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Silicon carbide (SiC)-based defects are promising for quantum communications, quantum information pro-
cessing, and for the next generation of quantum sensors, as they feature long coherence times, frequencies near
the telecom, and optical and microwave transitions. For such applications, the efficient initialization of the spin
state is necessary. We develop a theoretical description of the spin polarization process by using the intersys-
tem crossing of the silicon vacancy defect, which is enabled by a combination of optical driving, spin-orbit
coupling, and interaction with vibrational modes. By using distinct optical drives, we analyze two spin po-
larization channels. Interestingly, we find that different spin projections of the ground state manifold can be
polarized. This work helps to understand initialization and readout of the silicon vacancy and explains some
existing experiments with the silicon vacancy center in SiC.

I. INTRODUCTION

Color centers in silicon carbide (SiC) have been of interest
over the last several years as candidate platforms alternative to
the NV center in diamond for quantum information and sens-
ing applications [1H6]. SiC is attractive due to the following
properties: it has a large band gap to host deep defects [7]] and
benefits from mature fabrication techniques [8]; it is CMOS-
compatible [9], and it is cost-effective compared to diamond.
The two most studied defects in SiC to date are the divacancy
(a missing pair of neighboring Si and C atoms) [10H13] and
the monovacancy (a missing Si atom) [[14H17]. Both of these
vacancy centers have promising features for quantum infor-
mation applications, such as long spin coherence times, even
at room temperature, and both optical and microwave transi-
tions for control 8, [10].

Like the negatively charged NV center in diamond, the di-
vacancy in SiC has six active electrons associated with it, the
same total spin and a similar electronic structure. As a re-
sult, prior investigations of the NV center in diamond [[18},[19]
can be used to understand, at least qualitatively, the electronic
structure and dynamics of the SiC divacancy. On the other
hand, the single negatively charged Si monovacancy (hence-
forth referred to as Vg;) has five active electrons, leading to a
half-integer total spin (S = % in the ground state) and a dis-
tinct electronic structure. This high-spin character of Vg; can
provide additional capabilities of interest in applications. For
example, Vg; has been used for vector magnetometry [[20H22]
and all-optical magnetometry [6]. In addition, this defect has
been shown to feature a few different transitions for potential
use in spin-photon interfaces [23l [24].

A previous work by one of us [25] found the symmetry-
adapted multi-particle states of Vs; using group theory and
DFT. Going beyond the electronic structure and understand-
ing the physics under optical drive and the microscopic mech-
anisms of the resulting spin polarization (optical pumping) is
crucial, both for applications and for a deeper understanding
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of the defect. Such an analysis is currently lacking for V;.

In this paper we address this problem and present a de-
tailed theoretical analysis of the intersystem crossing mech-
anism and the dynamics of Vg; under optical drive. Our work
examines the interplay of the physical mechanisms responsi-
ble for the generation of spin polarization, namely spin-orbit
coupling (SOC) and coupling between the defect electronic
states and vibrational modes, and reveals which paths among
the many allowed transitions can yield spin polarization. We
show that for a thorough description of this process, additional
levels, not included in Ref. [25], need to be taken into ac-
count. Through numerical simulations of the optical polar-
ization process and comparison to experiment, we can deduce
typical values of the intersystem crossing rates. We find that
initialization to both the |.S,| = 3/2 and the |S,| = 1/2 states
can occur, depending on the excited state manifold driven by
the laser and the relative relaxation rates among the doublets.
Our work provides a microscopic counterpart to phenomeno-
logical models that have been used to explain spin polarization
experiments in Vg; [26].

The paper is structured as follows. In Section II we give
a brief introduction to the C3, point group, based on which
the many body wave functions are obtained. In Section III,
we introduce the concept of intersystem crossing (ISC) and
the terms in the Hamiltonian that contribute to ISC in Vg;. In
Section IV, we demonstrate two optically-driven spin polar-
ization protocols from two distinct channels corresponding to
two different excited state manifolds. We simulate numeri-
cally the dynamics using a Lindblad equation and show that
spin polarization can be obtained efficiently within the ground
quartets.

II. OVERVIEW OF C3, SYMMETRY IN Vg;

There are two inequivalent vacancy sites in SiC, one hexag-
onal (h) and one quasi-cubic (k) for the Vg; [14]. The local
symmetry of Vg; in both cases is described by the Cs,, point
group [27] (see Appendix A for more details). Based on the
Cs, projection formula, we can find the symmetry adapted
many body wave functions (i.e., three body in the holes pic-
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FIG. 1. Electronic configuration characterized by two different total
spin numbers. The level spacing is meant to convey qualitatively
our current understanding of the ordering of the states , based on the
single-particle molecular orbitals. The d7,d8,d9 doublets can be
mapped from d2, d3, d4 under v — u orbital transformation (similar
to mapping g to q1), they are plotted horizontally together for brevity.
The % symbols, which are only on the second excited quartet (q2) and
the sixth doublet (d6), indicate the natural mixture of wave functions
incurred by spin-orbit coupling.

III. INTERSYSTEM CROSSING

Intersystem crossing (ISC) is a non-radiative mechanism of
transition between electronic states with different spin num-
bers. For the Vg; in SiC, the total spin is either S = 2 (spin
quartets) or S = % (spin doublets) as shown in Fig. Op-
tical pumping alone cannot realize ISC, as it does not cou-
ple states with different total spin or spin projection. The
strongest spin changing mechanism is SOC (spin-spin interac-
tions are weaker and will be neglected in our calculation). The
SOC not only mixes wave functions within the sub manifold,
but also, importantly, couples wave functions from quartets
and doublets. To represent the coupling strength, by using the
Wigner-Eckart theorem to reduce the result, we can simplify
the SOC between any two wave functions to three parame-
ters X = —i(E[|0*||E), ALy = & (Ai(v)]|OF[|E)
and A\ o = \7—% (A1 (u)| |OF||E) (where O7 is an opera-
tor belonging to the J representation of C',) only, which are
quantified in [28]. The symmetry of orbital and spin angular
momentum operators are: (I, ly, Sz, 8y) — OF (I,,s,) —
O*2. The SOC between quartets and doublets are in Table
One should note that in Table [l we use the mixed wave func-
tions for g2 and d6 and they have the prime symbols. The
actual transition dynamics also contain the phonon-assisted
transition (we use the term ‘phonon’ somewhat loosely in this

ture) in terms of the single-particle symmetry adapted molec-
ular orbitals, i.e., e, e,, v and u. This was done in Ref. [25]
to find most, but not all, of the states. Here we find the addi-
tional states, four doublets labelled d6 — d9, which are crucial
for the intersystem crossing of the defect. All states are pre-
sented in Appendix A and shown in Fig[l]

The spin-orbit coupling (SOC), which couples the

symmetry-adapted wave functions both within the degenerate
manifolds and from different manifolds, is expressed as :

Hgsoc = Zl;'S} (1)

J

where the [ and § are orbital/spin angular momentum op-
erators and the summation index j is on different parti-
cles. We found the SOC mixes the wave functions within
q2 with each other and those within d6 with each other.
Wave functions in other manifolds do not mix with each
other. and the mixed wave functions (all labelled by prime

hereafter) are: {\112(217@} = {(¥2, — i¥l,)/V2, (¥l +
Z\I/gz)/\/i \11(7127\1132,\1/227\11227 (‘1’32 - 1\1122)/\/5, (w2, +
iWls)/ v/2}, which were also derived in previous work
251 and {Wj™"} = {(~Whs + Vi)V (L +
\1136)/\/5; (_\Ij?lGJ’_\IjzllG)/\/?; (\Ij36+\1136)/\/§}v which were
not found before. In the following context, we always use the
mixed states and neglect the prime and star notation on them.

(

work to refer to both delocalized and localized vibrational
modes). Therefore, in this section we focus on how phonons
couple to electronic transitions in the ISC process. We follow
a similar approach to Goldman et al. [29,30], while we note
that the ISC mechanism in Vg; is much more complex than
in the NV center due to the larger total spin number and the
higher number of energy levels, which enable a larger number
of transitions.

The SOC and phonon coupling can be combined to describe
the ISC transition rate, therefore each electronic state in the
transitional process should be generally dressed by the vibra-
tional state, which we use to label the total state. For example,
lq1, v) represents the first excited quartet in its ground vibra-
tional state. For the ISC starting from a specific quartet to a
target doublet, the direct ISC rate is:

It o |/\J_(1,2)|2 Z | <X0|X1//n> 126 (v — A), 2

where, o represents equivalence up to numerical factors from
SOC among specific quartet and target doublets, which can
be found in Table States |xo) and |y, ) are the ground vi-
brational state of the quartet and an excited vibrational state
of the target doublet respectively; v, is the energy separat-
ing the excited vibrational level of the doublet and its ground
vibrational state; A is the energy difference between g1 and
the target doublet when both are at their ground vibrational



TABLE 1. SOC between quartets and doublets (we used the SOC mixed ¢2 and d6, labeled as prime). The SOC with £(F) signs of W 4;(4j)

represents +(-) for Wy; and -(+) for W ;.

vl w2 w? vl L w2, w3, L whoowE ws e wn vl wn vl
[ S VR 0 0 A2 A 0 0 0 0 0 0 0 0 0 0
2| AL —ida 0 0 ALy —idia 0 0 0 0 0 0 0 0 0 0
3 2 _ AL LN 2
w3, 0 0 % 7 0 0 g 7 0 0 0 0 0 0 0 0
v 0 0 — v s 0 0 iy 0 0 0 0 0 0 0 0
1 Ay iM1) iAlp
\Izgzm) 0 0 0 0 0 0 0 0 0 0 + o F T 0 0 M0Lz v
Cioan| O 0 0 0 0 0 0 0 0 0 4342 +342 0 R
liasy| O 0 0 0 0 0 0 0 +idi2 +Ai2 O 0 0 0 0 0
Uisasy| O 0 0 0 0 0 0 0 Fidie FAa O 0 0 0 0 0
Tisamy| O 0 0 0 0 0 0 0 0 0 0 0 0 ff/él 0 0
Thaasy| O 0 0 0 0 0 0 0 0 0 0 0 ff/g 0 0 0
Uhiaoy| O ) 0 0 0 04N 0 0 0 32 2 0 0 0+
< i _4i iX iX
Uiaoy| O 0 0 SN0 0 0 0 o )| O 0 =2 5L 0 0 FAi, O
wioo| -, —aat, 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w2 AL AT 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w3 0 0 3 A 0 0 0 0 0 0 0 0 0 0 0o 0
ds V3 V3
vl 0 0 A Ay 0 0 0 0 0 0 0 0 0 0 0 0
ds s ]
i | 2L §)}12 0 0 @311 73;\11 0 0 0 0 0 0 0 0 0 0
w2 | 2 2 0 2L Ay 0 0 o 0 0 o 2L o 0o o0
a6 —2v3  2v3 - 2v3 - 2V3 3
iy | AL L0 0 |SEAL R, o 0 o 0o 0o 0o 0o 0 0 0
" ix —iX —iX ix 21
Vi | TR oA 0 0 L o 0 0 0 0 0 0 0 Lo 0
states (A = €41 — €4). The above formula only captures the
unexcited (ground) vibrational mode for g1 while an excited
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We can represent the electron-phonon interaction as:

Hepn = » V6 (3)
p,k

wlab o+ ap ),

where the projectors on single orbitals (Appendix B) give rise
to the projector V;ﬁ] among symmetry-adapted wave functions,
and 0y, j; is the phonon coupling rate (also shown in Eq. (BI));

ap, i and al ».x are the annihilation and creation operators with
wave Vector k and polarization p. In Fig. 2] based on the ap-
plication of selection rules, we show the permitted phononic
transitions among some representative doublets in terms of
phonon symmetry type. The possible phononic transitions
within doublets assist the dynamics of ISC, e.g. in Section
IV, two doublets d6 and d4 contribute to the ISC dynamics
to realize spin polarization. Phonons of ¥ symmetry couple
d6 and d4, and within the interaction Hamiltonian we find the
projectors for the symmetry-adapted wave functions to be:

Once the phononic density of states is calculated, the above
projectors along with Eq. (Z) can quantify the rate. ISC
through other doublets not accessible by SOC can occur
through an indirect (2nd order) process. For instance, g1 and
d4 are not directly coupled by SOC, but they are indirectly
coupled as g1 — d6 — d4. The g1 — d6 transition is enabled
by SOC.

The second part of the transition can occur through relax-
ation via emission of either phonons, photons, or both. In
the case of only phonon-mediated relaxation, schematically
shown in Fig. [3[a), E phonons are involved:

3 lat, xm) 225 Z|d6,xn o, ZZZM X0

pg *1

Using the second order Fermi golden rule, in this scenario we
obtain the second order ISC rate as (see Appendix B):
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where A(4’6) = €q1 — €4(4,6)-

The relaxation between doublets can also include a spon-
taneous photon emission, with either A; or E symmetry (po-
larization along z or in the zy plane respectively), as indi-
cated in Fig. 3[b). Such a process is most likely the dominant
mechanism for relaxation between doublets from the group
{d6,d7,d8,d9} and those from {d1,d2,d3,d4}, compared
to a purely phonon-driven scenario, due to the large energy
difference between the groups. This is analogous to the inter-
system crossing and spin polarization cycle in the NV center
in diamond, where an optical transition between singlets has
been observed [31}[32]].

IV. SPIN POLARIZATION VIA OPTICALLY DRIVEN ISC

The optically-assisted spin polarization dynamics have
been analyzed in the NV center, and the associated mi-
croscopic mechanisms have been identified and quantified
[29, 130, 33]]. Here, we use our model from the previous sec-
tion to construct similar spin-polarization protocols for Vg;.
As the quartets have two excited manifolds, i.e., the first ex-
cited quartet g1 and the second excited quartet ¢2, ISC can
occur either between ¢1 and doublets or between ¢2 and dou-
blets. We first explore the first ISC from ¢1.

A. First spin polarization channel: from g1 to g

Based on the calculated spin-orbit coupling matrix ele-
ments from Table[l} we find that the first ISC from ¢1 occurs to
doublets d1, d6 and d9, while other doublets are not directly
coupled to ¢1 (see Fig[3).

Following the method in Section III the corresponding g1
to d6 transition rate is:

e{d6}
oras o A2 Y | {xolxw,) [0

(Vn - A(,‘(1.,(16) (7)

where, (xo|x.,) is the overlap of states between phonon
ground states and excited states. Similarly, the d4 to g transi-
tion rate is:

e{d4}

Targ o< [(N12 D7 [{xo|xws) P6(v), — Adag),  (8)

This transition rate is nonzero only for the |S.| = % g states.

Ag+ UV — Up — Wp g

2
5(A4 + Vm —

5(A4 + Uy —VUp — wp,q)

Vp + wp,q) s (6)

The same approach can be applied to d1 to obtain a similar
equation. However the transition from g1 to d6 is presum-
ably much stronger than that from g1 to d1 as both d6 and ¢1
states have uve orbital configurations and, more importantly,
d6 is energetically much closer to ¢1, whereas the vibrational
modes of d1 cannot compensate for the large Ay 41, making
the transition rate much weaker. Moreover, the gl—dl1—yg
and g1—d6—g ISC channels feature a spin-conserving mech-
anism, i.e., the spin projection of g states will be preserved
after the cycle. Therefore there does not exist a single doublet
that can be used in a three-level model to polarize the ground
state. This conclusion is consistent with experimental results
[26]. This phenomenon can be explained by the similar sym-
metry of g (ve?) and g1 (ue?) states: both v and u have A,
symmetry and the g can be mapped to gl by changing or-
bital v to u, so for a specific doublet, the selection rule applies
equivalently for ground and g1 wave functions. In Ref. [26], a
four-level model was proposed to explain the transition. Here,
based on our work, we can assign either d3 or d9 to their
metastable level and the population from the metastable levels
can be removed either optically or through phonon or photon
assisted decay to lower doublets.

For a complete, microscopic model of spin polarization
through the excited manifold g;, we consider all the possi-
ble transitions between the high energy doublets and those
with lower energy. Among the high energy doublets, d9
(d6) can couple to d4 by A; (F) symmetry relaxation, as
discussed above and illustrated in Fig. [3] We consider
different possible combinations of photon and phonon sym-
metry for a transition with a given symmetry. For ex-
ample, for a transition with E character, one possibility
is that FE(total)=A;(photon) ® FE(phonon) and another is
E(total)=F(photon) ® A;(phonon). We believe that the for-
mer option is more likely, as it resembles the NV case. In
fact, we speculate that even a similar vibrational mode as in
NV-diamond may be involved in the case of Vyg; (see the dis-
cussion in subsection C below).

There are two low-lying doublet states, d1 and d4, that di-
rectly connect to the ground state manifold. Since we do not
know the ordering of these states, we will consider two mod-
els, each corresponding to one of these doublets directly re-
laxing to the ground state. We will then unify the two models
by making the physically reasonable assumption that within
the doublet manifolds the states thermalize.

We begin by analyzing the case of direct relaxation of d4 to
g. As d4 only couples to the |S.| = 3 in the g quartet (Eq.
(8)), by using d6 and d4 as the intermediate states, we find a
way that the g1 state Wrth spin |S.| = 5 can transition to the

g states with |S.| = % while the reverse transition does not
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FIG. 2. Selection rules for the inter-doublet relaxation process, which is accompanied by the emission of a phonon or a photon (or both).
Photon emission process is represented by curly lines and phonon process by straight lines for A; (green/solid) and E (brown/dashed or
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occur, realizing a spin-flipping process:
Ng1-131 > Ni-181 =0 ©)

Based on the spin-flipping ISC from ¢1 to d4, d6 and d9
doublets, we construct the first spin polarization protocol. The
doublets involved could be effectively reduced to d4, d6 and
d9 (Fig. ).

The states evolve according to the Lindblad equation:

(1) = —ilH, )+ (Lap(t) L~ S {ELLa p (1)), (10
k

where the model includes two states (|S.| = 2 and 1) from
each quartet g and ¢1 and one state from each of the doublets
d4, d6, and d9, hence it is seven dimensional. We consider
resonant drive between g and ¢1, and define € to be the Rabi
frequency. The Lindblad operators Lj, which are given in
Appendix C, contain the ISC rates and spontaneous emission
rate. We fix the optical drive strength  =1/6.1 ns~! and
the spontaneous emission rate vy = ). Using an ISC rate
value comparable to 7.6 ns which was deduced in Ref. [26],
we find that spin polarization can occur in several hundreds
of nanoseconds, as shown in Fig. [3] (the steady state shows
around 40% population on the excited |S,| = %, which, once
the pumping is turned off, is transferred to ground |S.| = 3
under spin conserving spontaneous emission). Then the final
polarization of |S.| = % within the ground quartet should
approach 100%. The timescale of several hundreds of ns is
consistent with experiment [[8], 22].

An alternative scenario to what is described above is that d4
first relaxes to d1, which in turn relaxes to the ground state.

This mechanism assumes that d4 has higher energy, some-
thing that is not known yet. Because of the limited informa-
tion about these doublets, we consider this channel as a possi-
bility as well, as shown in Fig. [6] Solving a Lindblad equation
as before, in this case, we find that the other spin projection
states (|.S,|=3/2) are polarized, albeit not fully, since a con-
siderable fraction of the population remains in the |S,|=1/2
states, see Fig.[7]

We now turn to the scenario where thermalization is al-
lowed within the doublet manifold. In this case, as shown in
Fig. [8] we can reduce the problem to a five-level model, where
each doublet manifold enters as a single state. We define the
following rates:

V1= Vg1, L1 —do

V2 = Yq1,|8|—d6

-1 ( _—-BE —BE.
=2 (6 B arng 3 e f“%mg,\%o

~ *1e*ﬁEd1

Ya=2Z Yd1—g,|2]s (11)

where 3 = 1/kgT and Z = Z?Zl e PEd . The five-level

model can be expressed as

where p is a vector containing the population of each of the
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FIG. 5. Spin polarization dynamics for the first protocol by using

optical pumping between g and gl quartets and assuming that the
decay from doublet d4 dominates relaxation back into the ground
state. The ratio of the ISC and spontaneous emission rates is taken
to be +. Quartet g with |S.| = 3 (blue/solid line) will by populated
asymptotically. Once the laser is off, it is close to 100% populated.

and v=(%3,0,44,0). Focusing on the steady-state solution,
we have p), ;.= — M~!v, from which we find that the steady-
state probability of the ground state with projection S,=|1/2|
is

Y23
T2 + 7174 + Y273

Pg,l1/2| = (14)

The above demonstrates that the steady state probability
of the |1/2| can be vanishingly small (i.e., polarization into
|3/2]) if the product 4275 of the upper ISC rate out of the |3 /2]
and the lower ISC rate into |1/2| is small. Alternatively, there
will be polarization into |1/2] if this product of rates is much
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optical pumping between g and g1 quartets and assuming that the
decay from doublet d1 dominates relaxation back into the ground
state. The ratio of the ISC and spontaneous emission rates is taken
to be +. Quartet g with [S.| = 3 (red/dotted-dashed line) will by
predominantly populated.

larger than the other products of ISC rates in the denominator.

B. Second spin polarization channel: from ¢2 to g

ISC also occurs via the second excited quartet ¢2, and
can also lead to ground-state spin polarization. The physics
of the ISC from ¢2 is more complicated compared to that
from ¢gl. One qualitative difference between the two cases
is that there exists a doublet (d4) which couples to ¢2 and
g simultaneously and has spin-flipping transitions. There-
fore, we could construct a three-level model accordingly (Fig.
[9). However, the energy conservation would require phonons
that match the large frequencies of the transitions. Therefore,
this model is less likely compared to a four- (or more) level
model for spin polarization via g2. We find that all doublets
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FIG. 8. Spin polarization dynamics for the first protocol by using

optical pumping between g and gl quartets and considering a fast
thermalization within the doublet manifolds, leading to an effective
five-level model.

in {d6,d7,d8,d9} can couple to ¢2 directly and, due to their
orbital configuration, we should not ignore any of them. As
discussed above, d7, d8 and d9 can couple to their isomorphic
states d2, d3 and d4 respectively, by A; symmetry relaxation.
As states d2, d3 and d4 share the same orbital configurations
and therefore their energy difference should be comparatively
small, d6 can couple to each of them through E relaxation.
Again, we assume an F photon and A; phonon as the more
plausible combination, shown in Fig@] (b). On the other hand,
unlike d4, d2 and d3 do not couple to g directly, but indirectly
through d1. Therefore, the ISC and spin polarization protocol
of ¢2 is quite complex, as is illustrated in Fig. 0]

To explain the spin polarization mechanism, we need to
specify how the spin-flipping process occurs among the com-
plex ISCs. We demonstrate all the possible transitions in Fig.
[9) and compare their relative strengths. We can focus on the
doublets that couple to g quartets directly, i.e. d1 and d4.
We find that transitions from ¥'% % to g through d4 are spin

q2
conserving and transitions from \Il;g ) 1o g through d4 are

spin flipping, which is in contrast to that in the first spin po-
larization protocol. The remaining ISCs within this protocol
go through d1. We find that d2 and d3 can couple to both
|S.| = 3 and |S.| = 3 of g, hence transitions via d1 are mix-
tures of spin conserving and spin flipping. Next, we need to
compare the spin-flipping process with opposite directions:

_ 7
NEIEE Z”\%H\%\
7

= ~(d2,d1) | ~(d3,d1) | (fi4) 15
7\%\—4%\ 7\%|—»\%\ 7\%| 131 (15
_ i
Ni=121 = Z”\%H\%\
i
= ~y(d2,d1) | ~(d3,d1) 16
7\%\—4%\ 7\%|—>\%\ (16)

where, 7'5>?Y,  for example, represents the transitions from
[51—

151

|S.| = 3 t0|S.| = £ going through d2 and d1. But compar-



(a) ISC(1,): @=» ISC(Y): ®@=>
E phonons: =====p A, phonons: =P

4E(uve) P» d6 2E(uve)

1
BRRLL TS

:ZAZ(uez)
i d7

'-:.1:"'-----..

[IRRELT"N
2A,(ue?)]  2E(ue?)

d9 das

|d4:2A1(ve2) d3 2E(ve?) |d2 2A,(ve?)
= N

2? S *

DR S ——

DR ——

4A2(ve2) g ‘f,” ---‘--__.---lhs
<" d1 2% (e?)
QUARTETS DOUBLETS
(b) E phonons: == === A; phonons: )
E photons: Y A, photons: NN \V\»

4E(uve) q2

2A,(ue?)
a9 Sd8  3d7 .
! 1 1 |
d4 2Aq(ve?) d3 2E(ve?) ,d2 24,(ve?)
o \\\\ U
aA (veZ) g 4// --_I_.-------%
2 _‘ <" dl 2E (e3)
QUARTETS DOUBLETS

FIG. 9. Doublet d4 is the only state which couples to g2 and g si-
multaneously and has spin flipping transitions, allowing for a sim-
ple three-state model of spin polarization. Starting from g2, a more
likely channel involves intermediate states d6, d7, d8 and d9 and
through phonons and optical spontaneous emission, these states can
couple to d2, d3 and d4 respectively. Doublet d6 can couple to d2,
d3 and d4. Both d2 and d3 relax to the g quartet indirectly through
dl. As in the g1 channel, we indicate (a) phonon-only processes and
(b) photon-phonon combined processes, with the latter more likely
to happen.

ing those two groups of spin-flipping transitions is challenging
due to the complex paths they take and the difficulty of quan-
tifying their strengths. One crucial example is the transition
from d6 to d4 and that from d9 to d4: even if we can express
their transition rates by referring to equations in Section III,
their relative ratio requires the knowledge of the density of
states of their vibrational modes. To the best of our knowl-
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FIG. 10. ISC from g2 to several doublets and finally to the ground
quartet. For the doublets directly coupled to g, both d4 and d1 are
mixture of spin-flipping and spin conserving processes. The E|
laser drives the system from g to ¢2.

edge, there are no first principles calculations available from
which to obtain these parameters.

In the absence of further inputs from ab initio calculations,
we simplify the model with some reasonable assumptions. We
focus on the d2, d3 and d4 doublets and ignore the higher dou-
blets as these three determine the coupling to the g quartets.
Following the same approach as the first spin polarization pro-
tocol, we use Lindblad equations to describe the dynamics of
this model, where we vary the ISC rates to d2, d3 and d4.
Interestingly, in this case the system can be polarized in ei-
ther spin projection state, |S.| = 3 or |S.| = £, depending
on the relative strength of the rates, as shown in Fig [TT] (a)
and (c) respectively. This can be due to the different SOC
strengths between the g quartets and the three doublets, where
d2 and d3 preferentially relax to | S| = £, while d4 relaxes to
|S.| = % only. When the rates exactly balance each other no
polarization is generated, as shown in Fig (b). We note that
g2 states split under axial SOC [25]], presumably with split-
tings in the GHz range [23} 34], so in principle a spectrally
narrow laser could realize selective pumping and create spin
polarization irrespective of the relative rates.

C. Vibrational modes

Knowledge of the vibrational mode spectrum and density
of states would allow us to refine our ISC models and quan-
tify the rates. As a result, we would be able to predict with
more certainty which states in the ground state manifold are
preferentially populated through excitation of the two excited
manifolds, g1 and ¢2. This information can be obtained by
first principles calculations. In the absence of such calcula-
tions in the literature, we can speculate based on experimen-
tal results. For example, it seems that a similar A; mode
found theoretically [35] and seen experimentally [32] in the
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FIG. 11. Spin polarization dynamics when pumping ¢2. The ISC and
spontaneous emission ratio is % The ratio of the ISC rates to d2(d3)
and d4 is varied. (a) Yaz(a3)/Vda = 1:2, (b) Yaz(az)/vas = 1:1, and
(©) Vaz(asy/vas = 2:1. In cases (a) and (c), a different initial spin
projection state is polarized, while case (b) represents the crossover
point, where no spin polarization is obtained.

NV center in diamond may also be present for Vg; in SiC.
In particular, from the experimental results of the Wiirzburg
group, who found that the optimal excitation energy to max-
imize photoluminescence from the defect is 172 meV above
the ZPL [15], and comparing to a vibrational mode found in
NV-diamond of 169 meV that plays a key role in the relax-
ation between singlets [32], we may assign the A; phonon
accompanying the photon emission in the ISC schemes to this
mode. Note that because this mode has been found to be very
localized in NV-diamond and to mainly involve the basal car-
bons (and not the nitrogen)[33]], it is plausible that essentially
the same mode exists in Vs; due to their similar local envi-
ronment (3 basal carbon atoms associated with each defect).
As in diamond, this mode is outside the phonon spectrum of
the bulk SiC material [36]. In fact, in the data of Fuchs et
al. [26] there is evidence for additional localized vibronic
modes at lower frequencies (although one has to be careful
in interpreting the data, as these are ensemble experiments

and could involve signal from other defects); such (quasi) lo-
calized lower-frequency modes are consistent with the bulk
phonon spectrum of SiC [36], which has a bandgap (~70-90
meV), a feature that is distinct from diamond. In addition to
first principles calculations of vibrational modes, temperature-
dependent experiments would further shed light on the ISC
process. Performing temperature dependent experiments with
Vs; would further illuminate the role of the 170 meV mode.
Specifically, absorption experiments similar to Kehayas et al.
[32] would investigate the sharpness of the transition. We also
expect similar absorption peaks at integer multiples of 170
meV. Increasing the temperature should broaden these transi-
tions and lower the intensity. To test the role of the mode in
the doublet relaxation, spectroscopy of the doublet transitions
would be required.

V.  CONCLUSION AND OUTLOOK

In this paper, we studied the ISC dynamics by analyzing
the SOC and the phonon coupling between symmetry-adapted
many-particle states of Vg; in SiC. We qualitatively analyzed
the ISC among different spin manifolds and quantified the ra-
tio of their rates. We analyzed two spin polarization protocols
enabled by optical pumping, spin-orbit coupling, and inter-
action with phonons. The ISC mechanism through the sec-
ond excited manifold (¢2) is more complex as more doublets
contribute to it. In general we find that both spin projections
(IS.| = 2 or |S.| = ) of the ground state manifold can be
initialized, depending on the relative strength of inter-doublet
relaxation rates and the relative ordering of the doublets. The
two spin polarization channels discussed above can be dis-
tinguished by optical means. According to selection rules,
the ground quartet (A, symmetry) state can be excited to the
first excited quartet (Ao symmetry) by applying light polar-
ized parallel to the c-axis E|, while the second excited quartet
(E symmetry) by light polarized perpendicular to the c-axis
E, . Our numerical simulations for the polarization process
involve assumptions motivated by experimental results. Based
on a comparison between experiments in NV centers in dia-
mond [32] and in V§; defects in SiC [[15}126] we speculate that
a localized vibronic mode with frequency ~170 meV is essen-
tially the same mode and present in both defects. In the data
of Fuchs et al. [26] there is evidence for additional localized
vibronic modes at lower frequencies; such (quasi)localized
lower-frequency modes are consistent with the bulk phonon
spectrum of SiC [36], since they would lie in the bandgap (a
feature that is not present in diamond). For a more quantita-
tive theory and to lift some of the ambiguities, further input
is needed from ab initio calculations. In particular, calcula-
tions involving the vibrational modes and their coupling to the
electronic defect levels would be particularly important. The
ordering and spacing of the doublets, which requires calcula-
tions beyond DFT [37] would also be an important input to
further refine our model.



TABLE II. Character table for C's,, symmetry group

‘Cgv‘ E 2Cs 30, linear basis quadratic basis ‘

Ay 1 1 1 z 22 42, 22
Ao 1 1 -1 R.
E| 2 -l 0  (Y(Re, Ry (2 —y?, 2zy)(xz.y2)
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Appendix A: Group Theory Information

The basic C3, group (character table in Table [[I), in con-
junction with the SU(2) group for % spin, forms the C's,, dou-
ble group [27] which gives the full description for the behavior
of spinors under specific spatial symmetry. The double group
for spin % is denoted as D 1,01 I'g,,,. A full group symbol
canbe writtenasI' =I', ® I'g, .

a. Symmetry-adapted wave functions

The Vg; forms a local quantum few-body system with a dis-
crete energy spectrum deep in the bandgap with four single-
particle molecular orbitals - e, ey, v and u. From those, the
first two are degenerate and transform as F/, while v and u
transform as A;. The Vg; has five electrons associated with it,
four of which are from the four carbon dangling bonds and one
captured from environment. In this paper, we use the 3 holes
picture to find symmetry adapted many-body wave functions
(filling 5 electrons in 8 states {e,, e,, v, u} ® {1, |} is equiv-
alent to filling 3 holes). The 3 holes can have a total spin of

J

¢. Clebsh-Gordan expansion and Wigner-Eckart theorem

For direct product of representations of a given group, the
Clebsh-Gordan expansion indicates how to make the decom-

J

POXB) @ B) . ppo(®) g prel?

ZD

where the basis is

(e} = (el el where i = 1, ..., da; j = 1, ..., dg}

(A4)
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% (quartet) or % (doublet). The projector can be scaled to the
many particle situation. The modification is on the symme-
try operation Pr. As the fermionic many-body wave func-
tions are conditioned by Pauli exclusion principle and anti-
symmetry of permutation, we need to construct a space trans-
formation matrix 7" - maps Hilbert space to antisymmetric
space - and transform the Pp — TPRT". The symmetry-
adapted total wave functions can be obtained by diagonalizing
the projector and are listed (for brevity, single orbitals e, e,
are represented by x, ) in Table[[TI] (16 quartets) and Table[[V]
(28 doublets). The decomposition of orbital and spinor sym-
metry type can be implemented by using the Clebsh-Gordan
coefficients.

b.  Projector and wave functions

In group theory, the eigenvectors (denoted by I',,j) re-
late the symmetry operator Pr with its matrix representa-
tion denoted by D' (R) through the relation Pr|[,a) =
>2; D' (R)jo |Tnj). With respect to the basis functions, the
transformations can be described by the projection operators
(or projectors) [27] Pkrl”: P,fl" IT',.0) = |T',k). The projector
[27] is explicitly given in terms of the symmetry operators for
the group by the relation:

In
Py = > D'(R
R

where [,, and h are the dimension of I',, and the rank of the
group respectively.

For our specific situation (to fill three holes in
{ez,ey,v,u} ® {1,]} orbitals), the symmetry operation
is detailed as:

)i Pr; (AL)

3

Pr(3 holes) = {(Tp®I' /2)D(T 41@T1 j2)B(Ca1®T 2)}®

(A2)

Solving Eq. (A2) gives the exact wave functions, which are
illustrated in Table [[IT|and Table[[V] .

(

position. Accordingly, the direct product symmetry operator
transforms the basis as [38]]:

el®) = 3 DX (Ro(@)l?)
ZDJZ ik s (A3)

(

If D(® and D) are irreducible representations, then D(**5)
is in general a reducible representation. The Clebsh-Gordan
expansion gives the decomposition detail from reducible rep-



TABLE III. symmetry-adapted wave functions for spin quartets.
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Orbital ms(v') r To®T symmetry-adapted wave functions(S:%) Label
ig 1E5/5 Ay ® 255 [lvzy + ivZY) v,
ve? +5 2E3; Ay ®1E5)9 |lvzy — iDZY) \Ilg
ground +3 Ey ) A ® Ey /g [lvzg + vZy + vzy) V3 v
-1 Ei /o A2 ® Ey /o l|0Zy + vxg + vZg) /V3 P
i% 1E3/5 A2 ®2E3), [luzy + iaz7y) U
’LL€2 :|:§ 2E3/2 A2 & 1E3/2 H’U/fy — ’Lﬂfg> \Ifgl
1st-excited +% E ) Ay ® Ey)p [|luzg + uZy + Gxy) V3 \I/‘él
-1 Ei /o A> ® Ey s ||azy + Gy + uzy) /V3 vy
+§ Ey E®1E;3/; [luvz) , ||Juvy) ‘1’};27 ‘1’32
e -3 Ey/o E®2E3), ||avz) , ||aog) \1/22,:1@
E ) || (uvg + udy + dvy) + i(uwT + udvz + avzx)) /V6 22
2nd-excited E1)s || (@vy + Gvg + uvy) — i(adx + GvT + uvx)) /v6 wo,
E®FE {ll(uwvg + uvy + wvy) — i(uvy + wvy + wvy)) 7
1 1/2
3 1E3/2 / | — i(uvE 4 udz 4 Gvz) + (UBZ + TT + Tvz))}/2v/3 Yo
9F. {||(vvg + uoy + Gvy) + i(uvg + Gvg + avy)) o8
3/2 || — i(uvZ + vz + avz) — (udZ + WT + avx))}/2v3 a2
TABLE IV. symmetry-adapted wave functions for spin doublets.
Orbital mg(V') r To®Ts symmetry-adapted wave functions(S=1) Label
+% Ei)2 |lzzy + iygx) /V2 ‘l’§1
e3 2 Lo E®FE /s ||j$37 - Z?jy@ /\/§ \Pg1
3 1E5)5 [(zzy — iygz) — i(Tey —igyT)) /2 Yy
+3 2E3), [[(zZy — iyyz) + i(Zxy — igyz)) /2 Vi
ve? +1 Eio A2 ® Eyja |lvzy + vzy — 20ay) /V6 Vg
-1 Ei/o A2 ® Ey /o l|oZy + v27 — 20ZF) /V6 w2,
1E3/2 ||(veg — viy) — i(0Zy — v27) + i(veE — vyg) — (0Zx — TYY)) /2V2 vl
2 +1 2E3; [|(vxg — vZTy) + i(vTy — Dxy) + i(vaZ — vyy) + (VZx — DPy)) /2\/5 U2,
ve 2 EQFE; s _ z o - 3
Ve [(vzy — vZy) —i(vaZ — vyy)) /2 Vs
Eiyo [(vzy — vzy) + i(vTx — vyy)) /2 Wio
ve? +% Ey ) A1 ® By [lvzZ + vyg) /\/§ vl
-1 Ei/o A1 ® Eyo ||[vz2 + vgy) /V/2 v,
+1 E ) [lvoz — ivty) /2 Tl
—% Ey /2 E®FE |5vE + vvg) /vV2 W2
v’e s 1Es)5 ||(viz + 1wdy) + i(DvT — Dvy)) /2 W
+1 2E5)5 [|(voz + ivdy) — i(DvT — Dug)) /2 Wi
+1 E ) ||i(uvZ + ubx — 2avzr) + (wof + udy — 2avy)) /2v3 Tl
wve +1 Ei)o EQE ||i(@ve + wwT — 2udx) + (Tvy + wwf — 2uty)) /2v3 U2,
-1 Ei/2 || — i(@vT + avz — 2uvZ) + (Wy + avy — 2uvy)) /2V/3 LR
-1 Ey /s || — i(uvZ + uvz — 2uvT) + (uvy + uvy — 2uvy)) /2V/3 Wie
ue? +1 E12 A2 ® Eyn ||luzy + uzy — 2uxy) /V6 Vi
-1 Ei /o A2 ® Ey o ||aZy + Gxg — 2uzy) /6 w2,
) 1E3/2 [|(uzg — uBy) — i(aZy — axg) + i(ued — uyy) — (aTx — agy)) /2v2 Ule
we? +3 2Bys| g, | |(uey—udy)+iazy —ug) +i(usd —uyy) + (Uzz — agy)) /2V2] Wi
Er/s || (ueg — uzy) — i(uas — uyp)) /2 why
Eiyo |[(uzy — uxy) + i(uzs — ugy)) /2 Vs
ue2 +% E]_/2 A1 ®E1/2 Huxa‘s—i—uyg) /\/§ qfég
-2 Ei /o A1 ® Eyo ||azx + agy) /v/2 U2y




resentations to irreducible ones. If we define (aS|7y) as the

TABLE V. Clebsch-Gordan coefficients of C',, irreducible represen-
tations in Cartesian coordinates.

A A | AN (EE|A1>_L{10]
1 1] 1)~ i k| 1)7v|01
Ar Ay | A (EE\AQ)il{ow
1 1|1 )~ j k|1 )7Vv-10
A Ay | AL
11 ] 1 )"

(v 7 18)-1o1]

Solving the above equation gives the CGC table for Cs,,,
which are listed in Table [Vl The results here are consistent
with previous results [39] 40].

The Winger-Eckart theorem[41] decomposes the results of
the operator on states of IRs with specific sub-indices as the
product of the Clebsch-Gordan coefficient and a reduced ma-
trix elements depending only on the IR type:

U

; Il Io I :
< ll;f w£> = ( A I k{) <¢Ff| ‘OFO|
(A6)

As we have included a systematic way to calculate the CGCs,
many matrix elements can be simplified as the contraction
term on the right in the above equation and the ratio among
matrix elements of the same operator within the same IR types
can be determined explicitly.

To
Op

d. Selection Rules

Selection rules state that for the general operator O’ with
symmetry type IV and states |¢) and |f) with symmetry type

J

Hiain = 0%, AY + 6% (AS + AP + A®) + 6% B + 6%, ES + 6% (B} + EYY) + 6%, (ES + EY),

where, 0% = (eax + €4y)/2,0%, = €:2,0% = (€ga —
eyy)/275aE2 = (€xy + ey$)/2,6%1 = (e + ezx)/2,5%2 =
(ey» + €sy)/2. The z direction corresponds to A; IR ac-
cording to which both w and v orbitals transform and the
A¢ A AP ALY B, B, are projectors on the single or-

Y5\
n
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Clebsh-Gordan coefficient (CGC) or reduction coefficient, the
CGCs can be determined by :

d

=52 D (R) DY (R)DO)(R)* (AS5)
R
[
') and T respectively:
I'eTW 3T0 = (i|0'|f) = 0. (A7)

The selection rule for an electric field among Cs,, group states
are listed in Table[VI.

Appendix B: Phonons in ISC

For C3, symmetry, phonon modes have two IRs : A; and
E, and the strain tensor (¢;; = g;?) transforms as the linear
J
basis product x;z;. We can target on specific IRs and use

TABLE VI. Optical transitions between multiplets in the C'3,, sym-
metry group.

AS =0 A Ao FE
Ay [ 0 1
Ao | 1
E Ll

the CGCs to explore how strain affects the system. We can
get the strain Hamiltonian as the combination of projectors on
single orbitals, i.e., Eq. (B3). To understand how the phonon
modes affect the orbitals we first construct the strain Hamil-
tonian with respect to the manifold encompassing all single
orbitals of interest {e,, e,, u, v}:

(BI)

(

bitals [42] in the basis of {e,, e,, u, v} and are listed below:



1000 1000 0100
o {o1o00).. (o0-100).. (1000
A=1o0000]E=loo0oo00]®2=|0000
0000 00 00 0000
0000 0010 0000
, [0o000) ., [0000),., [0010
A=loo10|[B=|1000]|%=|0100
0000 0000 0000
0000 0001 0000
s (0000} ., [0000),, [0001
A=10000|E=|ooo00|®=|0000
0001 1000 0100
0000
//b_ 0000
A"=10001
0010
(B2)
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Reordering all terms to get a succinct projector:

Hitrain = 0%, (|2) (&l + [y) (y1) + 6%, (u) (ul + [u) (0] + [0) (ul + [0) (v]) + 85, (J2) 2] = |y) (y])
+ 3, (J) (ul + [a) (o] + |u) (2] + |v) {2]) + 8%, (|2) (] + ly) (2]) + 6, (ly) (ul + 1) (0] + |u) {y] + [0) ().

The interaction of phonons among 3-hole wave functions can
be constructed by using Eq. and the projection rule for
single orbitals. In the main text, we express the I'*) with the
assumption that the quartets are in a ground vibrational mode,
so the Eq. is an approximation. The general version of the

2
2 (fIV Im) (m|V |i)
Tona =7 Zf Zm E;, — Ey,

5(Ey

<\Pd47 Xl‘ Heq ‘\IJd67Xn> <\1/d67Xn| Hsoc \IJ

(B3)
[
first order ISC is:
I o hA L1 2 Z L, [0, ) PO (vn — vy — A,
nm (B4)

where the |ijm> ! n> represent the general vibrational lev-
els for quartet and target doublet respectively.

The derivation of the second order ISC formula, Eq. (6)), is
as follows:

*Ev)

2

q13s Xm>

2
:;Z

m,l,p,q, %1

E m

o §(E, — En). (B5)

The matrix elements of H,, are obtained from Table[l] and by using Eqs. [2Jand[3] Using the symbol « for the overall (unknown)

numerical coefficient we have:

t 2
r® —, Z Z {(Xn|xm) <Xl|E6pk(ap7k + apk) [xn)

m,l,p,q, =1 1| n

s §(E, — Em). (B6)

Defining the electronic energy difference Eg1,v, — Fas,xo = N6, Eq1,x0 — Easo = A and using al [xn) = /npg + 1 |x},)



and a |xn) = \/Mipq |X;, ) We obtain
r 2
Spke (XnlXm) \/Mp,g + 1 <XZ|X+>
@ — al) .2 p P.q n
il 3|50 e
m,lJuq LI n
2
9 pk (XnlXm) V npq+1<Xl|XrJg>
= a|)\J_2| Z
Ag + U — Vp — Wpq
m,lp,q | ’
2
Spk (Xn|Xm) v/Tip.q (Xu|X7)

— Un T Wpyq

Other symbols represent the same as in Eq. (6). The general

@ = |\, Z 16111 (X0 Xm) [

0(Ag+ Vi —p Fwpyg)-

(np,q + 1) <Xl|X3_> ‘2
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12
Z pk (Xnlt) Xm+/Tp,q (xalxz )
Em - En

5(El — Em) + 5(El — Em)

0(Ay + vy — vy

— Wp,q)

(B7)

(

formula of T'®) includes the simple case especially if, e.g., the
intermediate state is limited to just one phonon mode, X:

I(Ag+ v —wpq) (BY)
mlped (A + Vi — wp,q)? P
(1p,q) <Xl‘X5> K
+ T ——— wp)q)Qé(Azl + U — Un +Wpq) (B9)
(B10)

where the denominators reduce to w?, if we limit the ¢2 state
vibration as o only and the above equation simplifies as the
version in [29].

Appendix C: Lindblad Terms

For the first spin polarization protocol involving g, ¢1 quar-
tets and d4, d6 doublets, we list the ISC Lindbladians:

L(q1]3/2],d6) = \/§d6> {q113/2][ vnsc
L(q1[1/2],d9) = \/§d9> (q1]1/2]| vnsc

L(d4,g[1/2[) = \/§9|1/2|> (d4] ynse

L(q1[1/2],d6) = L(q1]3/2],d9) = L(d4, g|3/2]) = 0
(CH
where we choose ISC among electronic energy close wave
functions but not the ones with large energy separation, in or-
der to have strong ysc. The relaxation Lindlbadians (which
could include possible photon and phonon relaxation) are:

L(gI3/2[,q13/2[) = |913/2]) {a113/2]l v
Llgl/2), all1/2) = lgl1/2 (@112 VAo o)
L(d4,d6) = |d4) (d6] 7

) =

L(d4,d9) = |d4) (9] /7a,-

(

We assume 9 = g = 74, in our calculation by treating
them as a fast relaxation process.

For the second spin polarization channel, the corresponding
ISC Lindbladians are:

L(q2|3/2|,d2 =C1 |d2 q2|3/2|| v/ YISC

) )
L(q2[1/2],d2) = 1 1d2) (¢21/2|| v/msc ©3)
L(q2(3/2],d3) = c11d3) (42]3/2[| /yisc
L(q2[1/2],d3) = e ]d3) (q2[1/2][ /7sc,
L(q2|3/2], d4) = ¢z |d4) (q23/2]| v/ msc )

L(q2(1/2|,d4) = ¢z |d4) (q2[1/2]| /nsc,

where we change the ratio between c; and cs (hence different
population preference among d2, d3, and d4) to have different
spin polarization results (shown in Fig. [IT)); and

L(d2,g13/2[) = 21gI3/2l) (d2[ v nsc

L(d2,g[1/2[) = 2\/g|9|1/2|> (@2 vnsc
L(d3,913/2|) = 2193/2]) (d3] v/nsc

L(d3,g[1/2[) = 2\/glgll/2|> (d3] v/sc-

(C5)
The relaxation Lindbladians are:
L(g|3/2],q213/2]) = [913/2[) {q1[3/2[| 0
L(g|1/2],q2[1/2]) = [g]1/2]) {¢1[1/2|| /70  (C6)



The 7, here is taken to be the same as the one of the first spin
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polarization channel.
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