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The iron-based superconductor RbEuFe4As4 undergoes a magnetic phase transition deep in the
superconducting state. We investigate the calorimetric response of RbEuFe4As4 single crystals of the
magnetic and the superconducting phase and its anisotropy to in-plane and out-of-plane magnetic
fields. Whereas the unusual cusp-like anomaly associated with the magnetic transition is suppressed
to lower temperatures for fields along the crystallographic c axis, it rapidly transforms to a broad
shoulder shifting to higher temperatures for in-plane fields. We identify the cusp in the specific
heat data as a Berezinskii-Kosterlitz-Thouless (BKT) transition with fine features caused by the
three-dimensional e↵ects. The high-temperature shoulder in high magnetic fields marks a crossover
from a paramagnetically disordered to an ordered state. This observation is further supported by
Monte-Carlo simulations of an easy-plane 2D Heisenberg model and a fourth-order high-temperature
expansion; both of which agree qualitatively and quantitatively with the experimental findings.

While superconductivity and magnetic order usually
are mutually exclusive due to their competitive nature,
a series of novel materials that feature the coexistence of
both phases has recently emerged1–3. In order to address
open questions on the coexistence/interplay/competition
between these two phases of matter, it is crucial to
study model systems, where both phenomena can be
tuned independently from each other. The Eu-based
pnictide superconductors—where superconductivity oc-
curs within the Fe2As2 layers, while the magnetism is
hosted by the Eu2+ ions—provides such a model system3.
Furthermore, each phenomenon appears to be relatively
robust against perturbing the other one. In fact, chemi-
cal substitution of the parent non-superconducting com-
pound EuFe2As2, e.g. with P (on the As site), K or
Na (on the Eu site) induces superconductivity4–6 [with
maximum Tc of 23K, 30K, and 35K respectively], while
only smoothly suppressing the magnetic order tempera-
ture Tm ⇠ 19K. Recent syntheses7,8 of members of the
1144 family (CsEuFe4As4 and RbEuFe4As4 with Tc in
the mid-30K range) have opened new possibilities to tune
the separation, and hence the interaction between neigh-
boring Eu layers.

In this paper we report a detailed calorimetric char-
acterization of single crystal RbEuFe4As4: in particular,
we investigate the anisotropic response near the magnetic
phase transition at Tm = 14.9K (well within the super-
conducting state, Tc = 37K) to external fields. Whereas
earlier studies on polycrystalline samples8 have suggested
that the magnetic transition might be of third (higher-
than-second) order, we demonstrate that the behavior of
the specific heat is broadly consistent with a Berezinskii-
Kosterlitz-Thouless (BKT)9–11 transition with the Eu-
ropium moments confined to the plane normal to the
crystallographic c axis by crystal anisotropy. This find-
ing is based on two main observations: first, the variation
of the specific heat C in the vicinity of the phase transi-
tion agrees qualitatively and quantitatively with that of

a BKT transition. In particular, the BKT scenario nat-
urally explains the absence of a singularity at the transi-
tion point. Furthermore, the anisotropic response of the
specific heat to di↵erent field directions clearly points to-
wards a strong ordering of the moments within the Eu
planes. The reported findings are supported by numeri-
cal Monte-Carlo simulations of a classical anisotropic 2D
Heisenberg spin system.
Generally speaking, a BKT transition means that the

state above the critical temperature can be viewed as
a liquid of magnetic vortices and antivortices, while in
the low temperature ordered phase only bound vortex-
antivortex pairs are present. In a pure 2D case the aver-
age magnetic moment would thus be destroyed by spin-
wave fluctuations also in the ordered phase. Weak in-
terlayer coupling, as present in RbEuFe4As4, promotes
a small average in-plane moment formed at very large
scales, while at smaller scale the behavior remains two-
dimensional. This results in the fact, that the true phase
transition in this system belongs to the universality class
of the three-dimensional anisotropic Heisenberg model.
However, these 3D e↵ects are only relevant within a
narrow range near the transition temperature and add
fine features on the top of overall 2D behavior. Similar
scenarios are realized in several layered magnetic com-
pounds, such as K2CuF4

12,13 and Rb2CrCl414,15.
The appearance of the superconducting phase below

Tc = 36.8(6)K and a magnetic phase below Tm = 14.9K
are clearly revealed in the calorimetric data (for mea-
surement details please refer to Supplemental Material A
[16] and Refs. 17 and 18) obtained on zero-field cooling
from room temperature down to 2K, see Fig. 1. Whereas
the superconducting transition temperature is extracted
through an entropy conserving construction, see Fig. 1(f),
we determine the magnetic transition temperature from
the position of the specific-heat cusp, which does not
show signs of a first- or second-order phase transition.
This observation is in line with previously reported re-
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FIG. 1. Entropy change (C/T ) in single crystal RbEuFe4As4 and its dependence on the magnetic field strength when applied
along (a) and perpendicular (b) to the crystallographic c axis. The superconducting transition at Tc = 37K and the magnetic
transition at 15K are clearly visible in the zero-field calorimetric scan (c), as obtained from a room-temperature cool down.
The microscope image (d) shows the ac nanocalorimeter platform with a RbEuFe4As4 single crystal mounted at its center.
Following the evolution of the superconducting transition in an applied field, (e), allows to extract the phase diagram (f) and to
evaluate the superconducting anisotropy � = 1.8. The apparent discrepancy in the extrapolated Tc is within the experimental
uncertainty.

sults on polycrystalline CsEuFe4As47 and RbEuFe4As48,
and should be contrasted to results on EuFe2As2 which
show a singularity19–22. The variation of the specific
heat in the vicinity of the phase transition, the specific
heat can be expressed23 as C = a

±|t|�↵ + b(t). The
first term captures the critical behavior near t = 0 with
t = T/Tm � 1 the reduced temperature, a± the critical
amplitudes for t < 0 (�) and t > 0 (+), and ↵ the critical
exponent. The second term captures all regular contri-
butions (e.g. from phonons) and is typically modeled by
a linear form b(t) = b0+b1t in a small temperature range
around the transition. A non-divergent specific heat im-
plies ↵ < 0, and hence the constant b0 ⌘ C(Tm) assumes
the value of the specific heat at the transition tempera-
ture. For each branch t 7 0, we find a critical exponent
↵ ⇡ �1; a highly unusual value. For the critical ampli-
tudes we find a

+ = 18.5J/molK and a
� = 4.76J/molK

respectively, see fits in Fig. 2.

Contrary to earlier speculations8, we find that this
transition with non-singular behavior is consistent with
a Berezinskii-Kosterlitz-Thouless transition of the Eu2+

magnetic moments weakly influenced by 3D e↵ects. A
uniaxial anisotropy forces the moments to orient within
the crystallographic ab plane, e↵ectively reducing the mo-
ment’s degrees of freedom to that of a 2D XY spin sys-
tem. A more detailed justification shall be given below.
The down-bending of the calorimetric data below ⇠ 10K
is attributed to the quantum nature of the high spin
Eu2+ moments24–26. In applied fields, the superconduct-
ing transition temperature is gradually suppressed; the
e↵ect is stronger, if the field is applied along the c axis.
The rate of Tc-suppression dTc/dH|ab = 0.14K/T and
dTc/dH|c = 0.25K/T, provides a uniaxial superconduct-

ing anisotropy of �=1.8, as shown in Fig. 1. These values
agree with complementary magnetization and transport
measurements26,27 on single crystal RbEuFe4As4. No in-
fluence on the step height �C/T or the phase boundary
from magnetism is detected in fields up to 9T. In high
fields, 0.4T < µ0H < 9T, the cusp of the magnetic tran-
sition evolves into a broad magnetic hump with its center
moving to higher temperatures. At the highest field (9T)
these magnetic fluctuations extend up to about 100K—
far above the superconducting transition—and provide a
natural explanation for the reported negative, normal-
state magneto-resistance26. We attribute this hump to
a field-induced polarization of the Eu2+ moments along
the field direction and their associated fluctuations.

For a more detailed analysis of the magnetic transition,
we performed low-field calorimetric scans in the vicinity
of Tm. Given the robust superconductivity (low dTc/dH)
and the clear separation of energy scales kBTm ⌧ kBTc,
the (low-)field changes in the calorimetric data can be
attributed to the magnetism. To accentuate these, we
have to subtract an overall background. However, sub-
tracting a phonon-type background turns out di�cult be-
cause of other (in particular superconducting) contribu-
tions. We therefore subtract the 9T specific heat data
(field along c axis). While the latter still contains mag-
netic and superconducting contributions, both are essen-
tially featureless in the temperature range of interest,
see Fig. 1. As shown in Fig. 2, for small applied fields
along the c axis, the specific-heat cusp at the magnetic
transition shifts to lower temperatures while broadening
slightly and a shoulder in the specific heat appears on
the high-temperature side. Defining the phase boundary
Tm(H) as the position of the cusp, see Fig. 3, a mean-field
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FIG. 2. specific heat subtracted by the 9T background curve around the magnetic transition upon applying fields from 0.02 to
0.3T out-of-plane (left) and in-plane (right). The sharp kink indicating the ordering of the Eu2+ moments in the plane while
the broad hump developing at higher temperatures shows the gradual magnetization of the sample parallel to the applied field.

fit provides the empiric law Tm(H) = Tm[1� (H/H0)2],
with µ0H0 ⇡ 0.93T. This suggests that at this field value
the planar anisotropy is overcome at all temperatures,
i.e. at zero temperature the magnetic moments fully
align with the field normal to the ab plane. A compara-
ble saturation field can be deduced from low-temperature
magnetization curves26. For in-plane fields, the position
of the cusp is almost field-independent, while its size is
readily suppressed (disappearing at 0.14T) and a pro-
nounced shoulder appears on the high-temperature side.
As discussed below, we attribute the cusp to a weak 3D
coupling between Eu layers. The appearance of the high-
temperature feature marks the onset of magnetic polar-
ization, as discussed above. This hump is not a sharp
phase boundary but should rather be understood as a
crossover from a paramagnetically disordered to an or-
dered state. Due to anisotropy e↵ects, this occurs more
rapidly for in-plane than for out-of-plane fields.

Further insight into the response of RbEuFe4As4 is
gained through a detailed study of a model spin sys-
tem describing the key features of this compound, im-
plemented using a Monte-Carlo28,29 algorithm, see Sup-
plemental Material B [16]. More specifically, we have in-
vestigated the magnetic and thermodynamic properties
of a two-dimensional square lattice of [Heisenberg-type,
O(3)] classical spins si governed by the Hamiltonian

H = � J

X

hi,ji

sisj +K

X

i

(2s2i,z � 1)� h

X

i

si. (1)

Here J defines the isotropic coupling between nearest-
neighbor spin pairs hi, ji, K introduces a uniaxial
anisotropy in spin space. The last term describes the
coupling to an external magnetic field h. Without lim-
iting the generality of the foregoing, we set |si|= 1. A
similar approach has been extensively used in the past to
explore the 2D XY model, see Refs. [30–34].

The simulated system is purely two-dimensional, and
hence neglects the coupling between neighboring Eu lay-
ers. This choice is motivated by the observation that the
parent non-superconducting compound EuFe2As2 dis-
plays small interlayer interactions compared to the in-
tralayer interactions. We expect the coupling between Eu
layers to be even weaker in RbEuFe4As4, as the separa-
tion between Eu layers doubled and two superconducting
layers are in between. The interlayer coupling becomes
relevant only at temperatures near the transition and for

12 14 16 18 20
0.0

0.5

1.0 Exp. Simul.
Hm
Hpol,c
Hpol,ab
H3D
mean field fit 

µ 0H
 [T

]

T [K]

3D effects

FIG. 3. Boundaries of the magnetic phase as obtained from
measured and simulated calorimetric data. The transition to
an ordered magnetic phase is shown by green symbols, and
agrees well with the empiric lawHm = H0(1�T/Tm)1/2, when
the field is applied along the c-axis. A broad hump in the
specific heat marks the cross-over to a field-driven polarized
state of Eu2+ moments and is shown for fields parallel (blue)
and normal (red) to the c axis.
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FIG. 4. Simulated specific heat of the anisotropic 2D Heisenberg spin system and its dependence on temperature for di↵erent
magnetic fields and their orientations; red (in-plane), blue (out-of-plane), black (zero-field). For all curves the 9T-background
data is subtracted [conversion to real units using Eq. (2)]. (a) shows the low-field features and their anisotropic response
near the magnetic transition. The specific heat at larger fields, and over a wider temperature range, is shown in (b). The
experimental signature of the superconducting transition near 37K, see inset, is not captured in the simulations.

small magnetic fields. In the Hamiltonian (1), the spin
anisotropy is modeled by a crystalline term / s

2
i,z. The

Eu2+ ions have a vanishing angular momentum (L = 0),
which excludes a crystalline anisotropy originating from
spin-orbit coupling. However, the coupling between the
Eu2+ moments and Fe d-electrons—the latter are known
to feature an easy-plane anisotropy35,36—naturally leads
to such a term, see Supplemental Material D [16]. Other
sources of anisotropy such as dipolar interactions, con-
sidered elsewhere37, are neglected. The anisotropic term
causes the system to fall into the universality class of
2D XY spin systems, where a BKT transition is known
to occur at a finite temperature Tm > 038. In contrast
to our model, an isotropic (in spin space) 3D Heisen-
berg model with anisotropic nearest neighbor coupling
(J in-plane vs. J 0 = �J between Eu layers) fails to cap-
ture an anisotropic susceptibility, while the isotropic (in
spin space) two-dimensional Heisenberg model does not
undergo a phase transition at finite temperatures39–42.

We investigate several response functions in this sys-
tem: the (direction-dependent) magnetic susceptibility
�↵(T ) (↵ = x, y, z), the specific heat C(T,h), the to-
tal magnetization S(T,h) =

P
i si, and the spin-spin

correlation function G(r) ⌘ hs(0)s(r)i. For convenience
we introduce the temperature scale T0 ⌘ J/kB. From
high-temperature simulations (typically T/T0 2 [4, 9]),
we fit the inverse magnetic susceptibility to a Curie-Weiss
law �

�1
↵ (T ) / T � ⇥C,↵ to extract the Curie tempera-

tures ⇥C,↵. A comparison between the measured and
the simulated susceptibility can be found in the Supple-
mental Material C3 [16]. Any non-zero value of K re-
sults in an anisotropy between the in-plane (⇥C,x) and
out-of-plane (⇥C,z) Curie temperature. By comparing
the anisotropy ratio ⇥C,x/⇥C,z with the reported26 value
1.075 for RbEuFe4As4 obtained from magnetization mea-

surements, we find an agreement for the specific value
K = 0.1J , where ⇥C,x = 1.20T0 and ⇥C,z = 1.12T0. All
further simulations are performed for this anisotropy pa-
rameter. The influence of the anisotropy parameter on
the shape of C(T ) dependence at h = 0 and the location
of the cusp is considered in the Supplemental Material
C4 [16].

In zero magnetic field, the simulated specific heat
shows a clear cusp at Tm/T0 = 0.7, a value that we iden-
tify with the transition temperature Tm = 14.9K of the
calorimetric experiment. It is known however, that the
true BKT transition temperature TBKT is slightly below
the specific heat cusp. The correlation function is ex-
pected to decay as a power law r

�1/4 at the transition,
providing a value TBKT=0.66T0, i.e., about 6% below the
cusp in the specific heat. At the same time, the correla-
tion function decays as G(r) / exp[�r/⇣(T )], with a cor-
relation lengths ln[⇣(T )] / (T � TBKT)�1/2 that diverges
upon approaching the transition from above. Evaluation
of ⇣(T ) and its singular behavior yields a consistent re-
sult, see Supplemental Material C2 [16].

At finite fields, the calorimetric and magnetic re-
sponses strongly depend on the field orientation. For
fields applied along the spin plane, the U(1) circular de-
generacy is lifted and no BKT transition occurs. The
system’s response follows a typical ferromagnetic behav-
ior (gradual magnetization upon cooling) reaching a fully
ordered state at lowest temperatures. The specific heat
gradually broadens and shifts to higher temperatures.
On the contrary, a field applied perpendicular to the spin
lattice preserves the U(1) rotational symmetry and the
BKT transition shifts to lower temperatures. Here the
magnetic field acts as an anisotropic term favoring the
spin orientation along the z axis, hence retarding the
transition to an in-plane spin orientation. The numeri-
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cal simulations are in excellent qualitative and quantita-
tive agreement with the experimental data, see Figs. 2
and 4. Additionally, the simulations reproduce the be-
havior of the magnetization and the susceptibility which
is discussed in the Supplemental Material C3 [16]. The
phase boundaries extracted from the simulation data
(converted to appropriate units) are shown in Fig. 3. The
green curve corresponds to the suppression of the BKT
transition due to a field normal to the spin plane. The
two other curves correspond to a crossover where mag-
netic moments are polarized along the field (blue, Hkc
and red, Hkab). The simulation result reproduces the
experimental data extremely well, with only minor devi-
ations for low fields along the ab plane. This di↵erence is
attributed to 3D-e↵ects close to the transition, that are
not accounted for in the simulations.

Having identified realistic values for the dimension-
less parameters T/T0 (from calorimetry) and K/J (from
high-temperature magnetization), we can rewrite the
model Hamiltonian in Eq. (1) in a dimensional form

Hreal = � J
X

hi,ji

mimj + 2K
X

i

m
2
i,z �HM , (2)

where a constant shift has been omitted. Here M =P
i mi denotes the total magnetization of the individual

constituents |mi| ⇡ 7µB, J = 0.6⇥ 10�23J/µ2
B (= 10K)

providing the relevant energy scale for the ferromagnetic
interactions (the anisotropy). It is useful to express the
simulated fields h in dimensional units via h ! µ0H =
4.53h[T].

The numerical results are backed up by a high-
temperature expansion of the model described by Eq. (1),
see Supplemental Material C1 [16]. Here the anisotropy
ratio in the Curie temperature takes the simple form

⇥C,x/⇥C,z = (1 +K/5J)/(1� 2K/5J) (3)

and yields the value 1.06 for K = 0.1J . This relation re-
iterates that for an easy-plane anisotropy K > 0 the ra-
tio of Curie temperatures ⇥C,x/⇥C,z is larger than unity,
whereas an easy-axis system (K < 0) has ⇥C,x/⇥C,z < 1.
Note that the sign of the anisotropy may change for
di↵erent Eu-containing compounds. We find that the
presumed ’high-temperature’ range T/T0 2 [4, 9] (corre-
sponding to 50�200K) is only captured properly when
the high-temperature expansion is taken to quartic order
in �H [the susceptibility is expanded to cubic order in
� = (kBT )�1]. This explains the noticeable discrepancy
between the ’exact’ values ⇥C,x/T0 = 4/3 + 4K/15J (=
1.36) and ⇥C,z/T0 = 4/3� 8K/15J (= 1.28) obtained in
the high-temperature limit and their numerical counter-
parts 1.20 and 1.12, see above.

We have assumed that the third dimension, perpendic-
ular to the easy-plane, plays a marginal role in the calori-
metric response of the magnetic order. A weak coupling
J
0 = �J (|�| ⌧ 1) between ferromagnetically ordered

Eu layers will add a fine structure on top of the leading
features. Very close to the transition, when the correla-
tion length ⇣(T ) reaches the in-plane length scale 1/

p
�

at the temperature38 T � Tm ⇠ Tm ln�2(1/�), the three-
dimensional e↵ects lead to full ordering of the system.
On general ground, these e↵ects should sharpen the spe-
cific heat cusp in close vicinity of the transition31,34. The
nature of this three-dimensional order depends on the in-
terlayer interactions: while a simple coupling J

0 between
neighboring layers results in a trivial ferro- (J 0

> 0) or A-
type antiferromagnet (J 0

< 0), more complicated helical,
and fan-like orders can be found if longer-range interac-
tions along z are considered43,44. In the latter cases there
is the typical in-plane magnetic field scale B3D = J

0
/|m|

aligning the moments in di↵erent layers in the same di-
rections and eliminating the magnetic transition.

In conclusion, we have investigated the magnetic tran-
sition in RbEuFe4As4 by specific heat measurements and
by Monte-Carlo simulations. The magnetic transition at
14.9K shifts to lower temperatures in fields along the c

axis. This is well reproduced by the simulations of the 2D
anisotropic Heisenberg system. This allows us to iden-
tify the ab plane as the magnetic easy plane and the
specific-heat curve indeed shows a dominant BKT char-
acter. A magnetic field normal to the Eu layers shifts the
magnetic transition to lower temperature. Applying the
field along the Eu planes lifts the rotational symmetry
required for a BKT transition. The latter is replaced by
a broad crossover from a paramagnetically disordered to
an field-ordered state. With a quantitative comparison
between our simulation and experimental data, we have
extracted the coupling constants J = 0.6 ⇥ 10�23J/µ2

B

and the anisotropy K = 0.1J . The extraction of the
phase boundary of the BKT transition and the crossover
lines for in- and out-of-plane fields further underline the
excellent agreement between experiment and simulations.

The unique feature of RbEuFe4As4 is that the mag-
netic transition takes place deep inside the supercon-
ducting phase. We expect that the superconductivity
has almost no influence on the intralayer exchange inter-
action between Eu moments and may only modify the
interlayer interactions. Therefore, the direct impact of
superconductivity on magnetism is likely to be minor.
The e↵ects caused by the opposite influence of mag-
netism on superconductivity are expected to be more
pronounced. The presence of the magnetic subsystem
with a large susceptibility drastically modifies the macro-
scopic magnetic response of the superconducting mate-
rial in the mixed state45. The source of the microscopic
interaction between the magnetic and superconducting
subsystems is an exchange coupling between the Eu mo-
ments and Cooper pairs. Even though this coupling is not
strong enough to completely destroy superconductivity,
like, e.g., in ErRh4B4

46, it may cause a noticeable sup-
pression of superconducting parameters at the magnetic
transition. Having established the nature of the robust
magnetic order, this work serves as a starting point for
further exploring the phenomena related to the influence
of magnetism on the superconducting state.
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