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The chiral magnet CrNbsSe with its solitonic objects has novel magnetic and transport properties,
in which the spin-orbit coupling (SOC) plays a central role. Aiming to address the possible existence
of orbital moments driven by SOC, we perform soft x-ray magnetic circular dichroism spectroscopy
at the Cr Lo 3 edges with in-plane magnetization. The dichroic signals provide direct experimental
evidence that the Cr orbital magnetic moment is not quenched and is coupled antiparallel to the
spin counterpart. Application of the orbital sum rule reveals that the magnitude of the Cr orbital

moment is about 1 % of the total magnetization.

These findings are consistent with the first-

principles electronic structure calculations that utilize the Cr 2p core radial function to define the
Cr local 3d quantities. The distinct roles of the atomic SOC among the Cr 3d and Nb 4d states are

discussed.

PACS numbers:

I. INTRODUCTION

The monoaxial chiral helimagnet CrNbsSg has at-
tracted intensive interest with regard to its solitonic spin
texture. The Dzyaloshinskii-Moriya (DM) interaction!:?,
driven by the spin-orbit coupling (SOC) and crystalline
chirality, leads to intriguing phenomena. The magnetic
ground state is a long-wavelength spiral order of Cr
spins: magnetic moments, aligned ferromagnetically in
the hexagonal ab plane, form a magnetic helix along the ¢
axis with the handedness imprinted by the crystal chiral-
ity. Applying a relatively small magnetic field H perpen-
dicular to the ¢ axis drastically changes the magnetic con-
figuration from a homogeneous spiral to the soliton kink
structure — termed the chiral soliton lattice (CSL)*™ —
and eventually to the forced ferromagnetic (FM) state at
a critical magnetic field H, of a few kOe%. Negative mag-
netoresistance has been observed in the CSL phase”?®.

In CrNb3Sg, Cr atoms intercalate in the layered par-
ent 2H,-NbS, compound forming a planar /3 x v/3 super
structure (see Fig. 1(a)). The stacking sequence along the
¢ axis — whether the Cr atoms occupy 2d or 2¢ Wyckoff
sites in the Sohncke®'? space group P6322 — determines
the crystalline chirality. Nb atoms split into two groups,
those preserving their ideal positions (2a site) and those
with their z coordinates slightly deviating from 0 or 1/2
(4f site), as shown in Table I. Each Cr has six nearest-
neighbor sulfurs and two Nb (4f) atoms at distances of
2.35 and 3.06 A, respectively (see Figs. 1(a,b))!. In this

cluster unit CrSg-Nby the local symmetry around Cr is
approximately Ds3q and the Cr 3d orbitals show an en-
ergy splitting to,—ej +ayg as in Fig. 1(c). (Although the
actual site symmetry is D3, we will use this notation to
be consistent with previous work.) Here ay, is a 322 —y2
orbital aligned along the ¢ axis toward Nb (4f) atoms.
A localized picture with electron configuration (t24)% [or
(e})*(a14)'] with a nominal valency Cr®* is often consid-
ered since it provides a local moment S=3/2 consistent
with the observed magnetic moment ~3 ug [2.9 ug®, 3.2
p'?].

Provided that the SOC is weak compared to other in-
teractions (e.g., crystalline field, orbital hybridization,
and exchange interaction), the DM interaction arises
from a combined second-order perturbation of the SOC
and (twisted) exchange interaction, and thus the DM is
linear in SOC. On the other hand, magnetocrystalline
anisotropy (MCA) and unquenched orbital magnetic mo-
ments arise from SOC alone. In CrNbsSg, although the
MCA has been known to be easy-plane typeS, the orbital
magnetic moment has never been measured experimen-
tally. Indeed, the magnetic ordering temperature T; of
CrNbsSg was evaluated to be approximately 130 K611:13,
Recently, the interplane exchange interaction along the
chiral ¢ axis (J| /kg = 16.2 K), the DM interaction (D/kg
= 1.29 K), and the easy-plane anisotropy (Kperp/kp =
1.02 K) have been evaluated from the ESR experiment!4,
showing fair agreement with the estimated values from
the magnetization curve'®. It is expected that analyzing
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FIG. 1: (a) Crystal structure of CrNbzSe. The host NbSa
forms a two-dimensional triangular layer with S-Nb-S stacking
sequence of (B-A-B) (C-A-C) (B-A-B) ---. There are two Cr
atoms per unit cell (shown by red spheres), which occupy the
2d site. Nb atoms at a 4f site are drawn by dark green. (b)
Top view of CrSe cluster with definition of planar axes. (c)
Crystalline field splitting of Cr 3d level.

these quantities will reveal how the SOC manifests itself
in CrNbsSg and further would provide a clue to under-
stand the microscopic origin of the DM interaction.

Here we report x-ray magnetic circular dichroism
(XMCD) measurements at the Cr Lo 3 edges (2p—3d
photoabsorption) in the forced FM state with the exter-
nal field perpendicular to the ¢ axis. Utilizing the Cr 2p
core state, which is highly localized around the nucleus,
as a local probe, the XMCD measurement provides direct
information about the Cr local spin and orbital magnetic
moments induced in the Cr 3d shell. It is found that
the 3d orbital moment is small but finite and is coupled
antiparallel to the spin counterpart, consistent with the
density functional theory (DFT) calculations that we re-
port here.

Both in the experimental and theoretical studies we
carry out, quantitative determination of the Cr 3d spin
and orbital moments is, however, not straightforward.
The so-called XMCD spin sum rule'® is not directly ap-
plicable to the present case: Cr is a light transition-metal
atom and its 2p core spin-orbit splitting (~ 8 e€V) is not
large enough to prevent quantum mechanical mixing be-
tween the 2ps /o and 2p; /5 excitations (j-j mixing) caused
by the 2p-3d Coulomb interaction in the photoabsorption
final states'”. Thus the fundamental assumption behind
the spin sum rule — that the L3 and Lo edges are well sep-
arated in energy and identified as pure 2p3/, and 2p, /o
excitations respectively — is violated to a considerable
extent. We examine a correction method'® proposed by
Goering for the spin sum rule that uses the branching
ratio of the Ly to L3 edges in the x-ray absorption spec-
trum (XAS) for unpolarized light (i.e., 2/4 in the no mix-
ing case), but find it is unsuccessful in the present case.
Furthermore, the effective magnetic moment per mole of
Cr atoms calculated from the Curie constant is approxi-

TABLE 1. Structural parameters of CrNbsS¢ taken from
Ref. 11.

Space group #182, P6322, a=5.7134 A, ¢=12.0563 A

Element Wyckoff Internal position

Cr 2d (2/3, 1/3, 1/4)

Nb 2a (0,0,1/2)

Nb Af (1/3,2/3, 0.4962 )

S 12i (0.31836, -0.01252, 0.63263)

mately 4 pp [3.92 up®, 4.4 ugt?, 4.1-4.3 up'?). As for the
number of holes in the 3d shell (ny,), the nominal value
of ny = 7 is unreasonable, and we therefore use DFT
calculations to derive optimal ny, values.

On the other hand, the orbital sum rule?’, which does
not rely on a distinction between the Lz and Lo edges,
should be applicable to the present case. Our main focus
in the XMCD measurement is, therefore, the evaluation
of the Cr 3d orbital moment. Nevertheless, care is needed
in applying either of these sum rules since both are vul-
nerable to errors in the normalization and background
correction to the absorption intensity.

In the DF'T calculations, the information regarding the
spin and orbital moments is provided as a density distri-
bution calculated from a corresponding operator A and
band spinors ¥;(r), A(r) = >, wIsz which is a con-
tinuous function of r. The idea of atomic-like Cr local
moments is ill-defined since their values depend on the re-
gion used to integrate A(r). Furthermore, there is strong
hybridization of Cr 3d states with S 3p and Nb 4d states
that makes the separation of a Cr 3d shell ill-defined.
To cope with these difficulties, we resort to the fact that
the Cr Lo 3 XAS/XMCD measurements employ the Cr
2p core state as a local probe to detect the Cr 3d states,
and develop a method to define and calculate the Cr 3d
components in the DFT orbitals v;(r) through a projec-
tion on to the Cr 2p core wave functions, mimicking the
experimental situation.

The rest of this paper is organized as follows. In Sec-
tion II, the XAS/XMCD sum rules are reviewed, and
from there, the definition of Cr local 3d quantities used
in the DFT calculations is provided. Section III is de-
voted to describe experimental procedures. In Section
IV, XMCD results at the Cr L3 edges are provided,
and in Section V, the DFT results are shown. Section VI
provides concluding remarks.

II. 3d MOMENTS PROBED BY 2p CORE
STATES

Consider the electric-dipole (E1) transition from the
Cr 2p core to the Cr 3d valence shell. Assume that these
states are expressed by single normalized radial func-
tions, R; (i=2p, 3d), (R;|R;)=1, ignoring their energy
dependency. Starting from the Fermi golden rule for the
E1 transition and applying the Wigner-Eckart theorem,



it can be shown'62° that the integrated photo-excitation
spectra are related to the orbital and spin magnetic mo-
ments of the Cr 3d shell (mgp and mgpin in unit of pg):

/(M+ - M*)dw = % K Morb, (1)
/j+(u+ — p—)dw — 2 /j(/u —p-)dw = % K Mspin,  (2)
/(M+ + p— + po)dw = K ny, (3)

where py and p— denote absorption coefficients of cir-
cularly polarized x-rays that propagate along the mag-
netization direction with positive and negative helicities
(04 and o_), respectively, pg for x-rays linearly polarized
along the magnetization direction, and & is a normaliza-
tion constant. The E1 transition operator involved in
each py (¢ = +1,—1,0) is expressed as /47w/3 rY14(r),
with the z axis is taken along the magnetization direc-
tion. Equations (1) and (2) are sum rules regarding the
XMCD spectra, while (3) is for XAS with unpolarized
light. In the spin sum rule, Eq. (2), we omit for sim-
plicity the contribution from the spin magnetic dipole'6.
It is important to note that a further assumption — final
states are classified into pure j (2p3/2) and j_(2p; /) ex-
citations and the L3 and Ly edges are well separated in
energy — is involved in Eq. (2); the XMCD spectrum has
to be integrated separately at each edge. The common
proportionality constant s, which is experimentally un-
known, is given by a dipole radial matrix element squared

k= (Roplr| Rsa)®. (4)

By dividing (1) and (2) by (3), the constant x is elim-
inated from the expressions:

f(ﬂ+ — p—)dw _ lmorb
S+ pe 4 po)dw 2

; ()

S (e = p)dw =2 [ (py = p)dw 1 mgyy,
J (g + p— + o) dw

(6)

_3 Ny

which can be used to evaluate the individual mq,, and
Mespin (per hole). On the other hand, the ratio of me, to
Mgpin 18 found from the XMCD spectrum alone. Eq. (1)
divided by (2) yields

J (s — p)dw _3
Jilny = p)dw =2 [; (g4 = p-)dw 2 mepin

_ 3 Morb

(7)

and contains neither s nor ny.

The derivations of the sum rules explicitly assume that
the Cr 3d orbitals will contribute a total of 10 electrons
to the (occupied and unoccupied) bands, and that x pro-
vides the normalization needed to relate experiments and

theory. Equation (4) dictates that the XAS/XMCD mea-
surement employs a localized atomic function rRy, in
probing the Cr 3d states. The difficulty is in defining
the normalized 3d functions R34. To avoid this issue, we
propose to calculate the matrix elements coupling the 2p
core levels and the valance states 1);, similar to those that
actually occur in the Fermi golden rule

<TR2pY2,mXJ|7/}i> = <TR2p;m7 UWJZ >, (8)

where the projection onto the spherical harmonics Yy,
and spinor x, takes into account the dipole selection
rules, i.e., including the product of the core function and
the E1 operator. In the case that 1; depends only on
atomic-like Cr 3d orbitals, then (the square of) these ma-
trix elements are simply  as defined in Eq. (4). These
matrix elements, which are effectively projections of the
Cr 3d states onto the 2p cores, are well-defined since the
region of integration is naturally limited by the spatial
extent of the localized 2p core state, and are determined
by the (/=2) partial wave expansion of the valence wave
functions, which are also well defined. (The radial func-
tion Ry, corresponds to the p; /o or p3 s states as appro-
priate.)

To proceed, we first define a density matrix con-
structed from bands v; below an energy F

p(E) = ZQ(E — E3)[hi) (¥l s 9)

and a weighted density matrix
Nmo,mio (E) = (rRap;m, o|p(E)|rRep;m’,o’),  (10)

which includes the matrix elements, Eq. (8). The trace
of this density matrix gives the effective number, n(E),
of 3d electrons below an energy F, and is simply related
to the nominal number of 3d electrons, n®?(E), by

A(E) = &nBY(E). (11)

Again, if the simplified assumptions regarding Rz, are
satisfied, then x and Kk would be equivalent.

The final step is to provide a normalization of K. There
exists an energy E. (> EF) that separates the 3d and 4d
manifolds; this energy can be determined by inspecting
the local density of states and the nodal structure of the
radial wave functions (i.e., the 4d radial functions have
an additional radial node). By imposing the condition
that the 3d states contribute 10 electrons, n(3¥) (E,)=10,
we arrive at the following formula for the 3d density ma-
trix expressed solely in terms of 7 and thus is readily
calculated from the DFT orbitals,

10

nCER) = 5

A(Ep). (12)

3

The present DFT method to calculate 3d moments from
Eq. (12) is more in line with the XAS/XMCD experiment



than other computational schemes (e.g., the use of cer-
tain integration range for A(r) or use of maximally local-
ized Wannier functions®!); both the experiment and the
present theory rely on the localized radial function r Ry,
to extract the 3d contributions. Therefore, the ground-
state Mgpin and mep calculated using the present theory
should represent the experiments well as long as the sum
rule application on the experimental side is not deterio-
rated due to background removal errors and/or final-state
j-7 mixing.

III. EXPERIMENTAL PROCEDURES

Micron-size crystals typically 10x10x1 pm?3 were cut
from a bulk single crystal CrNb3Sg by using an FIB tech-
nique, and the thickness of the center was reduced down
to approximately 100 nm?2. These were mounted on a
Ta substrate with a 5 ym diameter pinhole using W, as
shown in Fig. 2. Since the Ta does not allow the x-rays
to pass, we obtain magnetic information only for the thin
part of the sample.

(a) Ta substrate (rear)

® X-ray

FIG. 2: (Color online) (a, b) Ta substrate (rear and
front panel) and (c) micro-processed CrNbsSg thin specimen
mounted in the rear panel of Ta substrate. In (c), the pin
hole size with the 5 pm diameter is displayed.

The XAS/XMCD spectroscopy was carried out using
beam line BL25SU of SPring-822. The photoabsorp-
tion spectra were obtained by directly measuring the
intensity of the transmitted light. The Ta substrate
with micro-processed specimen was placed on the sam-
ple holder specificated to the XMCD platform in contact
with indium foil to maintain sufficient thermal conduc-
tivity. The measurements were performed at 10 K, which
is sufficiently lower than 7, ~ 130 K. The magnetic field
H of £4 kOe, which by far exceeds H. ~ 2 kOe, was ap-
plied perpendicularly to the chiral axis (c-axis) to realize
a forced FM state with in-plane magnetization. The x-
ray beam was almost parallel to H. In order to minimize
possible artifacts caused by the asymmetry of experimen-
tal setups, we took an average of the spectra measured
at H = + 4 kOc; ju(+) = {0y, +H) + plo—, —H)} /2
and pu(—) = {plo—,+H)+p(o4,—H)}/2 were employed
in the present study. Note that u(+) and p(—) are the

spectra with photon spin parallel and antiparallel to the
magnetic field, respectively. In applying the sum rules,
we define the following four integrals:

Jtut) = - = (13)
[t + ut-aw = B. (14)
[ )~ u-pae = . (15)
[ ) = ut-naw = p. (16)

where A = C' + D. Approximating the integral of unpo-
larized XAS, [(p4+p—+po)dw =~ 2 [(py+p_)dw = 3B,
we rewrite Eqs. (5)-(7) as

A/GB) = e, (17)
(€ ~2D)/(3B) = é”;—h (18)
A/(C —2D) = g;:b (19)

In the next section, the values of A to D are estimated
and given in Table II.

The DFT calculations were performed assuming ferro-
magnetic spin configuration with the crystal structure!!
determined experimentally at ambient pressure (summa-
rized in Table I). The all-electron full-potential linearized
augmented plane wave (FLAPW) method?! as imple-
mented in the HILAPW code was used. The muffin-
tin sphere radius was set to 1.1 A for all atoms. The
plane wave cutoffs were 16 and 200 Ry for the wave func-
tion and potential, respectively. The Perdew, Burke, and
Ernzerhof form of the generalized gradient approximation
(GGA)? was used for exchange correlation. The Bril-
louin zone was sampled with a 20x20x20 k-point mesh.
The SOC was handled in two different ways: included in
each self-consistent cycle or only in the last cycle. Both
results were practically identical with regard to the mag-
netic moments and the MCA energy. The radial function
Ry, needed to calculate the Cr 3d quantities was ob-
tained from a scalar-relativistic calculation of Cr 2p core
state (i.e., no difference between 2ps,5 and 2p,,5) under
a spherical and spin-averaged part of the self-consistent
potential.
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FIG. 3: (Color online) Polarized XAS spectra of CrNbsSg at
10 K for H = + 4 kOe. p(+4) and pu(—) represent the XAS
with the photon spin parallel and antiparallel to the external
magnetic field, respectively. The MCD spectrum is defined as
w(+) — p(—). The Cr L3 and Lz edges produce XAS peaks
around 577 and 585 eV, respectively.

IV. XMCD RESULTS

Figure 3 shows the XAS spectra p(+) and pu(—) mea-
sured at 10 K, which are characterized by two-peak struc-
ture embedded in a broad almost linear background with
a negative slope. The peaks located around 577 and 585
eV are assigned to the Cr L and Lo edges, respectively.
For photon energies from 572 to 596 eV, the XMCD spec-
trum defined as p(+) — pu(—) shows characteristic signals.
The spectrum exhibits a dispersive lineshape at each of
the L3 and Ly edges: it starts with a sharp positive peak
followed by a negative hump. In the Lg region, the pos-
itive signals prevail over the negative ones. By contrast,
for the Ly edge, the negative signals in the hump domi-
nate over the positive signals of the precursor peak. The
alternating sign of the dominant XMCD signals from pos-
itive (at the Lg edge) to negative (L2) is consistent (based
on the transition probability from the 2p core state to the
empty states in the 3d shell) with the fact that the posi-
tive Mmepin (negative spin angular momentum) is induced
in the 3d shell in the ground state. (See Ref.2% and Ap-
pendix A.) Note that the positive peak in the Ly region
is much weakened compared to that in the Ls edge and
overlaps with the L3 negative hump.

Figure 4(a) shows the photon energy dependence of
w(+) + p(=). It has a background, which is constructed
with the combination of two linear-like terms and two
arctangent functions. As explained below, reasonable
consideration of background contributions enables us to
estimate B, so that we can estimate the denominator
in the sum rules Egs. (17) and (18), i.e., %B. At first,
we assume an almost linear background contribution
(black line in Fig. 4(a)), termed bkg.(1), so that the

residual spectra for < 568 eV and > 592 eV have con-
stant values as shown with the green data in Figs. 4(a)
and 4(b). Next, we consider a background component,
termed bkg.(2), consisting of two arctangent functions
centered at the edge jumps, as shown with purple data
in Fig. 4(b). The ratio of arctangent background for Lg
and that for Ly is assumed to be 5:3, so that it becomes
consistent with the intensity ratio of intrinsic Ls and Lo
photoabsorption (1.6:1.0). Removing all the background,
the residual spectra termed Y is shown in Fig. 4(b) by the
dark-green color. Its integral with respect to the energy,
shown with light-red in Fig. 4(b), yields B~10.514.
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FIG. 4: (Color online) (a) The spectra of u(+) + pu(—). Also
shown, the spectra of pu(+) + p(—) after subtracting linear-
like background components bkg.(1). (b) Consideration of
arctangent background components, bkg.(2), for the spectrum
of u(+) + p(—) and the integration of the residual spectrum
Y (= p(+) + p(—) — bkg.(1) — bkg.(2)) with respect to the
energy. The ratio of arctangent background for L3 and Lo
became approximately 5:3, consistent with the ratio (1.6:1.0)
of the Y intensity for Ls and that for La. The full width at
half maximum for Y of L3 is almost the same as that for Y
of Lg; there is a minimum of their overlap at 581.3 eV. The
integration value of Y corresponds to B in Eq. (14).



For the next step, we consider the calculation of the
numerator of Eq. (17). Figure 5 shows the XMCD spec-
trum and its integral with respect to the photon energy.
In the case of estimating small integration value, the
scatter in the data may result in indispensable estima-
tion error. Thus, after smoothing the XMCD data for
< 572 eV and > 596 eV, we integrated them against
the energy to estimate A in Eq. (13). We evaluated A
to be —0.031102 (Table II), and obtained men/nn =
24/(3B) = —3.944 x 1073, The errors in estimating A
and B are estimated to be £10% (by varying the smooth-
ing range) and +7% (by varying the background contri-
bution), respectively, so that memn/nn, has the error of
+12%.
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FIG. 5: (Color online) XMCD spectrum p(+) — p(—) and
its integral with respect to the energy. The border between
the L3 and L2 regions, 581.3 eV, determined from the XAS
minimum in Fig. 4(b), is shown.

Third, we attempt to estimate two integral values of
the XMCD, C and D appearing in Eq. (18). As we
have seen in Fig. 3, the XMCD spectrum consists of two
dispersive structures, one in the lower energy side (Lg3)
and the other higher energy side (Lg). Although the two
structures are overlapping, we propose a tentative bor-
der between the L3 area and the Ly one at 581.3 eV in
Fig. 4(b), and do the integration of XMCD for both lower
and higher energy sides. Consequently we obtain C' =
0.24167 (Eq. (15)) and D = —0.27277 (Eq. (16)), result-
ing in Mgpin/nn = 1.498x10~! according to Eq. (18). If
we adopt n, = 7, based on the nominal valency of Cr3+
and the magnetization measurements® and considered to
be an upper bound of ny, we obtain mep, = —2.761x1072
1B, and mepin = 1.048 up, as shown in Table III. Note
that the estimated mgpin is far smaller than the expected
value of 3 up. Even if the L3-Lo boundary is shifted to-
ward the lower energy side, for instance 580.3 eV, there
is only a small increase in mgpin/nn to 1.676x1071 (C
= 0.27292 and D = —0.30402), and mgpin for ny=7 in-
creases just to 1.173.

TABLE II: Sum rule based estimations of A, B, C, and D.

A B C D
—0.031102 10.514 0.24167 —0.27277

TABLE III: Sum rule based estimations of moyp, and mespin in
unit of pup based on nominal ny, = 7 and theoretically pre-
dicted nn, = 5.84.

nh = 7 np = 5.84
Morb —2.761 x 107 —2.303 x 107
Mepin 1.048 8.745 x 107!
Mspin’ (SC = 1.4) 1.467 1.224
Morb /3 —9.203 x 1073 —7.677 x 1073

According to Goering’s sum rule correction, the mix-
ing factor X is estimated from the intensity ratio 723 of
Ly to Ly as X = (2rg3-1)/(ro3+1)® and the spin cor-
rection factor (SC) is obtained as SC' = 1/(1-2X). For
instance, SC = 3 requires X = 1/3 and 733 = 0.8. In
the present XMCD experiments, we derive ro3 = 0.62,
X = 0.15, and SC = 1.4. From these, we obtain 1.467
for the calibrated mgpin value (Mmgpin’) as shown in Ta-
ble III, a value approximately half of the 3 ug observed
in the bulk magnetization measurements®!'2. The X de-
pends on how an arctan step background is estimated,
whereas it is now impossible to derive ro3 = 0.8. Thus,
in the present case, we conclude that the spin sum rule
is useless.

V. DFT RESULTS

In this section, ground-state DF'T calculations are pre-
sented to support the previous discussion of the Cr local
moments based on the XMCD measurement, and fur-
thermore, to understand the role of the individual atomic
SOC in the forced FM state.

In subsection V A, in order to capture the fundamen-
tal aspects of the electronic structure of CrNbsSg, we
first perform a spin-polarized scalar-relativistic calcula-
tion (without SOC) where the results do not depend on
the magnetization direction. In particular, we focus on
the hybridization of Cr 3d orbitals. In VB, with SOC
included, the easy-plane type MCA and Cr 3d magnetic
moments are discussed in detail. In V C, the individual
roles of Cr and Nb SOC are analyzed.

A. Electronic structure

Figure 6 shows the total density of states (DOS) calcu-
lated without SOC, which agrees well with those reported
previously!227:28_ (We use the convention that spin up
(down) denotes the majority (minority) spin.) S 3p and
Nb 4d states are located mainly in the energy intervals



[—8:—2] and [—2:5] eV, respectively. Cr [=2 states (high-
lighted by red) show large exchange splitting: most of
the spin-down states are pushed above Er. Both spin
channels are metallic with a finite DOS at Er. Far-
ther above Er, a broad continuum feature starts from
5 eV in the DOS of both spins, indicating that the 3d
region ends at 5 eV. Indeed, above this energy, Cr (=2
partial waves become 4d-like, picking up an additional
radial node. We set E.=5 eV in the analysis of the Cr
3d shell using Eq. (12) discussed later.

Figure 7 shows partial d-wave DOS projected onto Nb
hexagonal harmonics and Cr e'g, aig, and e, harmonics
(see Appendix B for the complete definition of these or-
bitals). The top two panels are for the Nb(2a) and (4f)
sites while the bottom two are for Cr. We begin with the
spin-up states shown in the left panels, Fig. 7(a). The
e, states (the left lowest panel) form a sharp peak well
below Efr in a narrow energy window (from —2 to —1
eV) that appears to be consistent with the localized tog¢
scheme. On the other hand, the rest of the ¢y, mani-
fold — the aq,4 state (red highlighted in the second lowest
panel) — is delocalized to a remarkable extent, spread
over a wide energy range, even extending across Er to
the unoccupied levels, and with a similar bandwidth to
the delocalized e, state that hybridizes well with S 3p
orbitals. This unexpected a1, delocalization is a conse-
quence of strong hybridization with Nb 4d orbitals. A
clear indication of strong mixing is seen in the second
panel: Nb(4f) 22 (red highlighted) has peak structures
resonating with aig.

Regarding the spin-down bands, Fig. 7(b), the occu-
pied states from —2 eV and above are mainly Nb 22 and
2?2 — y?/xy orbitals. Although the exchange splitting
pushes most of the spin-down Cr 3d states above Ep,
some of them come into the occupied levels and show
a broader energy spectrum. They form chemical bonds
with Nb and S orbitals and are (together with the spin-
up 3d states of the same character) magnetically dead.
The states just at Er are exclusively of Nb 22 character.
The unoccupied body of spin-down states, starting from
0.2 eV, is composed of all d orbitals from Nb and Cr.

The method described in Eq. (12) — defining the Cr 3d
quantities as probed by the Cr 2p core — is applied to the
present non-SOC electronic structure. Table IV summa-
rizes the Cr 3d occupation numbers obtained. The spin-
up and -down 3d states are about 3.6 and 0.6 electrons,
respectively, yielding a total 3d electron number of 4.16
(n,=>5.84) and a 3d spin magnetic moment Mmgpin,=3.01
up. Roughly speaking, there are 0.6 magnetically dead
electrons in each spin; the magnetically active part ex-
hibits an electron configuration (ef)'*(a14)%%(ey)*® for
spin up, in sharp contrast to the localized picture with
(t2g1)3. The occupation number for ajz+ deviates from
unity with some of ey states being occupied. Both aj41
and eyt states show up at Er and contribute to the con-
ductivity in the spin-up channel. Their metallic conduc-
tion may account for the relatively high T, despite the
rather long Cr-Cr interatomic distance.

Energy (eV)
FIG. 6: Spin-up (upper panel) and -down (lower) density of

states. Contributions from Cr valence =2 states (within the
muffin-tin sphere) are highlighted by red. Energy zero refers

to the Fermi level.

(a) Spin up (b) Spin down
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z>2(/zy — zx/zy ——
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FIG. 7: Partial d-wave density of states (in unit of eV™"')
projected onto Nb hexagonal harmonics and Cr e, ai4, and
e harmonics within the muffin-tin spheres for (a) spin up and
(b) spin down. Multiplicity of atoms and orbitals is excluded.
Note that the vertical scale is different in each panel.

B. MCA and magnetic moment

Turning SOC on, we examine the MCA to see whether
DFT reproduces the easy-plane type anisotropy. The
total energy variation as a function of magnetization di-
rection E(f,¢) is calculated using the force theorem?®.
Figure 8 shows AFE(0) = E(0) — E(0) as a function of

the polar angle 6 (the azimuth ¢ dependency is negligi-



TABLE IV: Cr 3d occupation numbers calculated from the
3d density matrix defined in Eq. (12).

Spin ey Q1g ey Sum
up 1.88 0.89 0.82 3.99
down 0.08 0.13 0.36 0.58
up — down 1.80 0.76 0.45 3.01
oe
-0.02 _
O _0.04 e
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FIG. 8: Total energy variation as a function of magnetization
direction. 6=0 (90) degree corresponds to magnetization di-
rection parallel (perpendicular) to the ¢ axis. Dots represent
the DFT energies while solid line shows a sin?0 fit.

bly small). The easy-plane type anisotropy is correctly
reproduced with an energy minimum located at §=90°.
The energy variation follows a sin? § behavior (solid line),
indicating that the MCA is dominated by the second or-
der effect of the SOC. The MCA energy, the energy
difference between the hard-axis and easy-plane magne-
tizations, is found to be 0.14 meV per CrNbsSg unit, in a
good agreement with the ESR experiment'* and previous
DFT calculations?®.

The spin magnetic moment with SOC turned on re-
mains the same as that in the non-SOC case, and thus
shows no dependence on the choice of magnetization di-
rection. The total spin magnetic moment (obtained by
integrating the spin density over the whole space) is 3.004
up per CrNbsSg, again consistent with the previous DFT
result?®. The contributions in each muffin-tin sphere
are 2.500, 0.055, 0.003, and 0.005 up, from Cr, Nb(2a),
Nb(4f), and S, respectively; a small positive spin mo-
ment is induced at the Nb(2a) site while the moments at
the Nb(4f) and S sites are negligible. Figure 9 shows a
two-dimensional spin density map on a hexagonal (1120)
plane where Cr and Nb atoms are found. The spin den-
sity is peaked around Cr and extends with positive sign
to a radius ~1.8 A. The Nb(4f) site (sitting above and
below Cr along c¢) has sizable spin density distribution
with alternating signs even though it is integrated out
to be nearly zero; in particular, a negative distribution
along the c¢ axis is clearly seen, which is a signature of

Distance from Cr (A)

FIG. 9: Spin magnetization density mapped on a hexagonal
(1120) plane. The high density around the Cr is cut off, and
the low density region (< 0.1 up A~3) is highlighted by con-
tour lines — red (blue) lines are for small positive (negative)
densities. Inset: one-dimensional plots of the spin magnetiza-
tion density parallel and perpendicular to the ¢ axis, on the
(1120) plane through Cr nucleus.
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FIG. 10: Spin and orbital magnetization densities originat-
ing from the Cr [=2 partial wave. The spherical part of the
density is multiplied by the weighting factor 2. The orbital
contributions are magnified by 100 relative to the spin, and
are shown for magnetization along the a and ¢ axes. The

dash-dotted line (‘orbital®’) is obtained for the Cr-only SOC
calculation (see Sec. V C for detail). The radial density of the
Cr 2p core radial function Ry, is also shown.

the Cr a;4-Nb 22 interaction.

Now we shift our focus to the Cr [=2 partial wave.
Spin and orbital magnetization densities are shown in
Fig. 10. The spin density is positive and has a large tail,
well beyond the muffin-tin radius of 1.1 A; the orbital
density (displayed with multiplying a factor of 100) is



TABLE V: Cr 3d electron number, spin and orbital magnetic
moments (uB), and spin magnetic dipole calculated for two
magnetization directions: a (easy axis) and c¢ (hard axis).
For the top two entries (“Ra,”) the Cr 2p core is used as a
local probe, Eq. (12). The errors are estimated to be £0.4%
for each quantity listed, determined by shifting the boundary
energy E. by £0.5 eV. The bottom two lines (“MT”) are
calculated simply by integrating the (=2 partial wave within
the Cr muffin-tin sphere.

Direction «a N Mepin Morb X 107 T(Tw)
Rop: a 4.16 3.01 —-16.3 —0.156

c 4.16 3.01 —20.1 0.308

MT: a 3.74 2.47 —-94 —0.144

c 3.714 2.47 -13.3 0.286

predominately negative until turning positive at r ~ 1
A. Tt is apparent that the spin and orbital moments are
coupled antiparallel, as expected from an atomic picture
for the less-than-half filled case. However, the quantita-
tive values of the 3d magnetic moments depend on the
choice of integration region because of the tails in their
density distributions. Furthermore, the [=2 partial wave
(which is used in calculating the density distribution in
Fig. 10) is not a pure Cr 3d wave; at large r it includes
orbital tails from the surrounding atoms. The Cr 2p core
function Ry, (shown by pale green in Fig. 10), however,
is localized in region close to the nucleus where the [=2
wave predominately originates from the Cr 3d state. Us-
ing 7Ry, as a probe for Cr 3d state, we calculate local
quantities in the 3d shell as summarized in Table V. The
Cr 3d spin magnetic moment mgpin obtained is nearly
3.0 up, consistent with a proper picture that the Cr 3d
state is responsible for the magnetism in CrNbsSg, and is
greatly enhanced from the /=2 muffin-tin value of 2.5 up
(Table V). The Cr 3d orbital moment my,, is found to
have a negative sign (antiparallel to the spin) with small
values of —0.016 ug and —0.020 ugp for the in-plane and
out-of-plane magnetization, respectively. These values
are enhanced from the /=2 muffin-tin values in Table V,
indicating that the sign change of the orbital distribu-
tion at 7 ~ 1 A (seen in Fig. 10) is not from the pure 3d
orbital but from hybridization effects that develop posi-
tive orbital distribution in the 3d tail region. The ratio
between orbital and spin is meyb/Mspin X 100= —0.54 (in-
plane magnetization) and —0.69 (out-of-plane). Naively
it is counterintuitive that mg,., in the easy-plane mag-
netization has smaller magnitude than that in the hard-
axis magnetization. We will come back to this point in
the next subsection. The spin magnetic dipole shown in
Table V obeys the relation > _ . (Ts) ~ 0, which is
known to hold in the weak SOC case®. Ignoring its con-
tribution in the application of the spin sum rule would
degrade the estimated mgpin, by only 5% for the in-plane
magnetization. The Nb and S atoms have very small or-
bital moments (less than 1073 up for the in-plane mag-
netization), which we will not discuss further here.

TABLE VI: Comparison between experimental and theoret-
ical mor, values for the in-plane magnetization. The DFT-
estimated hole number, n;, = 5.84, is used in the XMCD
orbital sum rule. The ratio Mmorb/Mspin assumes Mepin = 3.

Mspin Morb X 103 morb/mspin(:3) [%}
theory 3.01 —163 —0.54
MCD - —-23.0 -0.77

TABLE VII: Cr 3d orbital magnetic moment, mo,1, calculated
by turning the SOC on only at selected element. In unit of
1073 ps. Two magnetization directions, along a and ¢ axes,
are examined. The Cr 2p local-probe technique is used.

Direction a Cr Nb S
a —38.9 12.7 9.9
c -32.0 7.8 3.5

The Cr 3d electron number is calculated to be 4.16
(unchanged from the non-SOC calculation), which gives
the number of holes in the 3d shell, n,=5.84. Using this
ny in the XMCD orbital sum rule, the experimentally de-
duced me,p is compared with the DFT value in Table VI.
A fairly good agreement is achieved between the experi-
ment and theory, especially taking into account the fact
that the DF'T tends to underestimate mg.,. We conclude
that the order of Mo /Mspin is ~ —1%.

C. Cr and Nb SOC

We have seen that the MCA is of easy-plane type and
that the unquenched Cr 3d orbital moment is aligned
antiparallel to the spin moment. There is no doubt that
the SOC in the Cr 3d shell plays a major role. However,
the spin-orbit coupling constant A for the Nb 4d orbital
(0.1 eV) is three times as large as that for Cr 3d orbital
(0.034 €V) and thus Nb SOC may also play an important
role.

In this section, we examine the individual atomic SOC
and analyze in detail the origin of the easy-plane MCA.
We turn on the SOC only at selected element(s) and cal-
culate the MCA energy as summarized in Fig. 11(a).
Turning on the Cr SOC alone provides 50% of the full
MCA energy, indicating that the Cr SOC is indispens-
able (as expected) but the other elements provide some
contributions. However, pure elemental SOCs of Nb and
S give very small MCA energies, 13% and 10%, respec-
tively; the full MCA is not reproduced from the simple
sum of these individual effects. When the Cr and Nb
SOCs are turned on together, 96% of the full MCA is re-
produced. This clearly shows that the Nb SOC enhances
the MCA, i.e., the Nb and Cr SOC interact construc-
tively.

To further understand this enhancement of the MCA
through the Nb SOC, we adopt a second-order pertur-
bation theory. We write the unperturbed eigenstates (in
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FIG. 11: (a) DFT-calculated MCA energies obtained by se-

lectively turning on SOC for different elements, given as the
ratio to the full MCA value (0.14 meV per CrNbsSg). (b)
Same as (a) but decomposed into the spin-diagonal and spin-
off-diagonal SOC processes. Note that the vertical scale is
different from (a).

the FM state without the SOC) as {e;, ¢;}, where i is
a combined index of wave vector k, spin o (= £1/2),
and band index n. The SOC perturbation depends on
the magnetization direction m (|m| = 1) and may be
written as

HY, = Hso(m) = UL HsoUp, (20)
with the spin rotation matrix Uy, (see Appendix C) and

with Hso being a sum of atomic SOC Hamiltonian AL s
of Cr 3d, Nb 4d and S 3p orbitals,

Hgo = H(Cr) + HS(}Nb) + H(S) (21)

According to the force theorem??, the MCA energy is
given in terms of the band energy summation over occu-
pied states,

E(m) =Y f™e™,

i

EMCA = E(ﬁl”c) — E(ﬁlJ_C)

where fi( and e( ™) are the band occupation number and
band energy w1th the perturbation incorporated. Using
a second-order perturbation theory and disregarding the
change in the band occupation number (that is small in
the present case), the band energy sum can be found as

(il H L)

€ — €5

E(m) =Eo+ Y fi(1—f;)

(2]

ok, (22)

where only a pair of occupied and unoccupied bands (at
the same k) interacting via SOC contributes to the MCA
through its m dependence. The relevant matrix element
squared is decomposed as

GEE = |G|+ [@as?H|

Cr Nb
A HSG 1) GIHESD |i) + c.c. (23)

where the m dependence and the sulfur related terms
are suppressed for simplicity. In addition to the pure

10

individual contributions (the first and second terms of
Eq. (23)), a Cr-Nb interference term (the third term)
exists as well, which may enhance the MCA effectively
only if (i) strong hybridization between Cr 3d and Nb 4d
orbitals is seen in both states ¢ and j and (ii) the phases
of two SO matrix elements constructively interfere. The
DFT result given in Fig. 11(a) indicates that this Cr-Nb
interference term doubles the MCA energy compared to
that with the Cr SOC alone.

In Fig. 11(b), we further decompose the MCA into
two spin processes: spin-diagonal (bands i and j have
the same spin, o;=0;) and spin-off-diagonal SOC pro-
cess (0;#0;). In the full SOC calculation (a set of two
boxes located in the most left of Fig. 11(b)), two spin
processes have fairly large energy (nearly one order of
magnitude greater than the net MCA energy) while they
compete with each other: the spin-off-diagonal process
favors in-plane magnetization; the spin-diagonal process
favors out-of-plane magnetization. In the case of the Cr-
SOC only calculation, the spin-diagonal process (the in-
teraction in the spin-up channel) dominates and provides
the easy-plane anisotropy, where a pair of a4 and egy
states should be most relevant. In the Nb-SOC only case,
both spin processes have large values (similar to the full
SOC calculation) but they almost cancel with different
signs, resulting in the only 13% of the full MCA energy.
That two processes have nearly identical magnitude is
due to the fact that both spins are found in the occupied
Nb 4d bands. The interference term, however, picks up
bands that have substantial Cr 3d - Nb 4d mixing in their
wave functions. Therefore, the occupied counterpart in
the interference process is dominated by spin-up (due to
the Cr 3d spin polarization). From the MCA decom-
position analysis (Fig. 11) and the partial DOS analysis
(Fig. 7), together with the matrix representation of L
(Appendix B), the occupied-unoccupied pairs of bands
that are highly relevant to the MCA are identified as
aigt - gt (for the pure Cr SOC) and eyt - €y (for the
interference SOC).

The Cr 3d orbital moment behaves differently in the
site-selective SOC calculations. First-order perturbation
theory illustrates that the Cr orbital moment is given by

JACON fz
- S

[<z’|L£§r ) GIHALE) 30,0, 01k, + c.c.] (24)

where a=x,y, z. Note that the right-hand size is linear
in H' (sum of atomic SOC) and thus mgp in the full
SOC calculation is determined by a simple summation of
elemental SOC effects. Table VII lists the values of 3d or-
bital moment in the element-selective SOC calculations.
The summation of these values indeed reproduce my,1, in
the full SOC calculation (Table V). It is interesting to see
that in the Cr-only SOC calculation me,p is much larger
than its full SOC value and now the in-plane |memp| is
greater than that for the out-of-plane (hard-axis) mag-
netization. The Nb- and S-only SOC calculations yield



opposite-sign orbital moments in the Cr 3d shell. From
these results we conclude that SOC on the Nb and S
atoms interfere destructively to decrease the Cr orbital
moment.

VI. CONCLUSION

We have performed the XAS/XMCD measurements
for CrNbsS¢ with in-plane magnetization at the Cr Ly 3
edges. The XMCD spectrum, exhibiting dispersive line-
shapes for each of the L3 and Lo edges, unambigu-
ously reveals that the Cr orbital magnetic moment is not
quenched and is coupled antiparallel to the spin coun-
terpart. The magnitude of orbital magnetic moment is
estimated to be approximately 0.02 ug. The quantitative
evaluation of spin magnetic moment via the sum rules is
unsuccessful due to the small spin-orbit splitting in the
Cr 2p core. These experimental findings on the Cr lo-
cal magnetism are supported by the DFT calculations,
where, analogous to the experiment, the radial part of
the Cr 2p core state is employed to define the 3d shell.
Theoretical analyses show that the SOC in the Nb 4d
orbital, as a consequence of its strong hybridization with
the Cr 3d orbital, plays an important role in determining
the MCA and the Cr 3d orbital moment.
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Appendix A: Transition probability

Imada et al. have tabulated the transition probability
in the p — d photoabsorption when the core hole j is a
good quantum number and the d states are labeled by the
spin and the orbital magnetic quantum number?®. Figure
12(a) reproduces their result; Fig. 12(b) is for the case
that the d states are labeled by a4, e;, and e, manifolds
(under the D34 crystalline field) with both the magnetic
field and the photo propagation being perpendicular to
the threefold axis.
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FIG. 12: Distribution of weights of the transition probability
to the d states in the p — d photoabsorption process with the
photon spin ¢ = +1 when the core hole j is a good quantum
number. (a) d states labeled by the orbital magnetic quan-
tum number m (after Ref.?%). (b) d states under the Diq
crystalline field. The magnetization and the photo propaga-
tion directions are perpendicular to the threefold (z) axis.

Appendix B: d orbital

The hexagonal harmonics (22, zx, 2y, 22 — y?, xy) de-

fined in the coordinate system (x,y,z) in Fig. 1(b) are
considered the natural basis functions for Nb 4d states.
In this basis set, the orbital angular momentum operator
is given in the matrix representation

0 0 +3i 00
0O 0 0 0 i
L= =v3 0 0 —io0|,
0 0 4 00
0 —i 0 00
0 —/3i0 0 0
V3 0 0 —i 0
Ly=1 0 0o 00 —i|,
0 i 00 0
0 0 i 0 0
000 0 O
00—i 0 0
L,=]10i 0 0 0
000 0 —2i
000 2 0



In the main text, Cr 3d states are discussed in terms
of aig, €, and e, manifold (which is valid under D34
symmetry). The trigonal basis functions, o (for ai,),

w4 (for ey), ug (for e,) are given as follows

z9 = Yoo,
2 1

Ty = —\/;YQ—Q_ 51/217
2 1

_ = Y50 —4/=Yo_

x 3 22 3 2—15
1 2

Uy = — §Y2—2+ §Y217
1 2

_ = -Y -Y5_

U 3122 + 3121

where the spherical harmonics are defined in the coor-
dinate system (z,y,z) in Fig. 1(b). The orbital angular
momentum operator is written in the matrix form with
the basis (zg, Z4,2T—, Uy, u_),

0 —1/vV2 -1/v2 1 1

~1/v/2 0 0 0 -1
Le=1 -1/v/2 0 0 10
1 0 1 00
1 -1 0 0 0
0 —i/V2i/vV2 i —i
i/V2 0 0 0 —i
Ly=1| -i/v2 0 0 —i 0 |,
—i 0 i 0 0
i i 0 0 0
00 0 0 0
0 -1 0 —V2 0
L.=|l0 0 1 0 2
0-v2 0 0 0
0 0 v2 0 0
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Appendix C: SOC Hamiltonian

We write the atomic SOC Hamiltonian as

A L. L,—ilL,
Hso—/\L~s_2<Lx+Z.Ly L. )

for the spin basis functions (up and down) defined along
the crystalline z axis. The SOC Hamiltonian with the
spin quantization axis along an arbitrary direction m
(with polar angle § and azimuthal angle ¢) is found in
the following, by using the spin rotation matrix Usg3!,

A B L&
Hso(th) = UL HsoUs —<L m L-e >,

2\ L-¢¥ —-L-m
and
m = (sinfcos¢, sinfsin ¢, cos@)T7
é = (COSHCOS¢+isinqb,cos@singzbficosgb,fsinG)T

where m is the directional cosine of the spin quantiza-
tion axis, and € is a complex vector (|€|?=2) orthogonal
to m. For [001], [100], and [010] directions, the SOC

Hamiltonians are

A L, L, —L
HSO[OOI] - 2<Lx+iLy L. y)a
A L, —itL, — L,
HSOUOO] = 2<iLy—Lz _yLw )7
A L, L, — L,
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