strong intensity at the energy E,, —
Ey = 24.5, which agrees with the threshold energy in
Fig. 10(e). Hence we can conclude that the threshold
of the first HHG plateau is dictated by the two-magnon
mode 2A,—,. In addition, Fig. 12(b) suggests that the
contribution to the HHG signal mainly comes from the
two-magnon sector ((®,|Sg,|P,,) ~ —2).

Further insight into the HHG signal with large B can
be obtained by rewriting the Hamiltonian. Since the spin
alignment axis is S* for the case of very strong laser
field B, the magnon creation and annihilation operators
correspond to S* = §Y +iS%. Using these operators, the
Hamiltonian (Eq. (1) with Eq. (15)) becomes

T Qx Jay — J2 o+ q— —a
H=Juy ) S7S7 + T > (8785 +575f)
j j
Jpy + J -~ .
+ I EN (SIS + 55 85,) -

) B(t)Siy. (18)

The 5';5;_1 + SJ_S’]__H term creates and annihilates
magnons (at large B) in pairs. In the Hamiltonian
Eq. (18), the Hilbert space is separated into the sectors
with ST, = (even integer) and S{,, = (odd integer) since
the parity of the magnon number is a conserved quan-
tity. Hence the state remains in the same sector during
the time evolution. The initial state is the ferromagnetic
state, which corresponds to a Schrodinger cat state in the
S* basis,

|5 =1/2); +|8° = —1/2);
7 .

Thus, this state has weight in both S, = (even integer)
and SZ, = (odd integer) sectors. M, has nonzero
expectation values for states within the same sector,
<\Ileven|sg;t|\ljeven> + <\Ilodd|sg;ot|\ljodd>a while Mz has
nonzero expectation values for the states between differ-
ent sectors, <\Ijodd|Stzot|\I/even> + <\Peven|Stzot|\I]0dd>- This
expression explains why the two-magnon mode is evident
in m*(w) [Figs. 10(d) and 10(e)] while it is not apparent
in m?#(w) [Figs. 10(i) and 10(j)].

We also analyzed the dynamics of this system by means
of the tdMF theory. The mean field Hamiltonian is

Hxxz(t) =205, (M (£)ST +m¥ (t)SY) — 2J.m*(t)S*
— B(t)S*. (19)

®j11); = ®;
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The radiation power spectrum calculated by the Hamil-
tonian Eq. (19) is shown in Fig. 10. The tdMF result
shows a peak or plateau structure in the HHG spectrum,
but quantitatively it deviates strongly from the iTEBD
and ED results, in contrast to the case of the Ising model.
This is due to the strong quantum fluctuations induced
by the S5}, + 575/, term, which implies that the
tdMF theory does not provide a good description of the
XXZ model.

V. SUMMARY AND DISCUSSIONS

In this paper, we studied HHG in quantum spin sys-
tems driven by a laser magnetic field. When the laser
is applied to magnetic insulators, it drives the magnetic
dipole which generates electromagnetic radiation with
power proportional to |w?M(w)|?>. We considered two
specific but fundamental quantum spin chain models, the
Ising model with static longitudinal field and the XXZ
model. In both cases, when the magnetic field is strong
enough, the spin HHG shows a (multiple-)plateau struc-
ture, which is associated with the annihilation of (multi-
ple) magnons.

To be more specific, in the Ising model case, the exci-
tation gap does not close in the presence of a transverse
field since the Zs symmetry is explicitly broken. When
the laser amplitude is weak enough, the time-dependent
perturbation theory is valid, which explains the appear-
ance of a peak around the frequency J + H. With in-
creasing laser amplitude, the shape of the HHG spectrum
changes from a peak structure to a plateau structure.
The subcycle analysis suggests that the HHG originates
from the annihilation of magnons. The cutoff energies,
above which the radiation intensity drops, correspond to
integer multiples of the single-magnon excitation energy
at ¢ = 0. Since the magnetic field is stronger than the
interaction, the tdMF theory provides a quantitative de-
scription.

In the XXZ model without longitudinal field, the sys-
tem has a Zs symmetry and a phase transition happens
at a critical value of the transverse field. The structure
of the HHG spectrum changes depending on whether the
peak amplitude of the laser magnetic field is below or
above the critical field. Similarly to the Ising case, when
the laser amplitude is small, the time-dependent pertur-
bation theory is valid and explains the appearance of a
peak around the frequency Jy, + J,. As the laser am-
plitude increases, the peak structure transforms into a
plateau structure. The cutoff energy of this plateau cor-
responds to the single-magnon mass at ¢ = 0 below the
critical field. When the laser amplitude is larger than
the critical field, the threshold is determined by the two-
magnon excitation at ¢ = . The subcycle analysis and
the ED analysis suggest that also in the XXZ model case,
the annihilation of magnons leads to the HHG signal.
The tdMF approach is not effective in this model due to
the quantum fluctuation caused by the J;, term.



Now let us discuss the similarities and differences be-
tween the HHG from spin systems and that from insu-
lating electron systems such as semiconductors and Mott
insulators2®31:49. In the latter case, a periodic electric
field creates charge carriers (electrons and holes in semi-
conductors, and doublons and holons in Mott insulators)
and these carriers move around in response to the ap-
plied electric field. The HHG originates from the dy-
namics of these charge carries, which can be separated
into the interband and intraband current. The interband
current corresponds to the creation and recombination
of charge carries, while the intraband current represents
the contribution from hopping processes which do not
change the number of charge carriers, i.e. where the car-
riers remain in the same conduction/valence or Hubbard
band. In contrast, in the spin systems, the magnetic field
can excite magnetic excitations (magnons) but there is
no preferable direction to move since the homogeneous
magnetic field, unlike the electric field, does not pro-
duce a spatially dependent potential. Hence, the HHG
signal originating from the dynamics of the magnetiza-
tion is analogous to the interband current, while there
is no counterpart to the intraband current. Our finding
that the spin HHG is associated with the annihilation
of magnons is reminiscent of the electron HHG which is
dominated by the recombination of charge carriers?®49,

Experimentally, the HHG from spins excited by time-
periodic magnetic fields can be realized by choosing
large gap insulating materials, and by taking advan-
tage of metamaterials to selectively enhance the mag-
netic field®®. For example, CoNbyOg%? can be repre-
sented as a ferromagnetic XXZ chain with J,, < J,,
and therefore the discussion in Sec. IV is relevant for
this material, while examples of Ising magnets (Sec. I1I)
such as Dy(CaH5SOy4)s - 9H2O, LiTbF4 and LiHoF, are
discussed in Ref.'. For CoNbyQg, since the value of
J.(=10) is 1.94 meV%?, the energy unit is 0.194 meV =
1.67 T = 27 x 0.0469 THz by noting that gugB and hf)
have the dimension of energy, where g ~ 2 is the Landé
g factor for electron spins, ug = 0.0579 meV/T is the
Bohr magneton, and A = 6.58 x 10713 meV -s5. Q =1
and B = 2 thus correspond to 2 = 27 x 0.0469 THz and
B =3.34 T, respectively.

Our results demonstrate the possibility of generating
high-harmonic signals in spin systems, which may be uti-
lized for new laser sources in the THz regime or to obtain
information about the magnetic excitations of these spin
systems under strong fields. In the present work, we fo-

J
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cused on one-dimensional ferromagnets but the fact that
the tdMF results show a similar HHG spectrum strongly
suggests that the HHG signal can also be produced in
higher dimensional magnets. Radiation from the mag-
netic dipole should be possible also in ferrimagnets and
antiferromagnets. Although the total magnetization is
zero in antiferromagnets, the laser magnetic field pro-
duces a net magnetization and a HHG signal can be ex-
pected. Since there exist various kinds of quantum spin
systems, studying these other types of magnetic insula-
tors is an interesting direction for future research.
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Appendix A: Time-dependent perturbation theory

In this appendix we analyze the spin system in the
presence of a laser field using the time-dependent pertur-
bation theory. The Hamiltonian is

H(t) = Hspin + V(t),

where V (t) represents the laser-matter interaction which
is assumed here for simplicity to have the form

_]o0 (t<0)
Vi) = { _BSz sin(@t) (t>0) 0 AD
We switch to the interaction picture. The state and op-
erator are represented as |W(t))y = etMerint|W(t)) and
O1 = eMopntQe=HMevint | yespectively, where |¥(t)) and
O are the state and operator in the Schrodinger picture.
The equation of motion becomes

. d
i () = Vi) (o), (A2)

d .
%OI = Z[Hspin7 Ol]v

where Vi(t) = eMepintV (t)e=Hspint | From Eq. (A2), we
derive

(A3)

We denote the eigenenergy and eigenstate of Hypin by E,, and |p,,), respectively. Let us expand |¥(¢)); in the basis
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of |¢n),
()= cnl(t)len). (A4)

We substitute (A4) into (A3) and take the inner product with (p,|, to obtain

Cn - Cn _ZZ/ dtlvtnm tl Cm Z/ dtl/ dtQVrtl tl W'rn(tQ)Cm(O) R (A5)

where Vi (t) = (@ |[Vi(t)|pm) = e Em=Et (o [V (t)|@,,). In the present case,
Vam(t) = —Be{Fm =Bt sin(Q2t)(pn|SiotlPm)

for t > 0. At ¢ = 0, the system is in the ground state ¢o(0) = 1 and ¢,(0) =0 (n > 1), thus Eq. (A5) becomes

t t t1
en(t) = en(0) — i / Vo (1) — 3 / it / dta Vi (1) Vio (t2) +
0 T Jo 0
Physical observables are calculated as

(0) = (v <>|01\w( M
= 2 b Benlt)nle Mor O M) = 3l (Ben (P (Ol

m,n

and specifically for the magnetization as

M(z,y,z) t:ty ? Z Cm Z(E En)t( |Stz ) “pn> (AG)

m,n

First we consider the Ising model Hgpin = Hising [Eq. (5) in the main text]. The ground state is the configuration
with all spins up |pp) = |11 -+ 1) and the first excited states |p,) (n = 1,...,N) are single spin flipped states
lon) = S, lpo). Since the excitation gap is E,, — Eo = H +J (n=1,...,N), we can calculate

0 t) =1- zl:/o dtl/o dtQV()l(tl)‘/lo(tg) + O(B )

NB? [ 2(H + J)t L e . 200 _ 1
4 lG{(H+0)2-—02) 8QH+J-Q)  8QH+J+Q)
Q —i(H+J-Q)t _q —i(H+J+Q)t _
- {* - } + o,
(H+Jp2-2 L 20H+7-Q)  2(H+J+Q)
! iB reiHAIHOt _ 1 i(H+T-Q)t _
n(t) = —1 dt nolt1) = —— _
cn(t) Z/o 1Vao(t1) 4[ i T a

=1-

1] +OBY) (n=1,...,N).

Hence the magnetization (A6) becomes

Z% H)eHEDt L e 4
B ) NB(H+J) . NBQ .
C2{(HA+J)2 - QQ} sin(§2t) - 2{(H + J)2 — Q2} sin[(H + J)t] + O(B%),
MZ:];TO CO N 2 (t)+
N NB? (H + J)2 + 302 cos(202t) 2Q cos|(H + J — Q)t]
ERRE [{(H+J)2—Q2}2 CHAIZE- (H+J+QH+J - Q)2

2Q cos[(H + J + Q)t]
(H+J+Q)?2(H+J-9Q)

| +oY).
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For M,, the order B term contains components with frequency © and H + J, while for M, the order B2 term contains
components with frequency 2Q and H + J + Q. The full calculation of the O(B?) terms is difficult, but we can see
that the ¢ (t)co(t)e? P+t term contains €3 and ! +/£2Dt Thus, we can surmise that for M,, the leading order
of frequency nf) is B (n: odd) and that of frequency H + J £ n€Q is B"*! (n: even) while for M, the leading order
of frequency n2 is B" (n: even) and that of frequency H + J 4+ n€) is B"*! (n: odd).

Next we consider the XXZ model Hgpin = Hxxz [Eq. (15) in the main text], where the laser field is again assumed to
be Eq. (Al). The ground state of Hxxy is the fully polarized ferromagnetic state |¢@g) = |11 - -+ 1) and its eigenenergy
is By = —%. Due to the symmetry breaking, || --- ) is also a ground state, but we assume that the initial state

187 lpo) (n=1,...,N) and

is |@o). The low-energy excited states are single-magnon states |¢,) = \/% Z;\f:l e

—% + Joycos(252) (n=1,...,N). Noting that

N
1 orn ;s VN
nlSto = — e NI = onN,
{@nlStotl o) 9 Nj§:1 5 N

their eigenenergy is E,, =

we obtain
NB -
Vao(t) = —\FT(LLNel(JWJ“]Z)t sin(Qt)
forn=1,...,N, where d, is the Kronecker delta. Thus we derive

co(t)—lzl:/o dtl/oldthol(tl)Vlo(tg)+O(B4):1—/0 dtl/oldtQVON(tl)VNO(tg)JrO(B‘l)

. NB? [ 2(Jyy + )t =21 _ N et _ 1 N
B 4 i{(Joy + )2 =2} 8QJay +J. — Q) 8Q(Joy + J. + Q)
0 —i(Jay+Ja =t _ —i( oy + 42t _
- 2 2{6 _e }i| +O<B4)?
(Joy + )2 =20 2(Jpy + J, — Q) 2 Jgy + J. +9)
ca(t) = = enoa(t) = O(BY),
t
CN(t) = —i/ dthNo(tl)
0
iv/NB W(Joy+J4+Q)t _ 1 W(Joy+J—Q)t _ 1
__WN [e _¢ } +O(B%).
4 Joy +J. + 8 Joy +J. —
Therefore the magnetization (A6) becomes
N .
M, = gc}‘\,(t)co(t)e’u’y*"mt +cc +---
NB(Jgy + J2) . NBQ . 3
= Ot) — v 2 )t B-), A
Ty + 22 — 2} ) = g e ey Sl T OB (A7)
N N -2
M. = 5 c(t)eo(t) + cn(B)en(t) + -
N NB*1 (Juy + J2)* 30 cos(20Qt)
2 8 {(Joy+J.)2—Q2}2  (Jpy+ J.)2 — Q2
2Q cos[(Jpy + J, — Q)1] 2Q cos|(Jpy + J + Q)t] 4
- O(B*%). A8
Tng o 4 )y + o — Q2 (Tog + o + Q)2(Jay + Jo — Q)} +O(BY) (A8)

(

Similarly to the case of the Ising model, we can surmise B"*! (n: odd).
that for M,, the leading order of frequency nf2 is B™ (n:
odd) and that of frequency J., + J, + n{ is B" (n:
even) while for M, the leading order of frequency n{2
is B™ (n: even) and that of frequency Jy, + J, £ n€ is
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FIG. 13. The magnon band structure from the spin wave
theory for the XXZ model with (a) J.y, =2, J. = 10 and (b)
Jay = 8, J. = 10.

Appendix B: Spin wave theory

We consider the system
JwZ (57574185 11) - Z S7 85— Z :

where J, > Jg, > 0 with general spin-S. The number of
sites is N and we consider periodic boundary conditions.
First, let us determine the classical ground state. For
B =0 (large B), the spin is polarized along the S* (S%)
axis, thus we can assume that the direction of the spins
is in the xz plane, S; = S(sin¢,0,cos ¢). The energy is

NSBsin ¢

B 2
25(J1y+Jz)] > (BL)

E =NS?(J,ysin® ¢ — J, cos® ) —

=NS*(Jyy + J,) [sind) —

where the constant term is neglected. The configuration
minimizing F is

) B
MO, w gy VS PSR ) g,

We introduce new spin axes gfyz as S7 = cos ¢§f +
sin ¢SZ S = Sy and S} = —sin ng';-” + cos qi)gj, so that

the spin is polamzed along the S 7 axis. Next we perform
the Holstein-Primakoff transformation,

S =S8 —n;,

. naN1/2
87 +i80 =v2s(1- 22) .

o ey ; ni\1/2
ijszfx/QSajofﬁ) ,

where a; and a} are annihilation and creation operators

for bosons (magnons), and n; = a;faj is the number op-

erator. Expanding in powers of 1/S and retaining terms

T

up to second order in a; and a; yields and expression of
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the Hamiltonian in terms of magnon operators,

H=— Z[(ny cos® ¢ — J,sin? ¢ — Jp, ) (ajaj1q + a;a;_kl)
J
+ (Jzy cos? ¢ —J, sin® &+ Jwy)(aja;'+1 + a;r-ajH)
+ (Jyy sin® ¢ — J, cos? ¢)(S? — 25n;)].

The first order term of aj, a;» vanishes if one imposes
the condition (B2). After the Fourier transform a; =

WZ ek aj,aL— \ﬁz e””a , we obtain
H=> [f(k.¢)(ara_i +afa )+ g(k, @) (n + n_y)]
k>0

+ [k, ¢)(ad + (a})?) + (0, p)no + Ec,

where

fk,¢) =S(Jay cos® ¢ — J.sin® ¢ — Jp,) cosk,
g(k,®) =S (Jzy cos® ¢ — J, sin? ¢ + Jay) cOS k
— 25(Jyy sin? ¢ — J, cos® ¢) + Bsin ¢,

and Ecp, = NS?(Jyysin? ¢ — J, cos? ¢) — NSBsin ¢ is
the classical ground state energy (see Eq. (B1)). Note
that g(k,¢) = g(—k,¢). We then perform the Bo-

goliubov transformation by = ag cosh @y + aT_lc sinh 6y,

= by cosh Oy — b, sinh 0y, where tanh26;, = £&:9)

(0 =0_

). Finally the Hamiltonian becomes

H— EcL =Y _[~f(k,¢)sinh 20, + g(k, ¢) cosh 204]ny,
k

+ EQc,

where

N [T 1 .
Eac :%[ dk[— 5 (k,6) sinh 20,

+ —g(k, ¢)(cosh 26, — 1)

3
N | —

is the quantum correction to the classical ground state
energy which is a constant.

The magnon band structure from the spin wave theory
—f(k, #)sinh 20;, + g(k, ¢) cosh 20, is shown in Fig. 13.
The excitation gap closes and the transition happens at

Appendix C: Additional analysis of models with
different parameters

1. Ising model with weak static field

In the main text, we considered the Ising model with
a strong longitudinal field H > J. In this subsection,
we study how the radiation spectrum and the excitation
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FIG. 14. DSFs (a)-(d) |Imx®*(q, w)| and (e)-(h) [Imx**(q,w)|
for the Ising model with J =4 and H = 2.

structure are changed if the static field is weak H < J.
The parameters are set to J =4, H =2, and 2 = 1.
The DSFs [Imx**(q,w)| and [Imx*?(q,w)| for the
ground states of Eq. (8) in the main text are shown in
Fig. 14. The low energy excitation is again a magnon and
the shape of the dispersion is similar to the high field case,
but the size of the excitation gap decreases at first with
the introduction of B and then increases. This behavior
is caused by the weak Zs symmetry breaking due to the
small longitudinal field H. For H = 0, the Z symme-
try is recovered and a gap closing (i.e., a quantum phase
transition) happens at the critical field B = B.. For
H > 0, the Zs symmetry is explicitly broken and the exci-
tation gap opens at B.. However the gap size is small for
H < J, and thus the gap size becomes a nonmonotonous
function of B. The continuous spectrum corresponding
to the two-magnon mode [Eq. (9) in the main text] ap-
pears more evidently in Figs. 14(b)-14(d) compared with
the strong field case. We can see an additional excitation
between the single-magnon band and the two-magnon
continuum, which is a two-magnon bound state. When
B is small, the energy of this state (two-spin flips on
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FIG. 15. Time evolution of (a) m® and (b) m* for the Ising
model with J =4 and H = 2 calculated by iTEBD.

nearest neighbor sites) is ~ J + 2H (= 8). With increas-
ing B, this bound state is strongly hybridized with the
two-magnon continuum and is finally merged into it.

In Fig. 15, we show the time evolution of m* and m?.
For B = 6, the shape of m”(t) is clearly different from the
sinusoidal curve of the laser field [Eq. (6) in the main text]
especially near the peaks, which gives rise to a strong
HHG signal. In contrast to the case of strong static fields,
the final value of m* deviates from the value 1/2 for large
B. (This deviation will also happen in the strong longitu-
dinal field case for large B/H.) As discussed above, the
gap of the system first decreases and then increases as a
function of B, while the Landau-Zener tunneling happens
mainly near the minimum of gap. Thus, transitions to
excited states of the snapshot Hamiltonian occur, which
results in the drop of the final value of m? from 1/2.

In order to investigate the HHG, we show |w?m®(w)|?
and |w?m?(w)|? in Fig. 16. When B is small, the be-
havior of the radiation spectrum is similar to the case
of high static field. The intensity of |w?m®(w)|?> and
|w?m?(w)|? generically peaks at w = (2n + 1)Q and
w = 2n8) (n: integer), respectively, but at w = J+H = 6,
|w?m®(w)|? exhibits a local maximum and |w?m?(w)|?
shows a dip. This is consistent with the time-dependent
perturbation theory. When B becomes larger, a plateau
structure appears in the HHG signal and its threshold
corresponds to the single-magnon excitation energy (the
dashed lines in Fig. 16) or the energy of the two-magnon
bound state (the dotted lines in Fig. 16). As B is fur-
ther increased, the threshold of the HHG plateau changes
from the single-magnon energy to twice of the magnon
energy at ¢ = 7 (dashed-dotted lines in Fig. 16). This
behavior is similar to the XXZ model with small J,, (see
Sec. IV), where the threshold corresponds to the single-
magnon energy before the transition and the two-magnon
energy after the transition. In the present case, due to
the existence of the longitudinal field H, the change of the
threshold energy scale is not a transition but a crossover.

We also show the analysis by the tdMF theory with
the Hamiltonian Eq. (13) (in the main text) in Fig. 16.
For the weak laser amplitude B, the agreement between
the iTEBD and tdMF theories is quantitatively good.
When B becomes large, the spectra start to deviate
above the single-magnon energy but the threshold of the



FIG. 16. Radiation power from (a)-(d) m® and (e)-(h) m?®
for the Ising model with J =4 and H = 2. The dashed and
dotted lines represent the mass of the single-magnon at ¢ =0
and that of the two-magnon bound state, respectively. The
dashed-dotted line corresponds to the energy of two magnons
at ¢ = w. The crossover of the threshold energy from the
former to the latter occurs with increasing B.

HHG plateau is almost the same (B = 2). For B = 6
[Fig. 16(d) and 16(h)], the HHG signal calculated by the
tdMF theory becomes less prominent above the single-
magnon energy (w ~ 5) while the threshold is the two-
magnon energy for iTEBD. This result implies that the
tdMF theory can reproduce the single-magnon dynamics
but fails to capture multiple-magnon processes.

In Fig. 17, we show the subcycle radiation spectrum
log; g [w?m?®,, (w;t.)|? for B =2 and B = 6. Green and
purple solid lines show the energy of the single-magnon
at ¢ = 0 and of two magnons at ¢ = « for the snapshot
Hamiltonian, respectively. In Fig. 17(a), some intensity
exists between the two lines, which may be associated
with the two-magnon bound state seen in Fig. 14(a) and
14(b) (around w = 8-9). For large laser field amplitude

(B = 6), the intensity around the two-magnon energy
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FIG. 17.  Colormap of the subcycle radiation spectrum
log,, |w?mZ,, (w; t)|* for the Tsing model with J = 4 and
H = 2 under the (a) weak transverse field B = 2 and (b)
strong transverse field B = 6. The solid lines show the single-
magnon, two-magnon-bound state, and two-magnon (with
g = 7) state from bottom to top, respectively, of the snapshot
Hamiltonian at time ¢..

becomes prominent. This subcycle analysis supports the
interpretation that the crossover of the HHG signal is
caused by a change of the dynamics from a single-magnon
to a two-magnon dominated process.

2. XXZ model with strong J,,

We next consider the XXZ model with J,, stronger
than that in the main text, i.e. Jy, S J,. The pa-
rameters are set to Jyy = 8, J, = 10, and @ = 1. In
Fig. 18, we show the DSF of the Hamiltonian Eq. (16) (in
the main text). The single-magnon dispersion (E(q) =
Jzy cos(q) + J. for B = 0) splits by the introduction of
the B field. The lower bound of the spectrum at ¢ = 0
decreases with increasing B, and it closes at B. ~ 6,
where a phase transition happens. After the transition,
the intensity of x** is stronger than x**, but both are
still comparable. The dispersion captured by x*? has a
dip around g = 7, a property which is reproduced by the
spin wave theory (see Appendix B). However, the relation
Ay—o = 2A,— (for B > B.) does not hold in contrast
to the weak J,, case.

The time evolution of m® and m? calculated by iTEBD
is shown in Fig. 19. The behavior of m*(t) and m?*(t) is
similar to that in the weak .J,, case. The time evolution
of m? is different depending on whether B is smaller or
larger than B.. In particular, m?® suddenly decreases
from 1/2, when B exceeds B..

In Fig. 20, we show the HHG spectra |w?m®(w)|? and
|w?m?(w)[?. When B is small, the result is again de-
scribed by the time-dependent perturbation theory (Ap-
pendix A), and there is a peak at w = Jyy + J, = 18
(W= Jgy +J. £ Q) in m*(w) (Mm*(w)) in the case of
B = 2. In contrast to the weak J, case, the threshold
of the plateau corresponds to my—g for both B < B, and
B > B.. Since there is a dip around ¢ = 7 for B > B, as
is seen from the dispersions in Figs. 18(i) and 18(j), the
relation Ay—o = 2A,—, does not hold. Hence the energy
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FIG. 18. DSFs (a)-(¢) [Imy**(g,w)| and (£)-(j) [Tmx* (g, )|
for the XXZ model with J,, = 8 and J, = 10.

scale of the threshold of the plateau corresponds to the
mode excited by the operator S{,.

Figure 21 shows the subcycle radiation spectrum
Eq. (10) (in the main text) for B =4 and B = 10 (below
and above the critical field, respectively). In the case of
B = 4 [Fig. 21(a)], the strong intensity in the HHG signal
follows the single-magnon excitation energy Aq,—o of the
snapshot Hamiltonian, which indicates that the thresh-
old is related to the annihilation of single magnons at
g =0 for B < B.. In the case of B = 10 [Fig. 21(b)], the
strong intensity in the HHG signal still roughly follows
the energy of A,—¢ and 2A,—¢.

To obtain more information on the relation between
the HHG spectra and the excitation structure, we per-
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FIG. 19. Time evolution of (a) m® and (b) m® for the XXZ
model with J;, = 8 and J, = 10.

form ED calculations for a system with N = 8 sites.
Although there is a quantitative deviation from the
iTEBD results, the ED calculations qualitatively repro-
duce the behavior of the HHG spectra, especially the
peaks and plateaus as shown in Fig. 20. In Fig. 22(a),
we show (®,|SE,|®,) calculated for the eigenstates of
the snapshot Hamiltonian at ¢ = f,cax. Although the
discretization of (®,,|SE,|®,) is not as clear as in the
weak J,,, case and the values are not necessarily close to
integers, the eigenstates can be roughly classified into
sectors. In Fig. 22(b), we plot the quantity A4, =
|5, 0 (Pn| Siot [Po)| (an = (Pn|¥(tpear))) [Eq. (17) in the
main text]. We see that there is a strong intensity at the
energy E, — Ey = 20.9, which agrees with the thresh-
old energy in Figs. 20(e) and 20(j). The eigenstate at
E, — Ep = 20.9 belongs to the (®,|SE,|®,) ~ —1.5 sec-
tor (depicted by the cross marks in Fig. 22), and this
sector is connected to the (®,|SE |®,) ~ —2 sector in
the weak J;, case. As is seen from Eq. (18) in the
main text, the hybridization between two sectors char-
acterized by different eigenvalues of S{, is caused by
the term % > S;TS‘;FH + S’j_S’j_ﬂ, which becomes
stronger as Jy, is increased. This strong hybridization
explains the results that the values of (®,|SZ,|®,) de-
viate from integer and that the state with the energy
B, — Ey = 20.9 is strongly excited by the SE, operator.
By recalling that A,—g is not equal to QAq:m this exci-
tation of E, — Fy = 20.9 cannot be regarded as two free
magnons created by the S* operator, which implies that
magnon-magnon interaction effects are important.

The radiation power spectrum calculated by the tdMF
Hamiltonian Eq. (19) (in the main text) is also shown
in Fig. 20. The plateau structure of the radiation spec-
trum does not appear in the tdMF analysis and the high
harmonic signals decay exponentially as the frequency
becomes larger. Due to the strong quantum fluctuations
induced by J., = 8, the tdMF theory does not give a
good description in this case.

Appendix D: Subtraction of linear response

In this section, we show the time evolution of m®
after the subtraction of the linear response component
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FIG. 20. HHG from (a)-(e) m® and (f)-(j) m* for the XXZ
model with J,, = 8 and J, = 10. Dashed lines correspond to
Mmg—o (times integer).

in order to illustrate the origin of high harmonic gen-
eration. First we calculate the magnetization dynam-
ics mp(t) = (S*(t)) under the weak laser field (6) with
B = 0.2 (i.e., in the linear response regime). Then we
subtract this linear response component from m?(t). In
Fig. 23, m*(t) — (B/Bg)mo(t) is shown for both the Ising
model with J = 2 and H = 6 and the XXZ model with
Jzy = 2 and J, = 10. In both models, the discrepancy
from the linear response becomes large near the maxima
of the laser field amplitude, and the nonlinear component
increases with increasing laser intensity. In particular,
m®(t) — (B/Bg)mq(t) has a non-sinusoidal shape, which

10gy |w?mgy, (w; t.)|?
@ 5]

FIG. 21. Colormap of the subcycle radiation spectrum
log,, |w?mZ,, (w; t)|* for the XXZ model with J,, = 8 and
J> = 10 under the laser field (a) B =4 and (b) B = 10. The
solid lines show the single-magnon, and two-magnon modes
of the snapshot Hamiltonian at time ¢,.
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FIG. 22. (a) (®,|Si|®Prn) and (b) A, [Eq. (17)] calcu-
lated by ED for the model Eq. (16) (in the main text) with
Jzy =8, J. = 10, and B = 10. The arrows show the energy
FE, — Ey = 20.9. Cross marks are used for the states in the
(P |Stot|Pr) =~ —1.5 sector to demonstrate that the contri-
bution to the HHG signal comes mainly from this sector.

is a manifestation of strong nonlinearity.

Appendix E: Wavelet analysis

In this section, we show the time-resolved radiation
spectra obtained by a wavelet analysis. This approach
is similar to the subcycle analysis, but in contrast to the
latter, the time and energy resolution depends on w. In
the low energy regime, the time (¢, ) resolution is low and
the energy (w) resolution is high, while it is the opposite
in the high energy regime. The wavelet transform for the
second derivative of the magnetic moment is defined as

- d2 T (¢
M (wit) = /dt%ﬂw(w(t — 1),

where

g2
e 2.2 (0 =10)

Fw () = 2mo

is a mother function for the Gabor wavelet. In Fig. 24,
we show the wavelet spectrum |m”{y (w; t.)|? for the Ising

model with J = 4, H = 2, and B = 8 and the XXZ
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FIG. 23. Time evolution of m® for (a) the Ising model with
J =2and H =6 and (b) the XXZ model with J,, = 2 and
J> = 10 after the subtraction of the linear response compo-
nent (B/Bo)mo(t).
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FIG. 24.

Colormap of the wavelet radiation spectrum
log,, |m” W (w;ts)|? for the Ising model with J = 4, H = 2,
and B = 8 (panel (a)) and the XXZ model with J.y = 2,

J. = 10, and B = 10 (panel (b)). The solid lines show (a)
the (multiple) single-magnon mode and (b) the two-magnon
(with ¢ = 7) mode of the snapshot Hamiltonian at time ¢..
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model with J;, = 2, J, = 10, and B = 10. In the
low-energy region, the signal is smeared out in the time
direction while there are clearly resolved peaks along the
w direction. In the high energy region, on the other hand,
the structures are smeared out along the w axis, while
the time evolution of the spectral features can be well
captured.
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