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Experiments on planar Josephson junction architectures have recently been shown to provide an
alternative way of creating topological superconductors hosting accessible Majorana modes. These
zero-energy modes can be found at the ends of a one-dimensional channel in the junction of a two-
dimensional electron gas (2DEG) proximitized by two spatially separated superconductors. The
channel, which is below the break between the superconductors, is not in direct contact with the
superconducting leads, so that proximity coupling is expected to be weaker and less well-controlled
than in the simple nanowire configuration widely discussed in the literature. This provides a strong
incentive for this paper which investigates the nature of proximitization in these Josephson junc-
tion architectures. At a microscopic level we demonstrate how and when it can lead to topological
phases. We do so by going beyond simple tunneling models through solving self-consistently the
Bogoliubov-de Gennes equations of a heterostructure multicomponent system involving two spa-
tially separated s-wave superconductors in contact with a normal Rashba spin-orbit-coupled 2DEG.
Importantly, within our self-consistent theory we present ways of maximizing the proximity-induced
superconducting gap by studying the effect of the Rashba spin-orbit coupling and chemical poten-
tial mismatch between the superconductor and 2DEG, and sample geometry on the gap. Finally,
we note (as in experiment) a Fulde-Ferrell-Larkin-Ovchinnikov phase is also found to appear in
the 2DEG channel, albeit under circumstances which are not ideal for topological superconducting
phase.

I. INTRODUCTION

There has been much excitement in the literature
over the possibility of observing one-dimensional (1D)
topological superconductivity which involves a single 1D
wire1,2 leading to accessible Majorana zero modes. Be-
cause of fluctuation effects in low dimensions, there can
be no intrinsic superconductivity so that the focus is on
proximitized superconductors. Studies of these wires and
their applications towards quantum computation have
led to a very extensive literature3–10. In a broad sense,
there are two general configurations for proximitized 1D
topological superconductors. These are associated with
“nanowires” in direct contact with superconducting hosts
as well as the recently proposed planar Josephson junc-
tion11,12. The latter contains a proximitized 1D channel
in the two-dimensional electron gas (2DEG) just below
the break between the two superconductors. This con-
figuration is less widely studied, but there is evidence
in form of zero-bias conductance peaks13–16, as in the
simple nanowires17–37, that topological superconductiv-
ity has been experimentally observed38,39.

Indeed, the planar junctions have a notable strength
relative to the nanowires. The phase difference be-
tween the two superconductors provides an alternative
knob (beyond the Zeeman field) to tune the system into
the topological phase11,12. In ideal (i.e., transparent)
systems, when the superconducting phase difference is
φ = π, the topological phase can be achieved for rather
small Zeeman fields. However, compared to the prox-
imitized nanowire, the planar Josephson junction archi-
tecture is associated with weaker and less well-controlled
proximitization, as the 1D channel in the junction is not
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FIG. 1. (a) Schematic diagram of a 2DEG in proximity with
two spatially separated superconducting leads which form a
Josephson junction. By tuning the strength of either the ap-
plied in-plane magnetic field B or the phase difference φ be-
tween the two superconductors, the system can be tuned into
the topological superconducting phase which hosts Majorana
zero modes (γ) at the end of the junction. (b) Schematic di-
agram of a nanowire proximitized by a superconductor. The
system becomes a topological superconductor, which hosts
Majorana zero modes (γ) at the end of the nanowire, when
the strength of the magnetic field B is above a certain critical
value.

in direct contact with the host superconductors.

This leads to the central goal of this paper which is
to quantify this somewhat indirect form of proximitiza-
tion and to optimize its effectiveness. We focus on a
well-studied substrate: the 2DEG which has moderately
strong Rashba spin-orbit coupling (SOC). Our calcula-
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tions go beyond the simple tunneling models40–44 of the
proximity effect by solving the full Bogoliubov-de Gennes
(BdG) equations of a multicomponent system with self
consistency45. In our full proximity model, the host
superconductors are treated as a participating compo-
nent rather than as a passive source of Cooper pairing.
The effectiveness of proximitization is quantified via the
strength of the induced pairing amplitude, ∆prox. Max-
imizing this pairing amplitude is the goal as it is asso-
ciated with a large gap in the dispersion. This, in turn,
leads to more localized and thus more stable Majorana
modes. In this paper we characterize the deleterious ef-
fects on ∆prox which can come from any of the following:
SOC, enhanced substrate thickness, enhanced channel
width, and chemical potential differences (between the
host superconductors and the 2DEG). Importantly, our
findings which are obtained using a fully self-consistent
theory, can provide guidance in determining the optimal
range of experimental parameters for the topological pro-
tection of Majorana modes.

While not essential to the topological superconductiv-
ity, a relevant complement to these studies relates to
a very elusive state of matter, the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO)46,47 phase which we also observe
in these planar junctions. This appears to be consis-
tent with recent experiments which have reported that
this otherwise rare phase of superconductivity is realized
in proximitized superconductors 48,49. For the situation
here, it can be viewed as arising from a “second-order
proximitization” process. We trace its origin to the fact
that the channel makes little direct contact with the su-
perconductors, unlike the rest of the proximitized 2DEG.
Thus, in this region of the junction, the pairing ampli-
tude is reduced and the effective small pairing gap is freer
to oscillate in response to an applied Zeeman field. We
finally note that this FFLO phase is most apparent in
relatively wide junctions where the gap is smaller and it
is thus unfavorable for stabilizing a topological phase.

The two generic types of proximitized 1D topological
superconductors are illustrated in Fig. 1. The Majorana
zero-modes (indicated by γ) appear at the ends of the
junction where they are most easily manipulated. In
structures as shown in Fig. 1(a), the substrate is a Rashba
spin-orbit-coupled 2DEG. Figure 1(b) shows a more suc-
cessful variant of these hybrid structures which involve
semiconducting nanowires (although chains of magnetic
atoms50–56 and topological insulators57–59 have also been
considered).

One should appreciate that were one to design topo-
logical superconductors without proximitization, say by
doping a topological insulator60,61, there is less control
in engineering the appropriate combination of SOC, Zee-
man field and band structure in the presence of suffi-
ciently strong pairing attraction. The existence of these
intrinsic topological superconductors is still controver-
sial62 so that, currently, proximity-induced superconduc-
tivity appears to be an essential tool. And because it is so
essential it is imperative to understand it better, not just

in the immediate interface, which has been studied42–44,
but well into the depth of a hypothesized topological su-
perconductor63,64.

A. Overview and Outline

It is useful to quantitatively characterize the
Josephson-junction based topological superconductors
we consider here in terms of the size of the energy gap,
Egap, associated with the proximitized 2DEG. The quan-
tity Egap depends on the junction geometry and mate-
rials parameters. It varies with the junction thickness,
the strip width, the SOC and chemical potential differ-
ence between the host superconductors and the 2DEG.
Equally important is its dependence on the external pa-
rameters which control topological phases: the Joseph-
son junction phase difference φ and the Zeeman field EZ .
This field enters in two different ways; it affects the gap
opening and closing processes associated with topological
phase transitions in a Josephson junction. It also affects
the coupling at each separate interface between the host
superconductor and the 2DEG substrate. Increasing EZ
in the 2DEG inhibits proximitization.

It is convenient, then, to isolate these processes by
writing

Egap ≡ ∆prox|(EZ=φ=0) f(EZ , φ). (1)

This states that the energy gap in the presence of Zee-
man and superconducting phase difference, Egap depends
directly on a proximity-induced gap ∆prox, (which is de-
duced in the absence of any Zeeman field, EZ or phase
bias φ) times a multiplicative function, f(EZ , φ), which
represents (dominantly) the topological characteristics of
the junction.

In the topological region, the parameter Egap is, thus,
a crucial parameter, as its inverse characterizes the Ma-
jorana localization length. The smaller this length, the
more localized are the Majorana modes. The localization
of the Majoranas is, then, optimized when the proximity
gap ∆prox is maximal. Understanding this is one of the
central contributions of our paper.

We now present a brief outline. Section II of the paper
discusses the theoretical model, i.e., the Hamiltonian of
the planar Josephson junction. In Sec III, we give a dis-
cussion of the self-consistent BdG approach used to solve
for the energy dispersion and proximity-induced gap. In
Sec. IV we study a simple tunneling model of the su-
perconducting proximity effect in which the junction is
converted to a lower dimension by integrating out the
host superconductors. Section V focuses on numerical re-
sults from our full-proximity model for the proximity gap
∆prox where ∆prox is the spectral gap calculated for junc-
tions in the absence of Zeeman field and superconducting
phase difference. Here we separately discuss the role of
SOC, chemical potential mismatch and 2DEG thickness
on ∆prox. The symmetry class of the planar Josephson
junction is addressed in Sec. VI. In Sec. VII we present
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the topological phase diagram as a function of in-plane
Zeeman field and superconducting phase bias for differ-
ent chemical potential mismatch. We further show the
evolution of the energy spectrum across the topological
phase transition. Sec. VIII presents a brief discussion of
how FFLO superconducting phase is established, in the
presence of an in-plane Zeeman field along the junction.
More details of this elusive FFLO phase are presented in
an appendix A. Finally, we summarize our conclusions in
Sec. IX.

II. THEORETICAL MODEL

We consider a Josephson junction made from a Rashba
spin-orbit-coupled 2DEG in contact with two spatially
separated superconductors and subjected to an in-plane
magnetic field along the junction as shown in Fig. 1(a).
This system was proposed recently11,12 as a new platform
to realize topological superconductors. In this setup, the
transition between the trivial and topological phases can
be tuned by varying either the applied in-plane magnetic
field B along the junction or the phase difference φ be-
tween the two superconductors. In an ideal situation,
the interplay between these two independent knobs en-
ables a lower critical field for the topological transition to
be achieved when the superconducting phase difference
is tuned near φ = π. This Zeeman- and phase-tunable
topological transition was demonstrated in recent exper-
iments carried out by two independent groups38,39.

A. Hamiltonian

We begin by writing down the “normal” component (in
the absence of superconducting pairing) of the Hamilto-
nian as

H =

∫
d3r

∑
σσ′

ψ†σ(r)

[(
P 2

2m∗
− µ(r)

)
σ0 + EZ(r)σx

+ α (r) (Pxσy − Pyσx)]ψσ′ (r) ,
(2)

where ψσ (ψ†σ) is the annihilation (creation) operator of
an electron with spin σ =↑, ↓. In Eq. (2), σ0 is the iden-
tity matrix and σ ≡ (σx, σy, σz) are the Pauli matrices
acting on the spin degree of freedom. Here, P represents
the real space momentum operator, m∗ is the effective
electron mass, µ is the chemical potential. The chemical
potentials are taken to be

µ(r) =


µS for W/2 < |y| < WSC +W/2

and D2DEG < z < D2DEG +DSC,

µ2DEG for |y| < WSC +W/2

and 0 < z < D2DEG,

(3)
where µS and µ2DEG are the chemical potentials of the
superconductor, and 2DEG, respectively. Throughout

this paper, we work in units where ~ = 1, µ2DEG = 1,
and 2m∗ = 1 which gives the Fermi momentum of the
2DEG, kF = 1. The widths of the superconductors and
the junction (along y direction) are denoted by WSC and
W , respectively [see Fig. 1 (a)]. In this paper we con-
sider the width of the superconducting leads WSC > ξ,
where ξ is the superconducting coherence length. We fur-
ther denote the thicknesses of the superconductors and
the 2DEG by DSC and D2DEG, respectively. Note that
for numerical simplicity, we introduce an insulator in be-
tween the superconductors with the same thickness as the
superconductor above the 2DEG. Its chemical potential
is taken to be very negative (µI = −5), so that it behaves
essentially as a vacuum.

The Zeeman energy EZ(r) = g̃(r)µBB/2 is due to the
applied in-plane magnetic field B along the junction (x
direction) with g̃ being the Lande g-factor and µB being
the Bohr magneton. Except when indicated otherwise,
the Zeeman energy EZ(r) is assumed to be zero in the
host superconductor and insulator but taken to be con-
stant throughout the 2DEG (EZ,L = EZ,J = EZ , where
EZ,L is the Zeeman energy of the 2DEG directly below
the superconducting leads and EZ,J is the Zeeman energy
of the 2DEG in the junction). We justify this assumption
by noting that the Lande-g factor for the superconductor
(g ∼ 2 for Al) is much smaller than the Lande-g factor
for the semiconductor (g ∼ 15 for InAs)65–67.

An important parameter which appears throughout
this paper is α which characterizes the strength of the
SOC in the 2DEG. The SOC strength is zero in the su-
perconductors and insulator but finite in the 2DEG, i.e.,

α(r) =

{
0 for D2DEG < z < D2DEG +DSC,

α for 0 < z < D2DEG.
(4)

This is a realistic representation68,69 of the well-studied
situation of a spin-orbit-coupled semiconductor proximi-
tized by an s-wave superconductor.

So far we have described a non-interacting system.
Now, let us include the superconducting pairing term in
the Hamiltonian, which is given by∑

σσ′

(iσy)σσ′∆(r)ψ†σ(r)ψ†σ′(r) + H.c. (5)

We assume that the system is translationally invari-
ant along the x direction and finite in both y and
z directions. Because the system is translation-
ally invariant along the x direction, we can write
the Hamiltonian in the Nambu basis Ψkx(y, z) =[
ψkx↑(y, z), ψkx↓(y, z), ψ

†
kx↓(y, z),−ψ

†
kx↑(y, z)

]T
as

H =
1

2

∫
dkx

∫
dz

∫
dyΨ†kx(y, z)Hkx(y, z)Ψkx(y, z),

(6)
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where the BdG Hamiltonian is given by

Hkx(y, z) =
[
k2
x − ∂2

y − ∂2
z − µ(y, z)

]
τz

+ α(z)(kxσy + i∂yσx)τz + EZ(y, z)σx

+ ∆(y, z)τ+ + ∆∗(y, z)τ−, (7)

Here the Pauli matrices σ and τ act in the spin and
particle-hole subspace, respectively, with τ± = (τx ±
iτy)/2. The superconducting pairing potential, ∆(y, z),
arises microscopically from the attractive interactions
which are only present in the host superconductors:

∆(y, z) ≡ g(y, z)F (y, z), (8)

where g(y, z) is the coupling function within the parent
superconductors:

g(y, z) =



g0e
−iφ/2 for −(WSC +W/2) < y < −W/2

and D2DEG < z < D2DEG +DSC,

g0e
iφ/2 for W/2 < y < WSC +W/2

and D2DEG < z < D2DEG +DSC,

0 otherwise.

(9)
Here, g0 is the attractive coupling constant, φ is
the phase difference between the two superconduc-
tors. Applying a Bogoliubov transformation, ψkxσ =∑
n

[
unkxσγn + v∗nkxσγ

†
n

]
70,71 where γn(γ†n) is Bogoli-

ubov quasiparticle annihilation (creation) operator at an
energy En, we then obtain the pair amplitude

F (y, z) = 〈ψ↑(y, z)ψ↓(y, z)〉

=

∫
dkx

∑
En<ωD

[
unkx↑v

∗
nkx↓ − unkx↓v∗nkx↑

]
× tanh

(
En
2T

)
, (10)

with T being the temperature. The Debye frequency
ωD provides an energy cutoff in Eq. (10). Note that,
through the proximity effect, the pair amplitude F (y, z)
in the 2DEG is non-zero even though there is a van-
ishing order parameter, ∆ = 0, reflecting the fact that
g(y, z) = 0 there. The superconducting pairing poten-
tial ∆(y, z) is obtained by solving the BdG Hamiltonian
self-consistently as explained in the next subsection.

III. SELF-CONSISTENT BdG EQUATION

We obtain the pair amplitude F (y, z) [Eq. (10)] by
numerically solving the BdG eigenvalue problem follow-
ing the scheme developed in Refs.70–73. The scheme is
based on the idea of diagonalizing the BdG Hamiltonian
[Eq. (7)]. The resulting BdG equation reads

Hkx(y, z)Φnkx(y, z) = EnΦnkx(y, z) (11)

where the wave function is given by

Φnkx(y, z) =

 unkx↑(y, z)
unkx↓(y, z)
vnkx↓(y, z)
−vnkx↑(y, z)

 , (12)

with the boundary condition Φnkx(y, z) = 0 at |y| >
WSC + W/2, z < 0 and z > D2DEG + DSC and subject
to the self-consistency equation [Eqs. (8)- (10)]. To this
end, we expand both the matrix elements and the eigen-
functions in terms of a Fourier basis. Specifically, the
quasi-particle (unkxσ) and quasi-hole (vnkxσ) wavefunc-
tions are given by

unkxσ(y, z) =
2√
LyLz

∑
pq

upqnkxσ sin

(
pπy

Ly

)
sin

(
qπz

Lz

)
,

(13a)

vnkxσ(y, z) =
2√
LyLz

∑
pq

vpqnkxσ sin

(
pπy

Ly

)
sin

(
qπz

Lz

)
.

(13b)

For definiteness, we set the smallest length scale to be
of the order of 1/kF where kF =

√
µ2DEG is the Fermi

momentum of the 2DEG.
General matrix elements are similarly expanded in

terms of the same Fourier series. For example, we de-
fine the matrix elements of an operator O to be

Opqp
′q′ ≡ 〈pq|O|p′q′〉

=
4

LyLz

∫ Ly

0

∫ Lz

0

dydz sin

(
pπy

Ly

)
sin

(
qπz

Lz

)
×O sin

(
p′πy

Ly

)
sin

(
q′πz

Lz

)
. (14)

In this way all terms in the BdG Hamiltonian can be
expanded in this basis set. What we have accomplished
in this procedure is to successfully transform a set of
differential equations into an algebraic matrix eigenvalue
problem.

Having recast the Hamiltonian in the basis given in
Eq. (13), we then solve for the pair amplitude using
Eqs. (8)-(10) from the wavefunction [Eq. (12)] obtained
by diagonalizing the Hamiltonian [Eq. (11)]. The calcu-
lated pair amplitude is then used to get a new wavefunc-
tion . This self-consistent procedure is carried out repeat-
edly until convergence is reached. The first iteration gen-
erally contains the central physics. Because of the numer-
ical complexity of the full-proximity model and the many
parameter sets we address, in many plots we restrict our-
selves to the first iteration; in a few such cases we have
confirmed that higher iterations introduce changes in the
solution of only a few percent. Throughout this paper,
the pair amplitude F (y, z) is calculated by setting the
parent superconductor pair potential, ∆0 = 0.3, Debye
frequency ωD = 0.5 and temperature T = 0 in Eq. (10).
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IV. TUNNELING APPROXIMATION TO
PROXIMITIZATION

The above, more powerful procedure has not been
widely applied; rather the literature focus has been on an
approximate treatment of proximitization. The approxi-
mate approach builds on earlier work by McMillan40,41,
who introduced a perturbative treatment of a tunneling
Hamiltonian for a single NS junction which consists of
a normal metal in proximity to a superconductor. This
treatment was later extended by Refs.42–44 to deal with a
spin-orbit-coupled electron gas or a topological insulator
in proximity with a superconductor. In this section we
use N and S to represent the 2DEG and superconductor,
respectively; both are considered to be sufficiently thin
so that any spatial variations within each can be ignored.
The Hamiltonian for the SC/2DEG heterostructure can
be written as

H = HS +HN +HT . (15)

Here, HS,N is the Hamiltonian of the superconductor (S)
and 2DEG (N), respectively and the tunneling Hamilto-
nian is given by

HT =
∑

k‖,k⊥,σ

t(c†S,(k‖,k⊥),σcN,k‖,σ) + h.c., (16)

where cS/N,k,σ is the annihilation operator in the S or
N side of the interface for an electron with momentum
k and spin σ = ↑ / ↓ . This tunnel Hamiltonian HT con-
serves momentum k‖ parallel to the NS interface and
but changes the transverse momentum k⊥ perpendicular
to the interface.

In this approach one derives the proximity-induced su-
perconductivity by integrating out the superconducting
term in Eq. (15) and calculating the surface self-energy
due to the electron tunneling between the 2DEG and su-
perconductor.

Assuming that the density of states to be weakly de-
pendent on energy, the surface self-energy can be calcu-
lated to be42,74

ΣN (ω) = |t|2ν(εFN
)

∫
dεGS(ε, ω)

= −|t|2ν(εFN
)

[
ωτ0 + ∆0τx√

∆2
S − ω2

+ ζNτz

]
, (17)

where the density of states ν(εFN
) is evaluated at the

Fermi energy of the 2DEG and ζN is the proximity-
induced shift in the chemical potential of the 2DEG.
We can now incorporate this self-energy into the Green’s
function of the 2DEG, where we have

GN (k, ω) =
ZΓN

ω − ZΓN
HN − (1− ZΓN

)∆Sτx
. (18)

Here

ZΓN
(ω) =

(
1 +

ΓN√
∆2
S − ω2

)−1

(19)

is the reduced quasiparticle weight due to the virtual
propagation of electrons in the superconductor with
ΓN = |t|2ν(εF,N ) being the effective coupling between
the 2DEG and superconductor. This quasiparticle weight
can be viewed as the fraction of time that a propagating
electron spends on the superconducting side of the NS
interface. The proximity-induced superconducting pair-
ing potential in the 2DEG is then given by

∆N = (1− ZΓN
)∆S . (20)

Having solved for ∆N , we now solve for the renormalized
superconducting pairing potential in the superconductor.
Similar to Eq. (17), the self-energy of the superconductor
due to electron tunneling from the 2DEG is given by

ΣS(ω) = −|t|2ν(εFS
)

[
ωτ0 + ∆Nτx√

∆2
N − ω2

+ ζSτz

]
. (21)

Substituting this into the Green’s function of the super-
conductor, we have

GS(k, ω) =
ZΓS

ω − ZΓS
HN − [ZΓS

∆0 + (1− ZΓS
)∆N ]τx

,

(22)

where

ZΓS
(ω) =

(
1 +

ΓS√
∆2
N − ω2

)−1

. (23)

Thus, the renormalized superconducting pairing poten-
tial in the superconductor is given by

∆S = ZΓS
∆0 + (1− ZΓS

)∆N , (24)

where ∆0 is the gap of an isolated superconductor. Note
that the subscript N,S in the above equations refer to
the quantities in the 2DEG (N) and superconductor
(S), respectively. The coupled gap equations [Eqs. (20)
and (24)] reflect the fact that proximitization is a two-
way process. This leads to a pairing gap in a normal
material and at the same time it renormalizes the exci-
tation gap in the host superconductor.

A. Relation to the standard effective model

In the literature it is rather common to ignore the cor-
rections in the host superconductor and assume ∆S = ∆0

but we will see in the full proximitization theory that
this is not generally the case. Also important is that in
the more general situation, all pair amplitude parameters
vary continuously across the system.

With this simplification, the above analysis is the basis
for the so-called “effective model” which is described as
having integrated out the host superconductor. In the



6

effective model, the Hamiltonian of the 2DEG is given
by11,12

Hkx =
(
k2
x − ∂2

y − ∂2
z − µ

)
τz + α(kxσy + i∂yσx)τz

+ EZ(y)σx + ∆(y)τ+ + ∆∗(y)τ−,
(25)

where ∆ is the proximity-induced pairing potential in
the 2DEG which is obtained after integrating out the
superconductors. This is given by

∆(y) =


∆proxe−iφ/2 for −(WSC +W/2) < y < −W/2,
0 for −W/2 < y < W/2,

∆proxeiφ/2 for W/2 < y < WSC +W/2,

(26)
where ∆prox is chosen phenomenologically.

V. UNDERSTANDING THE
PROXIMITY-INDUCED GAP ∆prox

We turn now to numerical results for ∆prox obtained
from our full proximitization studies. Although we be-
gin with the limit of zero magnetic field, it is useful, to
understand how the magnetic field affects the separate
proximitization processes at each of the two interfaces
between the 2DEG and the host superconductor. To do
this we compare two kinds of Josephson junction configu-
ration: the first junction has the Zeeman field confined to
the channel in the 2DEG between the two superconduc-
tors [Figs. 2(a) and 2(c)] and the second junction has the
field applied uniformly in the 2DEG substrate [Figs. 2(b)
and 2(d)], as in experiments.

The upper panels in Fig. 2 present contour plots of
the pair amplitudes and the lower plots show the energy
dispersions. One can see that a magnetic field below the
superconductors has very little effect back on the parent
superconductors but, as expected, it does decrease the
pair amplitude and energy gap in the 2DEG. Fortunately
with the planar Josephson junction design, we can tune
the phase difference towards π where the critical field
for the transition into the topological phase is smaller
such that there is still a substantial gap present when
the system is in the topological phase.

In the remainder of this section, we will address how
to optimize the proximity gap ∆prox at EZ = φ = 0.
By dropping the Zeeman field and junction phase bias,
we are establishing how to select materials as well as
geometric parameters.

A. Effects of variable spin-orbit coupling and
chemical potential mismatch

Since SOC plays an important role, it should be noted
that there is no consensus in the literature about how
SOC interacts with proximitization. It has been argued
that larger SOC is beneficial44. We find here, that in
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(c) EZ,J = 0.16, EZ,L = 0
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(d) EZ,J = EZ,L = 0.17

FIG. 2. Profile of pair amplitudes (Top panel) and energy
spectra (Bottom panel) of the planar Josephson junction
for the case: (Left panel) Zeeman is only in the junction
(EZ,J = 0.17 and EZ,L = 0) and (Right panel) Zeeman is uni-
form across the 2DEG (EZ,J = EZ,L = 0.17). Note that the
presence of the Zeeman field in the 2DEG below the supercon-
ductor (EZ,L) reduces the induced pair amplitude and prox-
imity gap in the 2DEG [panel (b) and (d)]. The black dashed
lines in top panel denote the boundaries between the super-
conductors and the 2DEG. The parameters used are µS = 1,
µ2DEG = 1, α = 0.05, ∆0 = 0.3 [ξ = vF /(π∆0) = 2.12], φ = 0,
WSC = 20/kF , W = 6/kF , DSC = 10/kF and D2DEG = 4/kF .

the absence of a magnetic field, the effects of SOC on
the proximity-induced gap are strongly tied to size of
the chemical potential difference between the supercon-
ductors and the 2DEG. This can be understood in large
part because of a mismatch in the Fermi momenta of the
bands in the superconductors with that of the spin-orbit-
coupled 2DEG.

This mismatch is illustrated in Fig. 3. Here the left
panel (a) shows the superposed normal-state dispersions
for the case where the superconductor and spin-orbit-
coupled 2DEG have the same chemical potential and the
right panel (b) is for the case where the chemical poten-
tial in the superconductor is much larger than that in the
2DEG, as is more often the case. The principal conclu-
sion from panel (a) is that there are many bands in 2DEG
which have little Fermi momentum overlap (because of
the shift due to SOC in the 2DEG) with bands in the
superconductors; one can anticipate that this mismatch
increases as SOC becomes larger. This is in contrast to
panel (b) where all bands in the 2DEG have their Fermi
momenta close to those in the superconductor. Here the
deleterious effects of SOC on the proximity-induced gap
will be less apparent.
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kx

E
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(b) µS � µ2DEG + α2(a) µS = µ2DEG

E

SC

2DEG

SC

2DEG

FIG. 3. Understanding effects of chemical potential mismatch
on proximitization. Energy spectra of the normal part of the
Hamiltonian of the superconductor (SC) and 2DEG for the
case where (a) µS = µ2DEG and (b) µS � µ2DEG+α2. For the
case where (a) µS = µ2DEG, the mismatch between the Fermi
momenta of the SC and 2DEG gets larger for increasing SOC
strength α while for the case where (b) µS � µ2DEG +α2, the
mismatch between the Fermi momenta of the SC and 2DEG
is weakly dependent on the SOC strength α. In summary, the
dependence of the proximity gap ∆prox on α is weaker for the
case where the SC chemical potential is much larger than the
2DEG chemical potential.

We summarize this by noting that the dependence of
the proximitized gap on the SOC strength is weaker for
the case where the superconductor chemical potential is
larger than the 2DEG chemical potential. This is be-
cause a superconductor with a larger chemical potential
has more occupied subbands. As a result, for an incident
electron coming from the 2DEG with transverse momen-
tum normal to the NS interface, there is an electron from
one of the subbands in the superconductor with momen-
tum which is close to matching the incident momentum
of the electron from the 2DEG.

A mismatch in the Fermi velocity of the electron in
the superconductor and 2DEG increases the amplitude of
the normal reflections while decreasing that of Andreev
reflections. Since the superconductivity in the 2DEG is
proximity-induced via Andreev reflection processes at the
interface75,76, the mismatch in turn reduces the strength
of the proximity-induced gap.

These physical effects are illustrated more directly in
Fig. 4. As shown in the top panel for the case where µS =
µ2DEG, the Fermi momentum mismatch between the su-
perconductors and 2DEG increases as the SOC strength
increases in the 2DEG which in turns reduces the prox-
imity gap. The effect of the SOC on the proximity gap
is less pronounced for the case where µS � µ2DEG. This
is shown in the lower panel of Fig. 4. In summary, for a
weaker dependence of the proximity-induced gap on the
SOC, the chemical potential of the superconductor has
to be much larger than that of the 2DEG.

But this raises another important issue. While a sub-
stantial mismatch in chemical potentials helps to negate
the SOC effects on the proximitization, there is a neg-
ative side to making the chemical potential mismatch
(δµ = µS − µ2DEG) too large. To make this clear, we
can compare Fig. 4(a) and Fig. 4(d) which represent an
extreme example of zero SOC in the 2DEG. Here one can
see that the larger is the chemical potential difference
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(d) α = 0.0, δµ = 9
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(e) α = 0.2, δµ = 9
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(f) α = 0.5, δµ = 9

FIG. 4. Effects of SOC on the spectral gap for the case where
there is no magnetic field. Top panel: For small chemical po-
tential mismatch, e.g., δµ = µS−µ2DEG = 0, the gap depends
strongly on the 2DEG SOC. The gap decreases with increas-
ing SOC strength as shown in panels (a)-(c) because there is a
larger mismatch between the Fermi momentum of the super-
conductor and Rashba spin-orbit-coupled 2DEG as the SOC
strength increases. Bottom panel: For large chemical poten-
tial mismatch, e.g., δµ = µS − µ2DEG = 9, the gap depends
weakly on the 2DEG SOC [see panels (d)-(f)] as there are
more occupied subbands in superconductors with large µS .
This implies that for an incident electron coming from the
one of the band of the 2DEG, there is a band in the super-
conductor with a momentum close to the incident momentum.
The parameters used are µ2DEG = 1, EZ,J = EZ,L = 0, ∆0

= 0.3, φ = 0, WSC = 20/kF , W = 6/kF , DSC = 10/kF and
D2DEG = 4/kF .

the smaller the effective pairing gap. This is because the
chemical potential mismatch increases the Fermi velocity
mismatch between the 2DEG and the superconductors
resulting in a decrease in the NS interface transparency.77

We will refer back to these competing effects involving δµ
and the SOC strength, α, in a summary figure (Fig. 7)
below, but we here emphasize the subtle tradeoffs which
must be considered to optimize the outcome.

B. Effects of variable channel width and variable
junction thickness

Figure 5 illustrates a striking effect of increasing the
width of the quasi 1D channel of the junction in the
2DEG. The pairing gap is greatly suppressed as the chan-
nel becomes wider. This is relatively easy to understand,
as proximitization strength (arising from the leaking of
Cooper pairs from the superconductors to 2DEG) decays
with increasing distance from the superconductors which
results in a smaller superconducting gap for a wider junc-
tion between the two superconductors. We illustrate this
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FIG. 5. Energy spectra of planar Josephson junctions for
different junction widths: (a) W = 6/kF , (b) W = 30/kF , and
(c) W = 80/kF . The spectral gap decreases with increasing
junction width W . The parameters used are: µ2DEG = 1,
µS = 10, EZ,J = EZ,L = 0, ∆0 = 0.3 [ξ = vF /(π∆0) =
2.12/kF ], φ = 0, WSC = 20/kF , DSC = 10/kF and D2DEG =
4/kF .
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FIG. 6. Thickness effects. Profile of pair amplitude (Top
panel) and energy spectra (Bottom panel) of planar Joseph-
son junctions for zero Zeeman field and different thickness of
2DEG: D2DEG = 4/kF (Left panel), D2DEG = 8/kF (Mid-
dle panel) and D2DEG = 11/kF (Right panel). Note that the
thicker the 2DEG is, the smaller is the induced superconduct-
ing gap in the 2DEG. The black dashed lines in the top panel
denote the boundaries between the superconductors and the
2DEG. The parameters used are µS = 1, µ2DEG = 1, α =
0.05, EZ,J = EZ,L = 0, ∆0 = 0.3 [ξ = vF /(π∆0) = 2.12/kF ],
φ = 0, WSC = 20/kF , W = 6/kF , DSC = 10/kF .

case in part because this wide channel situation is more
favorable for observing the FFLO phase discussed in Sec-
tion VIII.

Figure 6 addresses the effect of varying the thickness
of the 2DEG on the proximity gap, illustrating another
effect associated with geometry. Shown here are plots
of the pair amplitude (upper panel) and energy spec-
tra (lower panel) of the Josephson junction. It can be
seen from the plots that the pair amplitude and spec-

tral gap decrease with increasing thickness of the 2DEG.
There are contrary suggestions in the literature74,78 that
these thicker substrates could be favorable as they allow
“multi-channel participation.” As shown here, though,
thicker junctions lead to smaller proximity gaps since
they require that the superconducting correlations ex-
tend over a greater distance deeper into the 2DEG. We,
thus, conclude that as Majorana zero modes are pro-
tected by large proximity-induced gaps, thinner 2DEGs
are more favorable to be used as platforms for topological
quantum computation.

Figure 7 presents a summary of how ∆prox is affected
by geometry and materials parameters. This figure shows
how increasing (a) the thickness, (b) the chemical poten-
tial difference and (c) the SOC strength affect the prox-
imity gap (at zero Zeeman field and zero phase differ-
ence). Clearly making both the thickness and the channel
width larger has deleterious effects. However, as shown
in Fig. 7(b) and Fig. 7(c), the effects of SOC are strongly
connected to the magnitude of the chemical potential dif-
ference (δµ = µS − µ2DEG)79. As shown in Fig. 7(b),
when there is any finite SOC, there is a notable non-
monotonicity in plots of ∆prox versus δµ. The initial
rise in ∆prox with δµ for a fixed α is due to the match-
ing of the band structure of the superconductor with the
Rashba-derived band structure in the 2DEG. However,
once the chemical potential difference is sufficiently large,
as might be expected, increasing it further has a negative
effect on the proximity gap due to the mismatch in the
Fermi momenta between the superconductors and 2DEG,
as illustrated in Fig. 3. There seems to be a “sweet spot”
around δµ ≈ 10 which is substantially below the more
realistic physical regime (where δµ might approach 100
or larger). Fig. 7(c) shows that the effects of SOC on
the proximity gap ∆prox becomes weaker as δµ increases,
as discussed in Sec. V A. Overall this figure should help
guide materials parameters and geometries80.

VI. SYMMETRY CLASS

It is useful to look at the underlying symmetries which
dictate the nature of the topological phases. The above
BdG Hamiltonian [Eq. (7)] for the planar Josephson junc-
tion commutes with the particle-hole symmetry operator
P = σyτyK where K is the complex conjugation. For
zero Zeeman field EZ = 0 and a superconducting phase
bias φ = 0 or φ = π, the Hamiltonian belongs to the
symmetry class DIII in the tenfold classification81–83 as
it also commutes with the time-reversal symmetry opera-
tor T = −iσyK (where T 2 = −1). Moreover, the system
also has a mirror symmetry along the x-z plane with the
mirror operator given by My = −σy × (y → −y).

The T and My symmetries are broken when an in-
plane Zeeman field is applied along the junction (x di-
rection) or for a phase bias other than φ = 0 or φ = π.
The Hamiltonian, however, remains invariant under an

anti-unitary “effective” time-reversal operator T̃ which
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FIG. 7. Summary figure showing how ∆prox depends on 2DEG thickness, δµ and SOC. (a) Induced gap ∆prox/∆0 as a function
of the 2DEG thickness D2DEG for SOC strength α = 0.05 and µS = µ2DEG = 1. The induced gap decreases with increasing
2DEG thickness. (b) Induced gap ∆prox/∆0 as a function of chemical potential difference (δµ = µS − µ2DEG) calculated for
µ2DEG = 1, D2DEG = 4/kF and several values of SOC strength α. For small α, the induced gap decreases with increasing
δµ. For large α, the induced gap has nonmonotonic dependences on δµ where it first increases with increasing δµ, rises to
a maximum, and after reaching the maximum it decreases with increasing δµ. (c) Induced gap ∆prox/∆0 as a function of
SOC strength α for D2DEG = 4/kF and different values of δµ. For small δµ, the induced gap depends strongly on α where it
decreases with increasing α. For the case where µS is much bigger than µ2DEG, the induced gap depends weakly on α. The
parameters used for the above plots are WSC = 20/kF, W = 6/kF, DSC = 10/kF, EZ,J = EZ,L = 0, ∆0 = 0.3, and µ2DEG = 1.

is the product of the T and My operators, i.e., T̃ =
MyT = iK × (y → −y) where T 2 = 1. Thus the sys-
tem has the BDI symmetry11,12. Moreover, since the

Hamiltonian possesses T̃ and P symmetries, it also has
a chiral symmetry, where the Hamiltonian anticommutes

with the chirality operator C = −iPT̃ = Myτy. When

the T̃ symmetry is broken, the symmetry class is reduced
from class BDI to class D. In this case, an even number
of Majorana zero modes at the same end of the junction
couples to each other and splits into finite-energy mode
leaving either zero or one Majorana mode at each end
of the junction. This BDI symmetry can be broken by
disorder84, applying a transverse Zeeman field perpen-
dicular to the junction (along y direction)85 or having
left and right superconductors with different widths or
pairing potentials11,12,85.

The symmetry class BDI is characterized by a Z topo-
logical invariant QZ where |QZ| denotes the number of
Majorana zero modes at each end of the junctions. On
the other hand, the symmetry class D is characterized by
a Z2 topological invariant QZ2 which denotes the parity
of the QZ invariant.

VII. TOPOLOGICAL PHASE DIAGRAM AND
TRANSITION

We obtain the phase diagram of the system by cal-
culating the topological invariant following Ref.86. The
numerical computation is considerably more complicated
in the presence of our full treatment of proximitization.
To do so, we first diagonalize the chiral operator C with
1 and −1 in the upper-left and lower-right block, re-
spectively. Since {C,H} = 0, in this basis where the C is
block-diagonal, the BdG HamiltonianHkx is off-diagonal,

i.e.,

UCU† =

(
1 0
0 −1

)
, (27a)

UHkxU† =

(
0 A(kx)

AT (−kx) 0

)
. (27b)

We can calculate the Z topological invariant (QZ)
from the winding of the phase θ(kx) of the determi-
nant of the off-diagonal part A(kx) where eiθ(kx) =
detA(kx)/|detA(kx)|. The Z topological invariant is
given by

QZ =

∫ ∞
0

dkx
π

dθ(kx)

dkx
, (28)

and the Z2 topological invariant (the parity of QZ) is
given by

QZ2 = (−1)QZ . (29)

It is shown in Ref.86 that Eq. (29) is simply the Z2 Pfaf-
fian invariant of 1D systems87, i.e.,

QZ2
= sgn

Pf[(Hkx→∞)σyτy]

Pf[(Hkx=0)σyτy]
. (30)

Figures 8 and 9 present the phase diagrams of the pla-
nar Josephson junction obtained from the full proximity
calculations. These phase diagrams emphasize the novel
feature of the Josephson junction architecture which en-
ables the topological phase to be tuned either by changing
the phase bias or the Zeeman field.

Figure 8 shows the class BDI and class D phase di-
agrams for the same junction. Each phase in the BDI
phase diagram [Fig. 8(a)] is labeled by a different Z topo-
logical invariant (QZ) where |QZ| denotes the number of
Majorana zero modes located at each end of the junction.
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FIG. 8. Topological phase diagram for a proximitized Joseph-
son junction with vanishing chemical potential mismatch
δµ = 0. (a) Class BDI and (b) Class D phase diagrams as
functions of EZ and φ. Each region is labeled by different Z
topological invariants in the BDI phase diagram. The Z2 in-
variant gives the parity of the Z index. The topological invari-
ant QZ2 = −1 and QZ2 = 1 corresponds to the odd and even
Z indices which in turn indicates the topological and trivial
phases of class D. The parameters used are µS = µ2DEG = 1,
α = 0.05, ∆0 = 0.3, WSC = 20/kF , W = 6/kF , DSC = 10/kF
and D2DEG = 4/kF .
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FIG. 9. Comparison of topological phase diagrams (a) with-
out (µS = 1, µ2DEG = 1) and (b) with chemical potential
mismatch (µS = 20, µ2DEG = 1). Class D phase diagrams
for two different values of chemical potential differences be-
tween the superconductors and the 2DEG: (a) µS = 1 and
µ2DEG = 1 and (b) µS = 20 and µ2DEG = 1. The Z2 in-
variant QZ2 = -1 and QZ2 = 1 indicate the topological and
trivial phases of class D. The chemical potential of the 2DEG
is renormalized by the chemical potential of the superconduc-
tors resulting in a difference between the effective chemical
potential of the 2DEG below the superconductor and that of
the 2DEG in the junction. This difference increases as the
mismatch between the superconductor and 2DEG chemical
potential becomes larger which in turn increases the ampli-
tude of normal reflections in the 2DEG. As a result, for a
larger chemical potential mismatch, the phase diagram be-
comes more stripe-like (less dependent on φ) and the critical
Zeeman field for φ = π shifts to a larger value. The parame-
ters used are µ2DEG = 1, α = 0.05, ∆0 = 0.3, WSC = 20/kF ,
W = 6/kF , DSC = 10/kF and D2DEG = 4/kF .

As can be seen from Fig. 8(a), the Z = 1 topological re-
gion occupies most of the phase diagram as it occurs in
a wide range of parameters. The topological transition
between each of the BDI phases is indicated by a gap
closing at kx = kF . The class D phase diagram, on the

other hand, [Fig. 8(b)] shows the parity of the Z topo-
logical invariant [Eq. (29)] where QZ2

= 1 and QZ2
= −1

corresponds to the trivial and topological phases of class
D, respectively. The topological transition between the
QZ2 = 1 and QZ2 = −1 regions is signified in a gap clos-
ing at kx = 087 (see Sec. VII A).

The bulk-boundary correspondence implies that the
change in the topological index from QZ2

= 1 to QZ2
=

−1 and a bulk gap closing at kx = 0 corresponds to the
appearance of a Majorana zero mode at the end of a
finite-length junction. Importantly, the edge states that
appear in a finite-length junction of our model are Majo-
rana zero modes and not Andreev bound states. Clearly,
Andreev bound states do not involve a change of topo-
logical index (from trivial to topological) and are also not
accompanied by bulk gap closings.

Figure 9 shows the effect of chemical potential mis-
match (δµ = µSC − µ2DEG) on the phase dependence of
the class D phase diagram. For ideal or “transparent”
Josephson junctions, the phase diagram has a diamond
shape where the critical Zeeman field at which the topo-
logical phase transition happens is considerably smaller
for φ = π than for φ = 0 [see Fig. 9(a)]. We observe that,
with a larger value for δµ, the phase diagram appears to
be more stripe like as in Fig. 9(b). Here, the dependence
of the phase diagram on the superconducting phase dif-
ference φ becomes weaker and the critical Zeeman field
for φ = π shifts to a larger value.

We understand this stripe-like phase diagram as deriv-
ing from an increasing mismatch between the chemical
potential of the superconductor and the 2DEG. This, in
turn, should be viewed as leading to an increase in the
strength of the normal reflections in the 2DEG. Due to
the proximity to the superconductor, the chemical po-
tential of the 2DEG directly in contact with the super-
conductor will be renormalized by that of the supercon-
ductor. As a result, there is a difference between the
effective chemical potential of the 2DEG directly below
the superconductor with the effective chemical potential
of the 2DEG in the junction. This effectively creates a
potential barrier for the electrons which in turn increases
the strength of normal reflections.

We conclude this section by noting that under ideal
circumstances (i.e., for transparent junctions with small
δµ), the critical Zeeman field needed to tune the system
to topological phases can be greatly reduced for a phase
bias φ = π. One can infer from Fig. 9(b), that when δµ
assumes a substantial (and physically reasonable) value,
this gain in reduction of the critical Zeeman field by tun-
ing the phase φ to be near π is mostly lost88. We note
that similar to the effect of δµ, decreasing the width of
the superconducting leads also makes the phase diagram
becomes less dependent on the phase bias due to the en-
hancement of multiple normal reflections at the interface
between the superconductors and the vacuum85.
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FIG. 10. Evolution of the energy spectrum of a planar Joseph-
son junction across the topological phase transition for φ = 0
(upper panel) and φ = π (lower panel). The topological tran-
sition is characterized by a gap closing at kx = 0 where the
critical field at which the topological transition occurs is the
smallest at φ = π. The critical field for φ = 0 and φ = π
are EZ = 0.11 [panel (b)] and EZ = 0.0053 [panel (e)], re-
spectively. Energy spectra shown correspond to the phase
diagram of Fig. 8. The gap closes and reopens at kx = 0 as
the Zeeman field EZ is respectively tuned towards and away
from the critical field. (a,d) The system is in the trivial phase,
(b,e) the system undergoes a topological phase transition with
a gap closing at kx = 0, (c,f) the system is in the topolog-
ical phase. Shown here are only few low-energy states close
to zero energy where the energy levels closest to zero energy
are shown by red lines. Here, we take the Zeeman field to be
uniform (EZ,J = EZ,L = EZ) in the 2DEG. The parameters
used are µS = 1, µ2DEG = 1, ∆0 = 0.3, α = 0.05, WSC =
20/kF , W = 6/kF , DSC = 10/kF and D2DEG = 4/kF .

A. Energy dispersion across the topological phase
transition

The topological phase transition of class D is associ-
ated with a gap closing at kx = 087. As can be seen from
the phase diagram [Fig. 9(a)], for a transparent junction
the critical Zeeman field at which the transition happens
is much smaller when the superconducting phase differ-
ence φ is near π. As a complement to this phase diagram,
we address the energy spectrum of the system as a func-
tion of kx across the phase transition.

Figure 10 shows the evolution of the energy spectrum
of a planar Josephson junction as the Zeeman field is
tuned across the topological phase transition for two dif-
ferent values of superconducting phase differences: φ = 0
(upper panel) and φ = π (lower panel). At a particular
value of critical field EZ , the gap at kx = 0 closes [panels
(b) and (e)] which reflects the transition between triv-
ial and topological phases. The critical Zeeman field is
reduced as φ→ π.

We summarize this section by noting that despite the
more indirect form of proximitization associated with this
Josephson junction architecture, as compared with the
nanowires of Fig. 1(b), we have presented strong evidence
that proximitized topological phases exist. This topo-
logical superconductivity occurs even when there are no
direct attractive interactions in the 2DEG channel. Nev-
ertheless, in this Josephson junction configuration the
proximity coupling guarantees that there is a finite pair
amplitude within the channel.

VIII. PROXIMITY-INDUCED FFLO PHASE

An exotic superconducting state, characterized by non-
zero center-of-mass momentum of Cooper pairs and spa-
tially varying order parameter, may occur for certain ma-
terials in the presence of both in-plane magnetic field and
superconductivity. Interestingly, the planar junctions
discussed here are associated with this exotic form of su-
perconductivity, referred to as the Fulde-Ferrell-Larkin-
Ovchinikov (FFLO) phase46,47. Indeed, it is hard to find
examples where this elusive phase, deriving from mag-
netic field effects, has been observed 49 which does not
originate from proximity coupling. Experiments based
on this Josephson junction architecture48 report that the
FFLO phase appears to be confined within the 1D chan-
nel of the junction. One might have expected it to be
present in some form throughout the 2DEG since mag-
netic fields and proximity coupling are present outside
the channel as well. Due to the close proximity to the
parent superconductor the induced gap there, however, is
stronger and is not energetically favorable to oscillate in
response to an applied in-plane Zeeman field. The chan-
nel in the junction, on the other hand, is well away from
the host superconductors and thus has greatly weakened
pair amplitude with superconducting phases which are
freer to oscillate.

The upper panel of Fig. 11 presents a contour plot of
the pair amplitude F (r) throughout the junction. We
point out that the junctions considered here are very
wide. They correspond to the widest case shown in
Fig. 5(c) where the proximity gap is extremely small.
This weak proximity gap is not favorable to topologi-
cal superconductivity. But, this figure should make it
clear, however, that even though the channel is wide, the
existence of a FFLO phase demonstrates that the chan-
nel should be viewed as a proximitized superconductor,
rather than as a strictly “normal” region. Shown in three
panels are the pair amplitudes for three different values of
SOC strength. The lower panel of Fig. 11 presents line-
cuts of this pair amplitude along the y direction at differ-
ent values of z. As can be seen from the figure, the oscil-
lations of the pair amplitude are confined to the 2DEG
channel; this oscillation can manifest as the oscillation in
the critical current as a function of an in-plane Zeeman
field as observed in recent experiments48. The frequency
of these oscillations scales appropriately with both the
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FIG. 11. Evidence for FFLO pairing. Profile of real part
of the pair amplitude of planar Josephson junctions with 2D
Rashba SOC of different strength: α = 0 (Left panel), α = 0.3
(Middle panel) and α = 0.5 (Right panel). Upper panel shows
the color plots of the pair amplitude Re[F/∆0], and the lower
panel is the linecuts of the pair amplitude along the y direc-
tion at different values of z. As shown in the bottom panel,
the pair amplitude oscillates along the y direction with a char-
acteristic oscillation length λ = EZ/(2vF ) that decreases with
increasing α as vF ∝ α. The black dashed lines in the up-
per panel denote the boundary between the superconductors
and the 2DEG. The parameters used are µS = 1, µ2DEG = 1,
EZ,J = EZ,L = 0.3, ∆0 = 0.3, φ = 0, WSC = 20/kF , W =
80/kF , DSC = 10/kF , D2DEG = 4/kF .

applied in-plane Zeeman field and the SOC strength.
In Appendix A we show that the FFLO state also

present for the case of 1D Rashba SOC. There we also
illustrate how the same behavior can be found in the
effective models where the superconducting hosts have
been “integrated out”.

In general, the amplitude of the FFLO oscillation de-
creases with increasing temperature89 as temperature
weakens FFLO pairing. Since the typical experimental
temperature (from 0.5 K down to 31 mK38) is well be-
low the superconducting critical temperature (Tc of an
Al film is 1.2-1.6 K38), the FFLO order should be ex-
perimentally observable, as reported in recent work on
Al-proximitized HgTe quantum wells48. We note that
since the proximitization strength decreases with increas-
ing junction width, the FFLO oscillation amplitude de-
cays towards the middle of the junction (away from the
superconductor). This implies that the FFLO phase of a
narrower junction is associated with a larger proximitized
gap in the middle of the junction.

The presence of nonmagnetic disorder will decrease the
amplitude and period of the FFLO oscillations. This is
because the associated scattering involves an averaging of
the effective magnitude of the magnetic field over all di-
rections (from a minimum value of 0 to a maximum value
of EZ), yielding a shorter oscillation period90. Magnetic
disorder, on the other hand, leads to a decrease in the

characteristic decay length and an increase in the period
of oscillations91,92.

IX. CONCLUSIONS

While heterostructures that involve proximitization
appear to be important for achieving topological super-
conductivity, the major components required to achieve
this phase are in many ways inimical to the proximitiza-
tion process. These involve Zeeman fields, spin-orbit cou-
pling which can lead to band-structure mismatches and
substantial chemical potential discontinuties between the
parent superconductors and the proximitized (often semi-
conducting) medium. Nevertheless, experiments 38,39

seem to be demonstrating success. Although theoreti-
cally we might expect this proximitization to be a rather
delicate and fragile process, nevertheless, we are able to
show that there are clear indications of well-established
topological superconductivity. The figures throughout
this paper illustrate this situation. We stress that in our
Josephson junction configuration the proximity is more
remote compared to that in the conventional nanowire
configuration of Fig. 1(b).

Because we have focused on the proximitization pro-
cess itself, in this paper we are were able to consider how
to maximize the proximity gap ∆prox both by varying ge-
ometry as well as materials parameters. This particular
parameter is understood to be computed in the absence of
Zeeman field or phase difference. It nevertheless sets the
scale for the energy gap in the topological phase, Egap,
and, thereby for the stability of Majorana zero modes.

Figure 7 presents a summary of our major findings.
One should aim for junctions with very thin 2DEG re-
gions and narrow channels between the host supercon-
ductors. Additionally, there is a delicate competition be-
tween the chemical potential differences of the 2DEG and
the superconductors (δµ), and the Rashba SOC strength.
While a larger δµ serves to compensate for deleterious
effects of SOC, it cannot be too big. Indeed, Fig. 9(b)
shows that one major knob of the Josephson junction
architecture (which is the ability to tune the phase dif-
ference to π and thereby require very small Zeeman fields
to access topological phases) is undermined if δµ is too
large.

Finally, by plotting the pair amplitude itself, we have
provided in this paper very direct evidence for the elusive
FFLO phase. It is not necessarily to be associated with
topological physics, but it has some of the same require-
ments. We show how the presence of Zeeman fields to-
gether with SOC and (remote) proximity effect stabilize
this state which exists entirely inside the 2DEG channel,
much as in recent experiments48.
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Appendix A: FFLO phases

We begin by studying the mechanism for the formation of the FFLO phases. In the absence of SOC, the Fermi
surfaces of up and down-spins always form concentric circles as shown in Fig. A.1(a). For zero Zeeman fields, the
superconducting pairing occurs between electrons carrying opposite spin with opposite momentum (k ↑ and −k ↓)
on the Fermi surface where the Cooper pair has a zero center of mass momentum. If an in-plane magnetic field is
applied to a system with no SOC, the Zeeman field enlarges and shrinks the Fermi surfaces radially in momentum
by EZ/vF for the up and down spins, respectively, while keeping the two Fermi surfaces concentric. The pairing now
occurs between the up- and down-spin electrons with different Fermi momenta, i.e., k + q/2 and −k + q/2 where
q = 2EZ/vF , so that the Cooper pairs have a net center of mass momentum of q. When the applied in-plane Zeeman
field is sufficiently strong, spatial symmetry needs to be broken in order to lower the ground state energy which results
in the FFLO state. However, because of the Pauli depairing, this FFLO state only survives in a narrow parameter
regime. This depairing effect in strong Zeeman fields can be mitigated by using the SOC, which allows both singlet
and triplet pairings, since the triplet pairing is not sensitive to the depairing effect.

In the presence of Rashba SOC, the Hamiltonian of a 2DEG without a Zeeman field [Eq. (7)] is invariant when the
spin and momentum are rotated simultaneously in the x-y plane, i.e.,(

−k′y
k′x

)
= R

(
−ky
kx

)
,

(
σ′x
σ′y

)
= R

(
σx
σy

)
, (A.1)

where

R =

(
cos θ sin θ
− sin θ cos θ

)
(A.2)

is the rotation operator in the x-y plane.
Note that the Hamiltonian still respects this rotational symmetry even in the presence of an out-of-plane Zeeman

field (along z direction). However, the application of an in-plane Zeeman field EZ along the junction i.e., along the
x direction, breaks this rotational symmetry. The energy spectrum of the electron in the presence of the in-plane
Zeeman field EZ is given by

E = k2
x + k2

y − µ+
α2

4
±
√
α2k2

x + (EZ − αky)2. (A.3)

which breaks the rotational symmetry.
In the limit where EZ � αkF � µ, the two Fermi surfaces are shifted in the direction perpendicular to the Zeeman

field direction (along ky) by q = 2EZ/vF as shown in Fig. A.1(b). The pairing in this case occurs between up and down
spins belonging to the same Fermi surface resulting also in Cooper pairs having a net momentum of q. Thus the wave
function of the Cooper pair can be written as cos(qy)|S〉+ sin(qy)|T 〉, where |S〉 = |↑↓〉 − |↓↑〉 and |T 〉 = |↑↓〉+ |↓↑〉
are the singlet and triplet pairing wave functions, respectively. So, the presence of SOC stabilizes the FFLO phase
as the SOC lifts the spin-degeneracy and shifts the Fermi surface in such a way that the resulting Cooper pair has a
finite center of momentum93,94.
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FIG. A.1. The change of Fermi surfaces of a 2DEG due to an in-plane magnetic field B along the junction (x direction) for
the case of (a) zero SOC and (b) finite SOC strength. The Fermi surfaces in the absence and presence of B are represented
by light and dark colors, respectively. (a) In the absence of a Zeeman field, the Fermi surfaces of a 2DEG without SOC are
doubly degenerate. When an in-plane Zeeman field is applied, the Fermi surfaces of the up- and down-spins enlarge and shrink
radially in momentum by EZ/vF while keeping the two Fermi surfaces concentric. The superconducting term ∆ pairs up
electrons with opposite spin from different Fermi surfaces. (b) The 2D Rashba SOC causes a clockwise and anticlockwise spin
orientation (represented by red and blue arrows, respectively). The applied in-plane Zeeman field along x-direction shifts the
inner and outer Fermi surfaces in the opposite direction along ky by EZ/vF . The superconductivity term ∆ pairs up electrons
with opposite spin from the same Fermi surface.
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FIG. A.2. Evidence for FFLO. Profile of real part of the pair amplitude of a planar Josephson junction with a 1D Rashba
SOC (α∂yσx) of different strengths: α = 0 (Left panel), α = 0.3 (Middle panel) and α = 0.5 (Right panel). Upper panel shows
the color plots of the pair amplitude Re[F0/∆0] and lower panel shows the linecuts of the pair amplitude along the y direction
at different values of z. As shown in the lower panel, the pair amplitude oscillates along the y-direction with a characteristic
oscillation length λ = EZ/(2vF ) that decreases with increasing α as vF ∝ α. The black dashed lines in the upper panel denote
the boundaries between the superconductors and the 2DEG. The parameters used are µS = 1, µ2DEG = 1, EZ,J = EZ,L = 0.2,
∆0 = 0.3, φ = 0, WSC = 20/kF , W = 80/kF , DSC = 10/kF , D2DEG = 4/kF .
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FIG. A.3. Evidence for FFLO. Profile of real part of the pair amplitude for the effective model of a planar Josephson junction
[Eq. (25) of the main text]. The pair amplitudes are calculated for a 2D Rashba SOC of different strengths: α = 0 (Left panel),
α = 0.5 (Middle panel) and α = 0.8 (Right panel). Upper panel shows the color plots of the pair amplitude Re[F0/∆0], and
lower panel shows the linecuts of the pair amplitude along the y direction at different values of z. As shown in the lower panel,
the pair amplitude oscillates along the y-direction with a characteristic oscillation length λ = EZ/(2vF ) that decreases with
increasing α as vF ∝ α. The parameters used are µS = 1, µ2DEG = 1, EZ,J = EZ,L = 0.3, ∆0 = 0.3, φ = 0, WSC = 20/kF , W
= 80/kF , D2DEG = 4/kF .

In the main text we have shown how the FFLO phase appears in a proximitized junction in the presence of an
in-plane Zeeman field and a conventional (2D) Rashba SOC. In this appendix we show that our findings are quite
robust, appearing also for a 1D Rashba SOC as well as in the effective model. We self-consistently solve the BdG
equations to obtain the pair amplitude [as given by Eq. (10) of the main text]:

F (y, z) =

∫
dkx

∑
En<ωD

[
unkx↑v

∗
nkx↓ − unkx↓v∗nkx↑

]
tanh

(
En
2T

)
. (A.4)

Figure A.2 shows the pair amplitude F (y, z) for a 2DEG with a 1D Rashba spin-orbit-coupling α∂yσx. The pair
amplitudes are calculated for different SOC strengths. As for the case of 2D Rashba spin-orbit-coupled electron gas,
here we also find an oscillation of the pair amplitude within the junction channel and with the oscillation length scale
given by λ = EZ/(2vF ) which increases with increasing Zeeman field EZ and decreases with increasing α as vF ∝ α.
This is indicative of the FFLO phases formed in the presence of an applied in-plane magnetic field along the junction.
We note that the Hamiltonian of a 2DEG with a 1D Rashba SOC can be mapped by a gauge transformation into
the Hamiltonian of a conical Holmium magnet (Ref.73) or coupled nanowires (Ref.95) which are also platforms for
topological superconductors.

Finally, Fig. A.3 shows the pair amplitude F (y, z) for the effective model [Eq. (25)] of a planar Josephson junction
with a 2D Rashba SOC. As shown in the figure, in the presence of an in-plane magnetic field, the pair amplitude F (r)
oscillates inside the junction channel with an oscillation length which decreases with increasing SOC strength. Again,
the oscillation is consistent with the formation of an FFLO phase in the presence of an in-plane magnetic field.
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