
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hamiltonian formalism for nonlinear spin wave dynamics
under antisymmetric interactions: Application to

Dzyaloshinskii-Moriya interaction
Roman Verba, Vasil Tiberkevich, and Andrei Slavin
Phys. Rev. B 99, 174431 — Published 28 May 2019

DOI: 10.1103/PhysRevB.99.174431

http://dx.doi.org/10.1103/PhysRevB.99.174431


Hamiltonian formalism for nonlinear spin wave dynamics under antisymmetric

interactions. Application to Dzyaloshinskii-Moriya interaction

Roman Verba,1 Vasil Tiberkevich,2 and Andrei Slavin2

1Institute of Magnetism, Kyiv 03142, Ukraine
2Department of Physics, Oakland University, Rochester, MI 48309, USA

(Dated: May 15, 2019)

A Hamiltonian formalism is applied for the investigation of nonlinear spin wave dynamics under
the influence of antisymmetric magnetic interactions. In the framework of this formalism we ac-
count not only for symmetric magnetic interactions (exchange, dipole-dipole, magneto-crystalline
anisotropy), but also for antisymmetric interactions, like Dzyaloshinskii-Moriya exchange interac-
tion. The account of antisymmetric exchange, in general, could lead to the appearance of an
additive nonreciprocal term in the spin wave dispersion law. We present the generalization of the
linear transformation for the diagonalization of quadratic part of the Hamiltonian (so called “third
Holstein-Primakoff transformation”) for the antisymmetric case, which allowed us to obtain gener-
alized expressions for the coefficients of the nonlinear three- and four-magnon interactions. As an
example, nonlinear spin-wave interactions in ultrathin ferromagnetic nanowires and films subjected
to interfacial Dzyaloshinskii-Moriya interaction (IDMI) are considered. It was found that three-
magnon interaction coefficients in the “Damon-Eshbach” geometry are non-zero only in the case
of the non-collinear interacting spin waves, and vanish in the case of the collinear spin waves. It
was also found that the nonlinear spin wave frequency shift caused by the four-magnon interaction
is nonreciprocal, and has the sign opposite to that of the nonreciprocal term in linear spin-wave
dispersion, so that the IDMI-induced nonreciprocity of the spin wave spectrum decreases with the
increase of the spin wave amplitude.

PACS numbers: 75.30.Ds, 75.40.Gb, 05.45.-a

I. INTRODUCTION

One of significant advantages of spin waves (SW)
as signal carriers for microwave signal processing is
the relatively low amplitude levels at which SWs (or
magnons) start to demonstrate nonlinearity, and can
be involved in nonlinear processes, including parametric
interaction with electromagnetic pumping, three-wave,
four-wave and higher order magnon-magnon interaction
processes1–3. Nonlinear SW properties manifest them-
selves in various phenomena, such as parametric SW
instability4–7, saturation of the ferromagnetic resonance
and foldover effect8–12, nonlinear decay of SWs13,14,
and SW turbulence and chaos2,15,16. Exploration of
these nonlinear phenomena made possible the develop-
ment of nonlinear microwave signal processing devices,
such as frequency-selective power limiters and signal-to
noise enhancers based on three-wave interaction1,17,18,
nonlinear delay lines based on formation, propagation
and manipulation of SW solitons caused by the four-
wave interactions19–25, as well as the nonlinear spin-wave
switches and logic devices26–29.

To understand and explore nonlinear SW processes one
needs to know which processes are allowed for a partic-
ular group of SWs, and needs to be able to evaluate the
efficiency of these processes. Obviously, the understand-
ing of nonlinear SW properties is also necessary for the
successful development of linear SW devices, since the
nonlinear processes often limit the power dynamic range
of these linear devices. Theoretically, the most general
and powerful approach for the quantitative analysis of

nonlinear SW interactions and calculation of the efficien-
cies of multi-magnon interaction processes (a.k.a. nonlin-
ear SW coefficients) is the classical Hamiltonian formal-
ism for SW that was originally proposed by Schlömann30,
and, then, developed in Ref. 2. In the framework of this
formalism the components of the dynamical magnetiza-
tion vector are represented in terms of two scalar canon-
ical Hamiltonian variables a(r, t) and a∗(r, t).2 The co-
efficients of the nonlinear multi-magnon interactions are
derived using the expansion of the Hamiltonian function
for the magnetization dynamics into a series of spatial
Fourier harmonics of the above mentioned canonical vari-
ables, while the dynamics is governed by standard Hamil-
tonian’s equations31. This Hamiltonian formalism for the
magnetization dynamics was extensively used for the in-
vestigation of nonlinear SW dynamics under parametric
pumping (see Refs. 2 and 32 and references therein) and
SW parametric instabilities in different geometries6,7,14.
More recently, the large-angle magnetization dynamics
induced by spin-transfer torque was explored in Refs. 33
and 34.

Calculation of nonlinear coefficients in the framework
of the above described Hamiltonian approach is straight-
forward, but rather cumbersome algebraically when ap-
plied to particular geometries (e.g. thin films)35,36,
and cannot be easily generalized. Krivosik and Pat-
ton, using effective SW tensor formulation6, derived ex-
plicit general expressions for nonlinear coefficients (up to
four-wave coefficients) in a uniformly magnetized sam-
ple, assuming, that normal modes of the system are
plane waves37. Their theory is suitable for bulk sam-
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ples, fundamental modes of ferromagnetic films and
nanowires, ferromagnetic resonance of nanostructures,
and allows one to take into account symmetric magnetic
self-interactions, quadratic in magnetization. Nonuni-
form exchange, magneto-dipolar interaction, and uniax-
ial anisotropy, which often are the most important in-
teractions, belong to the family of symmetric quadratic
interactions, and are described by symmetric tensor op-
erators.

However, not all the quadratic magnetic self-
interactions are symmetric. In magnetic multilayers
and materials with a specific crystal structure the an-

tisymmetric exchange interaction, which is usually called
“Dzyaloshinskii-Moriya” interaction (DMI), can appear
and play an important role38,39. The DMI became of a
significant research interest recently, when it became pos-
sible to fabricate ultrathin ferromagnetic (Fe, permalloy,
CoFe, etc.) films on a substrate made of a heavy metal
characterized by a large spin-orbit coupling (W, Pt, etc.).
In such systems at the interface between the ferromag-
net and the heavy-metal the interfacial Dzyaloshinskii-
Moriya interaction (IDMI) manifests itself and signifi-
cantly influences the magnetization dynamics40–42. In
particular, IDMI can stabilize topologically nontrivial
magnetization states43,44, or lead to the nonreciprocity
of the SW spectrum in magnetic films or nanowires mag-
netized to saturation41,45–48.

SW nonreciprocity could be very important for mi-
crowave signal processing49–55, and the use of IDMI in
thin ferromagnetic films is the most promising way to
achieve substantial nonreciprocity of SWs with the wave-
length of 100 nm and below. Therefore, it is impor-
tant to investigate linear and nonlinear SW properties
in magnetic materials with IDMI. In particular, it is crit-
ical to investigate the variation of SW spectrum at high
SW amplitudes, and calculate the three-wave nonlinear
SW coefficients that determine the threshold of the SW
parametric instability. This knowledge is especially im-
portant for the successful development of parametric54

and spin-torque56–58 IDMI-based devices, in which high
amplitudes of SWs are easily realized.

The IDMI is not the only example of antisymmet-
ric magnetic interactions. Different kinds of bulk
Dzyaloshinskii-Moriya interactions, which exist in mag-
netic crystals with specific broken symmetries, are non-
symmetric too38,39,59,60. Also, the spin-flexoelectric in-
teraction, which was predicted to manifest itself in ferro-
magnetic insulators under applied electric field61,62, also
belongs to the family of antisymmetric interactions.

The main aim of our current work is to generalize the
existing theory of nonlinear spin-wave dynamics based on
the Hamiltonian approach2,35,37 to the case of any mag-
netic self-interactions, quadratic in magnetization. Sim-
ilarly to Ref. 37 we assume that ferromagnetic sample is
in the saturated state, and elementary excitations in this
sample are plane SWs. Throughout our current work we
keep the notations of Ref. 37, and point out explicitly
the main differences which appear due to the presence of

non-symmetric magnetic interactions.
The paper is organized as follows. In Sec. II an

overview of the Hamiltonian formalism is given, and mag-
netic Hamiltonian function is derived in terms of the
magnetization components and complex amplitudes of
the plane spin waves. The expansion of the Hamilto-
nian function in a series of Fourier amplitudes of canonic
variables ak(t) and a∗

k
(t) up to the fourth-order terms

is presented in Sec. II E. The diagonalization of the
quadratic part of the SW Hamiltonian using the gener-
alized third Holstein-Primakoff transformations and ex-
pansion of the Hamiltonian function into linear modes
are given in Sec. III. In Sec. IV, as an example of appli-
cation of the developed formalism, we derive general ex-
pressions to calculate three-wave splitting efficiency and
four-wave nonlinear frequency shift of the SWs in ferro-
magnetic films subjected to IDMI. Finally, conclusions
are given in Sec. V.

II. MAGNETIC HAMILTONIAN FUNCTION

A. Overview of the Hamiltonian formalism

The most important step in the classical Hamiltonian
approach is the transformation of the natural dynamic
variables of the problem (in our case - components of
the dynamical magnetization) into canonical variables a,
a∗ in which the energy of the studied system becomes
a Hamiltonian function. The Hamiltonian function is,
commonly, a functional of the full energy of the sys-
tem E. In the study of ferromagnetic materials, how-
ever, it is more convenient to use a reduced Hamiltonian
function30,37

H = H[M(r, t)] =
γE

MsV
, (2.1)

where γ is the modulus of the gyromagnetic ratio, Ms

is the saturation magnetization and V is the volume of
the ferromagnetic material. The Hamiltonian function
Eq. (2.1) is measured in the units of frequency. The
canonical variables a(r, t) and a∗(r, t) are introduced as

α⊥(r, t) = a(r, t)
√

2− a(r, t)a∗(r, t) , (2.2a)

αz(r, t) = 1− a(r, t)a∗(r, t) . (2.2b)

Here αx,y,z = Mx,y,z/Ms are the normalized magneti-
zation components and α⊥ = iαx + αy is the complex
dynamic magnetization variable. Equations (2.2) use the
convention, that static magnetization is directed along
the z-axis. It is clear, that |α⊥|2+α2

z = 1, i.e. the trans-
formation Eq. (2.2) satisfies the condition of conservation
of the magnetization vector length.
When Hamiltonian function of the system is expressed

in terms of the canonical variables, the dynamical equa-
tions for the variables a(r, t) and a∗(r, t) can be written



3

in a standard Hamiltonian form:

i
da(r, t)

dt
=

δH

δa∗(r, t)
, −i

da∗(r, t)

dt
=

δH

δa(r, t)
. (2.3)

The next step in the Hamiltonian formalism for SW is
the expansion of a(r, t) into a series of plane waves (in
the case when the plane waves are the normal modes of
the system):

a(r, t) =
∑

k

ak(t)e
ik·r , (2.4)

where new canonical variables ak(t) describe amplitudes
of SWs with the wave vector k. Since the Fourier-
transform is canonical, the dynamical equations for ak(t)
have the same form as Eq. (2.3), namely

i
dak(t)

dt
=

∂H

∂a∗
k
(t)

, −i
da∗

k
(t)

dt
=

∂H

∂ak(t)
. (2.5)

The change of the variational derivative in Eq. (2.3) to
the partial derivative in Eq. (2.5) is related with the fact
that H is a functional in terms of a(r, t), but becomes a
polynomial function in terms of the Fourier amplitudes
ak(t).
After the transformation Eq. (2.2) the Hamiltonian

function can be developed as a series in the SW Fourier
amplitudes ak and a∗k and, thus, can be represented as

H ≈ H(0) + H(1) + H(2) + ..., where the superscripts
indicate the number of amplitudes ak and a∗k in the cor-

responding term. The term H(0) which does not contain
any SW amplitudes determines the energy of the ground
state, H(1) describes the linear excitation of SWs by ex-
ternal forces (e.g., by a microwave magnetic field), the
term H(2) determines the “kinetic” energy of the system
in the linear regime defined by the linear spectrum of the
system SW eigenmodes, and all the higher-order terms
describe the nonlinear interactions between the SWs. It
has been shown in Ref. 2 that in most cases it is sufficient
to consider the expansion of the Hamiltonian function up
to the 4-order H(4) in terms of the variables ak and a∗k.
Finally, it is, usually, convenient to diagonalize the

quadratic part H(2) of the SW Hamiltonian using the
third Holstein-Primakoff (or u-v Bogoljubov) transforma-
tion, and introduce the new (elliptically polarized) vari-
ables ck and c∗k, which describe the amplitudes of the
normal linear SW modes. The derivation of the nonlin-
ear terms H(3) and H(4) of the Hamiltonian function in
terms of the variables ck and c∗k is the final step, which
gives the coefficients of the nonlinear (three- and four-
wave) SW interactions.

B. Terms of the magnetic Hamiltonian function

The first step in the Hamiltonian formalism is the
derivation of the Hamiltonian function H in terms of the

magnetization vector M(r, t). A generic expression for
H can be written as:

H =− γ

MsV

∫

M(r, t) ·Be(r, t)dr

− 1

2

γ

MsV

∫

M(r, t) ·BM (r, t)dr − . . . .

(2.6)

Here the first term corresponds to the Zeeman energy of
magnetization in the external magnetic field Be, which
can be both space- and time-dependent. The second term
represents the interaction of the magnetization with the
internal field BM , which is produced by the magnetiza-
tion itself. For most common magnetic self-interactions,
which are quadratic functionals in terms of magnetiza-
tion, the field BM can be conveniently expressed as:

BM (r, t) = −µ0

∫

N̂ (r, r′) ·M(r′, t)dr′ , (2.7)

where N̂(r, r′) is the tensor operator describing mag-
netic self-interactions. It consists of the sum of differ-
ent contributions, the most important of which are ex-
change, magneto-dipolar and anisotropy contributions.
The isotropic exchange interaction is described by the
operator

N̂ex(r, r
′) = −λ2

exδ(r − r
′)Î∇r · ∇r′ , (2.8)

where λex =
√

2A/µ0M2
s is the exchange length of the

magnetic material, A is the exchange stiffness, Î is the
unit matrix, and subscripts of the nabla operators denote
the coordinates (r or r

′) to which the operator is ap-
plied. Magneto-dipolar interaction in the magnetostatic
approximation, i.e. neglecting retardation effects, is ex-
pressed via the magnetostatic Green’s function63:

N̂dip =
1

4π
∇r

(

∇r′
1

|r − r′|

)

. (2.9)

The uniaxial magnetic anisotropy is given by:

N̂an(r, r
′) = − Ban

µ0Ms

δ(r − r
′)eζ ⊗ eζ , (2.10)

where Ban = 2Ku/Ms is the anisotropy field, Ku is the
constant of uniaxial anisotropy, eζ is the unit vector in
the direction of the anisotropy axis (ζ-direction), and the
symbols ⊗ are denoting the dyadic product of vectors.
Dirac delta-function δ(r−r

′) in Eqs. (2.8, 2.10) indicates
the local character of the exchange interaction and the
crystalline anisotropy, in contrast with the nonlocal long-
range character of the magneto-dipolar interaction.
In a general case, the Hamiltonian function Eq. (2.1)

may contain higher-order in terms (in respect to the mag-
netization), in particular, if the other than uniaxial crys-
talline anisotropy is taken into account. For example, cu-
bic magnetic anisotropy is described by the third-order in
respect to M term1. Below, for simplicity we skip these
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possible higher-order contributions, although, if neces-
sary they can be accounted for in a similar way.
The energy of the IDMI in a thin ferromagnetic film

or nanowire can be expressed as:

EIDMI =

∫

D̃

M2
s

[Mz∇ ·M −M · (∇Mz)] dr , (2.11)

where z-axis is a normal to the ferromagnetic - heavy
metal interface, D̃ = Db/h is the effective IDMI parame-
ter, D is the IDMI constant, h is the thickness of the film
or nanowire, and b is the thickness of the ferromagnetic
monolayer47. It is clear, that the term representing IDMI
in the Hamiltonian function can be also expressed in the
form of Eq. (2.6,2.7) with the tensor operator given by:

N̂IDMI(r, r
′) =

2D̃

µ0M2
s

δ(r − r
′) [ez′ ⊗∇r′ −∇r′ ⊗ ez′ ] ,

(2.12)
or, in the explicit matrix form:

N̂IDMI(r, r
′) =

2D̃

µ0M2
s

δ(r − r
′)





0 0 −∂x′

0 0 −∂y′

∂x′ ∂y′ 0



 .

(2.13)
From Eq. (2.13) one can clearly see the main differ-

ence of the IDMI term compared to the other magnetic
self-interactions, mentioned above. The tensor operator
N̂IDMI is antisymmetric, while the operators of the uni-
axial anisotropy, dipolar and exchange interactions are
all symmetric. The antisymmetric nature of the IDMI is
also reflected by the fact, that N̂IDMI changes its sign to
the opposite under the space inversion operation r → −r,
in contrast to the other self-interaction operators, which
remain unchanged in respect to the space inversion.
The bulk Dzyaloshinskii-Moriya interaction, which is

present in ferromagnetic crystals with lack of the inver-
sion symmetry, could be also accounted in the same man-
ner as the IDMI, and is represented by an antisymmetric
tensor operator60. Below, we will not use any specific
features of the operator N̂ , related to the IDMI or other
interactions. We assume, that tensor operator N̂(r, r′)
is nonsymmetric in a general case, i.e. consists of sym-
metric and antisymmetric contributions. Thus, the for-
malism presented below is applicable to any magnetic
self-interaction, quadratic in magnetization.

C. Conversion to the complex variables

The next step in the Hamiltonian approach is the con-
version to the canonic variables a(r, t), a∗(r, t). This
step is just a simple algebraic operation. For convenience
and brevity, we, following Ref. 37, introduce the dimen-
sionless complex vector α(r, t) = [α⊥, α

∗
⊥, αz], where

α⊥(r, t) and αz(r, t) are related to the canonical vari-
ables according to Eq. (2.2). The real magnetization
vector M(r, t) is connected with α through the relation

M = MsT̂ · α, where

T̂ =
1

2





−i i 0
1 1 0
0 0 2



 . (2.14)

It is also useful to establish the relation α
∗ = Ŝ ·α, where

Ŝ =





0 1 0
1 0 0
0 0 1



 . (2.15)

Here we should recall, the that introduction of the
canonical variables in the form of Eq. (2.2) assumes that
the static magnetization of a ferromagnetic sample is uni-
form, and is pointed in the +z direction. Therefore,
all the self-interaction operators N̂ (r, r′) should be de-
rived in this coordinate system. A more complex case of
nonuniform static magnetization configurations are con-
sidered in a similar way, with the difference that the rela-
tion between M and α becomes coordinate-dependent,
i.e. T̂ = T̂ (r). The examples of application of the Hamil-
tonian formalism to nonuniform magnetic states can be
found in Refs. 64 and 65.
The direct calculation allows one to obtain the Hamil-

tonian function in the form:

H =− γ

V

∫

α
∗(r, t) · B̃(r, t)dr

+
1

2V

∫ ∫

α
∗(r, t) · Γ̂(r, r′) · α(r′, t)drdr′ ,

(2.16)

where

B̃(r, t) = Ŝ · T̂T ·Be(r, t) , (2.17a)

and

Γ̂(r, r′) = ωM Ŝ · T̂T · N̂(r, r′) · T̂ , (2.17b)

with ωM = γµ0Ms. Here, analogously to the com-
plex magnetization vector α, we introduce the complex

vector field B̃(r, t) =
[

B̃⊥/
√
2, B̃∗

⊥/
√
2, Be,z

]

, where

B̃⊥(r, t) = (iBe,x +Be,y) /
√
2 is the circular component

of the external field Be (the “tilde” sign over the com-
plex vector field is added in order not to mix this vector
with the real external field Be). The explicit derivation

of the components of the tensor operator Γ̂(r, r′) is not
necessary at this step. It is convenient to preserve the
vector structure of this expression during the operation
of the Fourier-transform (next step).

D. Conversion to the plane waves

The goal of the current and following subsections in the
paper is to represent the Hamiltonian function in terms
of the Fourier amplitudes of the SW canonical variables
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ak and a∗
k
. It should be noted, that the introduction of

the SW amplitudes ak and a∗
k
in the form of Eq. (2.4)

implies, that the linear eigenmodes of the considered fer-
romagnetic sample are plane waves. This statement is
correct for the bulk samples and for fundamental SW
modes in ferromagnetic films and nanowires, which have
almost uniform profiles along the thickness and width co-
ordinate of the sample. In other cases, e.g. when consid-
ering quantized modes of a magnetic nanodot, Eq. (2.4)
should be modified taking into account the spatial pro-
files of the quantized modes (see, e.g., Refs. 7, 64, and
65).
When performing Fourier-transform, it is convenient

to preserve the vector structure of the Hamiltonian
Eq. (2.16). Then, all the terms of the Hamiltonian func-
tion change to their Fourier-images. Namely, the dimen-
sionless complex magnetization vector is represented via
its Fourier-image as :

α(r, t) =
∑

k

αk(t)e
ik·r , (2.18)

where αk = [Fk[α⊥(r, t)],Fk[α
∗
⊥(r, t)],Fk[αz(r, t)]], and

Fk denotes the operator of the Fourier-transform. The
derivation of the explicit relation between the compo-
nents of αk and canonical variables ak requires applica-
tion of the Taylor expansion, and is given in the next
subsection. The transformation of the complex vector of
the external field is also trivial, and is given by:

B̃(r, t) =
∑

k

B̃k(t)e
ik·r , (2.19)

with B̃k(t) =
[

B̃⊥,k(t), B̃
∗
⊥,k(t), B̃z,k(t)]

]

.

It should be noted, that the Fourier-transformation of
the operator of magnetic self-interactions is not so trivial
in a general case. Here we restrict ourselves to the case
when the operator N̂(r, r′) depends only on the differ-

ence of arguments, N̂(r, r′) = N̂(r − r
′). This implies

that the considered magnetic sample is spatially homoge-

neous having no spatial variations of the material param-
eters. In this case the Fourier-transform of the operator
N̂(r, r′) is introduced as:

N̂ke
ikr =

∫

N̂ (r − r
′)eikr

′

dr′ . (2.20)

The tensor Nk is often called the “effective spin-wave
tensor”6. It is the most important universal characteris-
tic of a ferromagnetic sample for the description of the
propagating SWs in it. Together with the direction of
the static magnetization, and the value of the external
field, it contains all the information about the linear SW
spectrum and nonlinear interactions. With certain modi-
fications, the effective spin-wave tensor can be also intro-
duced in the problems of spatially nonuniform propagat-
ing SW modes, e.g. for higher thickness or width modes
of ferromagnetic films or nanowires66–68.

The properties of the tensor N̂k follow from the sym-
metry of the magnetic self-interactions. Obviously, N̂k

is self-adjoint, i.e. (N̂T
k
)∗ = N̂k, which ensures that

the Hamiltonian function is real-valued. Another general
property is N̂−k = N̂

∗
k
. For symmetric self-interactions,

e.g. exchange, dipolar interaction or anisotropy, the ten-
sor N̂k is symmetric, N̂T

k
= N̂k, and is real. In a general

case, however, magnetic self-interactions are not required
to bear these properties. For example, in the case of the
IDMI the tensor N̂k is antisymmetric and imaginary.
Namely, in the coordinate system with z-axis being per-
pendicular to the ferromagnetic interface we get:

N̂k,IDMI =
2D̃

µ0M2
s





0 0 −ikx
0 0 −iky
ikx iky 0



 . (2.21)

Therefore, in a general case we should consider
a complex-valued non-symmetric self-interaction tensor
N̂k, having symmetric real part and antisymmetric imag-
inary part. Mathematically, the appearance of an anti-
symmetric imaginary contribution of N̂k is the only dif-
ference from the previous analysis of symmetric interac-
tions, performed in Ref. 37. However, it leads to signifi-
cant modifications of all the expressions in the following
analysis.
Using the above defined Fourier-images of the complex

magnetization vector, the complex vector of external field
and the operator of magnetic self-interactions, the Hamil-
tonian function can be represented in the following form:

H = −γ
∑

k

α
∗
k · B̃k(t) +

1

2

∑

k

α
∗
k(t) · Γ̂k · αk , (2.22)

where Γ̂k = ωM Ŝ · T̂T · N̂k · T̂ . Straightforward calcula-
tions gives the explicit form of the tensor Γ̂k:

Γ̂k =















1

2
Qk

1

2
Bk

1√
2
Dk

1

2
B

∗
k

1

2
Q−k

1√
2
D

∗
−k

1√
2
D

∗
k

1√
2
D−k Γzz,k















, (2.23)

where

Qk =
ωM

2
(Nxx,k +Nyy,k − 2ImNxy,k) , (2.24)

Bk =
ωM

2
(−Nxx,k +Nyy,k + 2iReNxy,k) , (2.25)

Dk =
ωM√
2
(iNxz,k +Nyz,k) , (2.26)

and

Γzz,k = ωMNzz,k . (2.27)

Using the above described general properties of the ten-
sor N̂k, one can prove that Bk = B−k, Γzz,k = Γzz,−k,
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and that the values Qk and Γzz,k are real. Simultane-
ously, in a general case Qk 6= Q−k and Dk 6= D−k, while
corresponding equalities take place in the case of sym-
metric self-interactions. These inequalities lead to the
appearance of terms with both k and −k in the defini-
tion of the tensor Γ̂k. Another evident difference from
the symmetric case is the appearance of real and imag-
inary parts of Nxy,k in the definitions of the coefficients
Qk and Bk.

E. Expansion coefficients of the Hamiltonian

function

Finally, in order to derive the Hamiltonian function in
terms of the canonical variables one needs to express the
Fourier-components of the complex magnetization vector
αk in terms of the variables ak and a∗

k
. For the compo-

nent αz this operation is trivial, and, taking into account
Eq. (2.2), we get:

Fk[αz(r, t)] = ∆(k)−
∑

12

a1(t)a
∗
2
(t)∆(1−2−k) . (2.28)

Here ∆ is the Kronecker delta-function, and the abbre-
viated notations 1 ≡ k1, 2 ≡ k2, etc., are used. The
transformation of the components α⊥, α

∗
⊥ is not so triv-

ial, as Eq. (2.2a) contains a square root. Therefore, to
proceed one need to expand it into a Taylor series. Lim-
iting the expansion to the first two terms, we get:

α⊥(r, t) ≈
√
2a(r, t)

[

1− 1

4
a(r, t)a∗(r, t)

]

. (2.29)

The error coming from this approximation is rather
small. Indeed, it gives |α⊥|2 + α2

z = 1 + |a|6/8, while
the exact value is 1. Even for the precession angles close
to 90 degrees, for which |a| ≈ 1, the expansion (2.29)
gives the error not exceeding 12%. The straightforward
Fourier-transform of Eq. (2.29) and its complex conju-
gate yields the following relations:

Fk[α⊥(r, t)] ≈
√
2

×
(

ak(t)−
1

4

∑

123

a1(t)a2(t)a
∗
3
(t)∆(1+ 2− 3− k)

)

,

(2.30a)

Fk[α
∗
⊥(r, t)] ≈

√
2

×
(

a∗−k(t) −
1

4

∑

123

a∗
1
(t)a∗

2
(t)a3(t)∆(1+ 2− 3+ k)

)

.

(2.30b)

Using the above expansions in Eq. (2.22), it is pos-
sible to represent the Hamiltonian function H in terms
of canonical SW amplitudes ak, a∗

k
. Then, it is easy

to collect the terms of the same power in the SW am-
plitudes, representing, thus, the Hamiltonian function as

H ≈ H(0)+H(1)+H(2)+..., where the superscript denotes
the power of the terms respective to the SW amplitudes.
Here we limit the expansion to the 4-th order term H(4),
which correspond to the four-magnon processes. Usually,
this expansion is sufficient as the four-magnon process are
almost never prohibited by the conservation laws, and the
higher order terms in the expansion are rather small2.

1. Zeroth-order terms

The zeroth-order term of the Hamiltonian function is
expressed as:

H
(0) = −γB̃z,0(t) +

1

2
Γzz,0 . (2.31)

This term does not contain any SW amplitudes, and,
consequently, does not affect the magnetization dynam-
ics. It determines the energy of the static magnetization
state, which consists of the Zeeman energy of the mag-
netization in a uniform magnetic field (recall, that B̃z,0

is the spatially uniform component of the external field
Be,z(r, t)), and the static demagnetization energy of a
uniformly magnetized body.

2. First-order terms

The first-order terms of the Hamiltonian function have
the following form:

H
(1) = −

∑

k

γB̃∗
⊥,k(t)ak +D

∗
0a0 + c.c. , (2.32)

where for brevity we omit the explicit notation of the
time dependence of the SW amplitudes ak ≡ ak(t). To
analyze these terms it is convenient to split the external
field into a static and dynamic components: B̃⊥,k(t) =

B̃⊥,k + b̃⊥,k(t). Hereafter, we denote the static part of
the external field by a capital symbol, and the time-
dependent one (e.g. microwave field) by a lower case

symbol b̃(t). First, let us look at the static part. Using
the relations (2.5), one can derive the dynamic equations
for the SW amplitudes, associated with the first-order
terms of the Hamiltonian function:

dak
dt

= −i
∂H(1)

∂a∗
k

= i
(

γB̃⊥,k −D0∆(k)
)

. (2.33)

If the considered static magnetization state is stable,
then, in the absence of a time-dependent field, the time
derivative vanishes, dak/dt = 0 (note that this is a nec-
essary, but not a sufficient condition). Then, we get the

following condition: B̃⊥,k = 0 for k 6= 0, i.e. the static
field perpendicular to the direction of static magnetiza-
tion should be spatially uniform. It is an absolutely natu-
ral condition for the stability of a uniform magnetization
state which is considered here. Simultaneously, the par-
allel component of the external field Be,z(r) can remain
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spatially nonuniform. From the dynamic equations for
a0 one gets the following condition:

γB̃⊥,0 = D0 (2.34)

Recalling the definitions (2.26) and B̃⊥(r) =

(iBe,x +Be,y) /
√
2, this condition can be transformed

to the standard conditions of the static equilibrium in
a uniformly magnetized sample, Be,x = µ0MsNxz,0,
Be,y = µ0MsNyz,0.
If the static equilibrium conditions are satisfied, the

first-order terms of the Hamiltonian function are simpli-
fied to:

H
(1) = −

∑

k

γb̃∗⊥,k(t)ak + c.c. . (2.35)

These terms describe the interaction of the SWs with the
time-dependent magnetic field which is perpendicular to
the direction of static magnetization. Such an interac-
tion is responsible for the linear excitation of SWs. In
the opposite case, when the equilibrium conditions are
not satisfied, one can not follow the formalism below, and
should find a real equilibrium magnetization state (pos-
sibly, nonuniform), and introduce canonical variables on
the background of this real equilibrium state.

3. Second-order terms

After collecting all the terms, the quadratic part H(2)

of the Hamiltonian function can be expressed as:

H
(2) =

∑

k

[

Aka
∗
kak +

(

Bk

2
a∗ka

∗
−k + c.c.

)]

+
∑

1 6=2

γB̃z,2−1a1a
∗
2
+
∑

1,2

γb̃z,2−1(t)a1a
∗
2
.

(2.36)

The first sum is familiar from the linear SW theory. It
involves pairs of SWs with the same wave vectors, and
coupling of the SWs with opposite wave vectors, which
can be present in a general case. In fact, this coupling
reflects the fact that the magnetization precession is not
circular, but is elliptical, as it is shown in the next section.
The coefficient Ak is equal to:

Ak = γBz,0 − Γzz,0 + Qk

= ωH +
ωM

2
(Nxx,k +Nyy,k − 2ImNxy,k) ,

(2.37)

where ωH = γ (Bz,0 − µ0MsNzz,0). A general assump-
tion of the existence of non-symmetric magnetic self-
interactions used in this work results in the appearance
of the last term ImNxy,k in the definition of Ak. As a
consequence, Ak looses the symmetry in respect to the
wave vector inversion, Ak 6= A−k, while such a symme-
try is valid for the symmetric magnetic self-interactions.
As it will be shown below, this inequality qualitatively

affects the procedure of diagonalization of the quadratic
part of the Hamiltonian function.
The second term in Eq. (2.36) describes the coupling

of plane waves with arbitrary unequal wave vectors. This
coupling is present only in the case of a spatially inhomo-
geneous external field Be,z(r), and the coupling strength
is proportional to the Fourier-component of the external
field at nonzero k. In fact, it means that in the case of
an inhomogeneous field the plane waves having a definite
k cease to be the normal modes of a ferromagnetic body.
Instead, normal modes are formed by the sums of plane
waves, which are finite in the case of harmonic (e.g., sine-
or cosine-like) field, and are infinite otherwise. In the fol-
lowing we will not address this case and will assume that
the static external field is spatially uniform.
Finally, the last term represents the coupling of the

SW pairs having, in general, different wave vectors with
the time-dependent external field. It is a well-known
“parametric” coupling in the so called “parallel pump-
ing geometry”1,2, which can be understood as a “three-
quasiparticle” interaction when one microwave photon
splits into two magnons. The spatially uniform paramet-
ric pumping couples with the SWs having opposite wave
vectors, while a spatially nonuniform pumping can lead
to a coupling of SWs with arbitrary wave vectors69. The
different condition of the summation in the second and
last terms (1 6= 2 in the second term) appears because

the term B̃z,0a1a
∗
1
is already accounted in the first sum

∑

k
Akaka

∗
k
.

4. Third-order terms

The part of the Hamiltonian, which includes three SW
amplitudes ak can be written as:

H
(3) = −1

2

∑

123

[(D∗
1
+D

∗
2
) a1a2a

∗
3
+ c.c.] ∆(1+ 2− 3)

+
1

4

∑

123k

[

γb̃∗⊥,k(t)a1a2a
∗
3
+ c.c.

]

∆(1+ 2− 3− k) .

(2.38)

In the derivation of this third-order contribution we took
into account the stability conditions (2.34). The expres-
sion for H(3) is absolutely the same as in the case of sym-
metric magnetic self-interactions37. However, one should
remember, that the presence of antisymmetric interac-
tions changes the properties of the coefficients Dk (see
above).
The first term in Eq. (2.38) represents a pure 3-magnon

scattering process, namely splitting of a magnon 3 into
a pair of magnons 1 and 2, and the opposite process.
These scattering processes are allowed only when the mo-
mentum and energy conservation conditions are satisfied,
which depends on the sample geometry and material, and
on the external field. It should be noted, that if the reso-
nant 3-magnon processes are not allowed (i.e. if the con-
servation laws for the three-magnon process are not sat-
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isfied), but the 3-magnon interaction efficiency (D∗
1
+D∗

2
)

is non-zero, these “prohibited” processes may affect the
strength of the nonlinear processes of higher orders (see
Sec. III C).
The second term in Eq. (2.38) describes the scatter-

ing of a microwave photon and a magnon into two other
magnons. Such a process is, typically, weak, compared
to the common parametric interaction of SW pairs by a
microwave photon and the 3-magnon splitting processes.
Nevertheless, in certain cases such a process can be in-
volved in the limitation of the FMR amplitude at high
excitation fields6.

5. Fourth-order terms

The highest-order nonlinear SW processes, which we
consider in the current work, are the fourth-order pro-
cesses. The importance of these processes is related with
the fact, that some of them are always allowed, as the
energy and momentum conservation laws for such pro-
cesses can be satisfied for any SW spectrum. For exam-
ple, a scattering of a pair of magnons with wave vectors 1
and 2 into a pair of magnons with the same wave vectors
(1,2) → (1,2), but, possibly, different phases, is always
allowed. Obviously, the process (1,1) → (1,1) is also
allowed in any case. While this kind of the 4-magnon
processes does not change the number of magnons, these
processes affect the magnon phase, being, in particu-
lar, responsible for the nonlinear frequency shift (pro-
cess (1,1) → (1,1)), or the “phase mechanism” of the
limitation of the parametric instability growth (process
(1,2) → (1,2))2.
In a general case, the fourth-order terms of the Hamil-

tonian function can be written as:

H
(4) =

1

2

∑

1234

Ψ12,(−3)(−4)a1a2a
∗
3
a∗
4
∆(1+ 2− 3− 4)

+
1

3

∑

1234

[Φ123,4a1a2a3a
∗
4
+ c.c.] ∆(1+ 2+ 3− 4) ,

(2.39)

where the coefficients are equal to:

Ψ12,34 = −1

4
(Q1 + Q2 + Q−3 + Q−4)

+
1

4
(Γzz,1+3 + Γzz,1+4 + Γzz,2+3 + Γzz,2+4) ,

(2.40)

and

Φ123,4 = −1

4
(B1 +B2 +B3) . (2.41)

In the notations of the above presented coefficients we
used a common convention, when the indices, which can
be interchanged without any effect on the coefficient, are
not separated by a comma, while the indices (or groups of

indices) separated by a comma, can not be interchanged.
For example, Ψ12,34 = Ψ21,34, but Ψ12,34 6= Ψ13,24, as
one can check from the definition (2.40).
The properties of the 4-magnon coefficients follow from

Eqs. (2.24, 2.25, 2.27). Namely, the coefficient Ψ12,34 is
real-valued, Ψ12,34 = Ψ(−3)(−4),(−1)(−2). At the same
time, Ψ12,34 6= Ψ(−1)(−2),(−3)(−4) in the general case,
while the equality in this equation is fulfilled in the case
of symmetric magnetic self-interactions.

III. CONVERSION TO THE LINEAR NORMAL

MODES

A. Diagonalization of the quadratic part of the SW

Hamiltonian function

The Hamiltonian expansion presented in the previous
section gives, in principle, the full description of the linear
and nonlinear SW processes up to the fourth order. How-
ever, this description is rather cumbersome, since SWs
with different wavenumbers remain coupled even in the
second-order terms of the Hamiltonian, which describe
the linear SW dynamics. This demonstrates that cir-

cularly polarized plane waves are not the normal modes
(or eigenmodes) of a considered ferromagnetic sample. It
turns out that the normal SW modes have the elliptical
polarization, because of the presence of the anisotropy
in a magnetic material and because of the anisotropic
nature of the dipolar interaction. Only in some specific
cases, and in the limit of purely exchange SWs, the po-
larization of SWs becomes circular.
The transformation from the circularly polarized plane

waves to elliptically polarized linear SW normal modes
is called the diagonalization of the quadratic part of
the SW Hamiltonian, and is performed using a canon-
ical linear transformation. In the SW theory this trans-
formation was introduced by Hostein and Primakoff in
194070, and is often called “third Holstein-Primakoff
transformation”. The similar transformation was later
introduced by Bogoliubov and Valatin in the theory of
superconductivity71,72. By this transformation new SW
variables ck,

73 are introduced, and in terms of these vari-
ables the quadratic part of the SW Hamiltonian function
assumes a diagonal form:

H
(2) =

∑

k

ωkckc
∗
k
. (3.1)

Then, it becomes clear that in terms of the variables ck,
73

the Hamiltonian equations of motion, in which only a
quadratic part of the Hamiltonian function is retained,
become uncoupled from each other and assume the sim-
ple form dck/dt = −iωkck, which demonstrates that ck
are the linear eigenmodes of the system. Naturally, the
quantity ωk has the meaning of an eigenfrequency of a
linear SW mode ck.
In the case of a uniform external field, when the second

sum in Eq. (2.36) is identically zero, the relation between
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the new variables ck and the old variables ak is given by:

ak(t) = ukck(t) + vkc
∗
−k ,

a∗−k
(t) = v∗

k
ck(t) + ukc

∗
−k

,
(3.2)

where the coefficients are equal to:

uk =

√

Ak + ωk

2ωk

, vk = − Bk

|Bk|

√

Ak − ωk

2ωk

, (3.3)

and the SW frequency is defines as:

ωk =
√

A2
k
− |Bk|2 . (3.4)

It is important to note, that the third Holstein-
Primakoff transformation (3.2) was derived in the case
of symmetric magnetic self-interactions, and are not ap-
plicable in our more general case of non-symmetric in-
teractions. Using the mathematical procedure of the of
a matrix diagonalization, we found that the quadratic
part of the Hamiltonian function in the presence of anti-
symmetric interactions can be diagonalized by the trans-
formation (3.2), but with the coefficients defined by the
following relations:

uk =

√

A−k + ωk

2ωk +A−k −Ak

,

vk = − Bk

|Bk|

√

Ak − ωk

2ωk +A−k −Ak

.

(3.5)

The SW frequency in this case is given by:

ωk =
Ak −A−k

2
+

√

(

Ak +A−k

2

)2

− |Bk|2 . (3.6)

The above derived transformation (3.5) represents impor-
tant result of this work, which allows us to derive explicit
expression for the coefficients of nonlinear interactions of
normal SW modes.
One can easily verify that these transformation are

canonical, as
(

u2
k
− |vk|2

)

= 1, that allows to fulfill the
conditions of the canonical transformations: {ck, ck′} =
0, {c∗−k

, c∗−k′} = 0 and {ck, c∗−k′} = ∆(k − k
′), where

{f, g} denotes the Poisson’s brackets respective to ak,
a∗−k

. It is also clear, that in the case of symmetric mag-
netic self-interactions, when Ak = A−k, the expressions
(3.5) are reduced to the standard Holstein-Primakoff
transformations (3.3).
It is important to note, that in a general case ωk 6=

ω−k, which means that the SW spectrum can be nonre-
ciprocal. We also have uk = u−k and vk = v−k meaning,
that the SW structure (ellipticity) does not change with
the reversal of the propagation direction. Moreover, us-
ing the definition (2.37) of Ak, one can find, that the
coefficients uk and vk are completely independent of the
term ImNxy,k, which is the only term in Ak and Bk re-
flecting the presence of the antisymmetric interactions.

Thus, we can conclude that the presence of antisymmet-
ric magnetic self-interactions affects the SW dispersion
relation ωk, but does not affect SW polarization proper-
ties. For the case of IDMI this fact has been previously
pointed in Refs. 55 and 58.

B. Transformation of the nonlinear coefficients

Now, using the transformations (3.2, 3.5) in the SW
Hamiltonian function, we can represent it in terms of the
amplitudes of the SW normal modes ck(t). Although
this action is straightforward, it is a rather tedious and
cumbersome algebraic operation. Below, we present the
general expressions for all the third- and fourth-order
nonlinear coefficients in the Taylor expansion of the SW
Hamiltonian function. These general expressions for the
nonlinear interaction coefficients of SWs having arbitrary
wave vectors are rather cumbersome, but in many impor-
tant particular cases they could be significantly simplified
due to a symmetry of the considered nonlinear processes.
For example, among the fourth-order nonlinear processes,
the most important are the processes (1,1) → (1,1) and
(1,2) → (1,2).
The zeroth-order term of the SW Hamiltonian func-

tion, naturally, remains unchanged. The first-order term
(2.35) is transformed to the following form:

H
(1) = −

∑

k

γ
[

ukb̃
∗
⊥,k(t) + v∗kb̃⊥,−k

]

ck + c.c . (3.7)

The term in the brackets here describes the effect of the
precession ellipticity on the interaction of a SW with an
external magnetic field.
The second-order term, including the interaction of

magnons with dynamic magnetic fields, can be written
as:

H
(2) =

∑

k

ωkckc
∗
k +

∑

12

b̃z,2−1 (u1u2 + v∗
1
v2) c1c

∗
2

+
∑

12

[

1

2
b̃−1−2 (u1v

∗
2
+ v∗

1
u2) c1c2 + c.c.

]

.

(3.8)

The first term here, as discussed above, defines the eigen-
frequencies of the SW normal modes. The second term
describes interaction of a microwave photon with two dif-
ferent magnons. This interaction, usually, is not very
strong since the resonance condition for such a process
is rather difficult to satisfy, because it requires a highly
spatially nonuniform distribution of the microwave mag-
netic field. The last term corresponds to the familiar
(and much more efficient) parametric excitation of SWs
under parallel microwave pumping1,2.
In the consideration of the third-order terms in the SW

Hamiltonian function we limit ourselves to the pure non-
linear magnon-magnon interactions, and neglect the pro-
cesses of the photon-stimulated 3-magnon interactions
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caused by the the second term in Eq. (2.38). Then, the
third-order term in the Hamiltonian function describing
only the magnon-magnon interactions in terms of the am-
plitudes of the normal SW modes is expressed as:

H
(3) =

1

3

∑

123

[U∗
123

c1c2c3 + c.c.] ∆(1+ 2+ 3)

+
∑

123

[

V ∗
12,3c1c2c

∗
3
+ c.c.

]

∆(1+ 2− 3) .
(3.9)

The coefficients of the three-magnon interaction are:

U123 = −1

2

[(

D1u1 +D
∗
−1

v1
)

(u2v3 + v2u3)

+
(

D2u2 +D
∗
−2

v2
)

(u1v3 + v1u3)

+
(

D3u3 +D
∗
−3

v3
)

(u1v2 + v1u2)
]

,

(3.10)

and

V12,3 = −1

2

[(

D1u1 +D
∗
−1

v1
)

(u2u3 + v2v
∗
3
)

+
(

D2u2 +D
∗
−2

v2
)

(u1u3 + v1v
∗
3
)

+ (D∗
3
u3 +D−3v

∗
3
) (u1v2 + v1u2)] .

(3.11)

Although these expressions appear to be cumbersome,
they have a clear structure, if one recalls the above intro-
duced rules of indices interchange in the SW nonlinear
interaction coefficients.
It should be noted, that the ellipticity of the magne-

tization precession results in the appearance of qualita-
tively new term in the expansion of the SW Hamiltonian
function - the first term in Eq. (3.9). From a formal point
of view this term and its complex conjugate correspond
to the appearance of three magnons from “vacuum”, or to
the annihilation of three magnons. Such a term, however,
can not become resonant, since, although the momentum
conservation 1 + 2 + 3 = 0 can be satisfied, the energy
conservation condition ω1 + ω2 + ω3 = 0 can not, be-
cause for any stable magnetization configuration ωk ≥ 0.
Nevertheless, these non-resonant three-magnon processes
can play a role in the resonant nonlinear processes of a
higher (fourth) order (see explanation presented in the
next subsection).
The fourth-order terms in the expansion of the Hamil-

tonian function after the transformation to normal SW
modes acquire the following form:

H
(4) =

1

2

∑

1234

W12,34c1c2c
∗
3
c∗
4
∆(1+ 2− 3− 4)

+
∑

1234

[

G∗
123,4c1c2c3c

∗
4
+ c.c.

]

∆(1+ 2+ 3− 4)

+
1

4

∑

1234

[R∗
1234

c1c2c3c4 + c.c.]∆(1+ 2+ 3+ 4) .

(3.12)

As in the case of the third-order terms, the SW el-
lipticity results in the appearance of new terms in the

Hamiltonian expansion, in particular, the last sum in the
above presented expression. These terms are always non-
resonant, and, therefore, can effectively contribute only
to the 5-wave and higher-order magnon-magnon interac-
tion processes. For this reason we do not present here
the explicit expression for the corresponding nonlinear
coefficient R1234.
The remaining coefficients of four-magnon nonlinear

interaction are given by the following expressions:

W12,34 = Ψ12,(−3)(−4)u1u2u3u4 +Ψ(−1)(−2),34v
∗
1
v∗
2
v3v4

+Ψ2(−3),1(−4)v
∗
1
u2v3u4 + Ψ(−2)3,(−1)4u1v

∗
2
u3v4

+Ψ1(−3),2(−4)u1v
∗
2
v3u4 + Ψ(−1)3,(−2)4v

∗
1
u2u3v4

+Φ123,4v
∗
1
v∗
2
u3v4 +Φ∗

123,4u1u2v3u4

+Φ412,3v
∗
1
v∗
2
v3u4 +Φ∗

412,3u1u2u3v4

+Φ341,2v
∗
1
u2u3u4 +Φ∗

341,2u1v
∗
2
v3v4

+Φ234,1u1v
∗
2
u3u4 +Φ∗

234,1v
∗
1
u2v3v4 ,

(3.13)

and

G123,4 =
1

3

[

Ψ12,3(−4)u1u2v3u4 +Ψ(−1)(−2),(−3)4v1v2u3v
∗
4

+Ψ23,1(−4)v1u2u3u4 +Ψ(−2)(−3),1(−4)u1v2v3v
∗
4

+Ψ13,2(−4)u1v2u3u4 +Ψ(−1)(−3),(−2)4v1u2v3v
∗
4

+Φ123,4u1u2u3u4 +Φ∗
123,4v1v2v3v

∗
4

+Φ412,3u1u2v3v
∗
4
+Φ∗

412,3v1v2u3u4

+Φ341,2u1v2u3v
∗
4
+Φ∗

341,2v1u2v3u4

+ Φ234,1v1u2u3v
∗
4
+Φ∗

234,1u1v2v3u4

]

.

(3.14)

One can easily derive these expressions by direct sub-
stitution of the transformations Eq. (3.2) to Eq. (2.39),
accounting for the symmetry properties of the coefficients
Ψ12,34 and Φ123,4.
Using the above presented expressions, one can cal-

culate the efficiency of any relevant nonlinear SW in-
teraction up to the forth order. In the limit of sym-
metric magnetic self-interactions, when Dk = D−k and
Ψ12,34 = Ψ(−1)(−2),(−3)(−4), these expressions are re-
duced to Eqs. (60-65) from Ref. 37. Also, in the case of a
circular polarization of SWs (e.g., in the limit of purely
exchange SWs), when uk = 1 and vk = 0, one can find
U123 = 0, V12,3 = −(D1+D2)/2,W12,34 = Ψ12,(−3)(−4),
G123,4 = Φ123,4/3, and R1234 = 0, in full agreement
with Eqs. (2.38, 2.39).

C. Elimination of the non-resonant three-wave

terms

Using the above derived expansion of the SW Hamil-
tonian function in terms of the normal mode amplitudes
ck, one can investigate the nonlinear SW dynamics. Nat-
urally, in practical particular cases it is not necessary
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to take into account all the existing nonlinear magnon-
magnon interactions, as, typically, only the resonant
ones, which satisfy both the momentum and energy con-
servation laws, play a significant role in the interaction
outcome. In real magnetic systems, due to the effect of
dissipation, the frequency (energy) conservation laws can
be satisfied only approximately, to the accuracy of the
SW damping rate. Therefore, in most practical cases it
is sufficient to take into account only the “resonant” non-
linear processes, since the influence of other processes,
which are far from the resonance conditions, is, typically,
negligible.
However, in certain cases the non-resonant processes

cannot be simply neglected. It is known, that the non-
resonant nonlinear processes of a lower order can sig-
nificantly influence the resonant processes of a higher or-
der. In particular, the non-resonant three-wave processes
can contribute to the intensity of the resonant four-wave
processes, as it was pointed out for the first time by
Zakharov74. This contribution can be understood as a
four-wave process, mediated by the creation and anni-
hilation of a “virtual” magnon. For example, a four-
magnon process (1,2) → (3,4) can be a combination
of 2 subsequent three-magnon processes (1,2) → 5 and
5 → (3,4), mediated by a “virtual” magnon 5. To ac-
count for the effect of such non-resonant interaction pro-
cesses one needs to perform an additional transformation
of variables, which is nonlinear, and, strictly speaking,
only approximately canonical. The presence of the anti-
symmetric interactions does not lead to any changes in
this additional transformation, and we will not reproduce
it here. The complete description of this transformation
can be found, e.g., in the Refs. 7, 75, and 76.

IV. APPLICATION: THREE-MAGNON

SPLITTING AND NONLINEAR FREQUENCY

SHIFT OF SPIN WAVES SUBJECTED TO IDMI

A. Ferromagnetic nanowire

In this section we apply the above developed formal-
ism to the investigation of nonlinear SW interaction in
a magnetic sample subjected to IDMI. Specifically, we
study a nanowire made of a ferromagnetic-heavy-metal
bilayer (e.g., CoFeB-Pt), having the width wx and the
ferromagnetic layer thickness h, as shown in the sketch
Fig. 1. The nanowire is magnetized in its plane by
an external field Be, so that the static magnetization
M0 makes the angle φM with the direction of the SW
propagation (axis of the nanowire). The spectrum of a
nanowire, in general, contains a set of SW modes with
different width profiles. Here, we restrict our analy-
sis to the case of a quasi-uniform width mode. If the
nanowire is sufficiently narrow (the width is less than
100-200 nm, typically67), the quasi-uniform mode is the
fundamental mode of the nanowire, being the lowest in
frequency. Also, in a certain frequency range this mode

MgO

Pt / CoFeB

M0

x

y

z

h

Be

y'

z'

k

M

B

x'

M0

SW

wx

FIG. 1. A sketch of the considered bilayer nanowire, showing
the directions of the bias magnetic field Be, static magnetiza-
tion M0, and the principal and auxiliary coordinate systems
(see text).

is not frequency-degenerate with any other width mode
of the nanowire, meaning that it can be the only one ex-
cited, and that the magnetization dynamics in this fre-
quency range is determined by the fundamental mode
only.
To apply the above developed formalism one needs to

derive expressions for effective SW tensor N̂k for the
nanowire sample. It is convenient, first, to derive the
tensor N̂ in a standard coordinate system, having axes
aligned with the axes of the nanowire (coordinate sys-
tem (xyz) in Fig. 1). The contribution of the IDMI in
this “principal” coordinate system is described by the
expression (2.21). Since in our case the SW wave vector
is always parallel to the y-axis, k = kyey, in Eq. (2.21)
we set kx = 0. The exchange interaction is described
by the diagonal tensor N̂ex,k = λ2

exk
2
yÎ (see Eqs. (2.8,

2.20). The dipolar interaction in the considered case of
quasi-uniform mode is described by the tensor66,67

N̂dip,k ≡ F̂k =
1

2πwx

∞
∫

−∞

sinc2
(

kxwx

2

)

ˆ̃
Ndip,Kdkx ,

(4.1)
where

ˆ̃
Ndip,K =











k2x
K2

f(Kh)
kxky
K2

f(Kh) 0

kxky
K2

f(Kh)
k2y
K2

f(Kh) 0

0 0 1− f(Kh)











,

(4.2)

with K =
√

k2x + k2y and f(x) = 1 − (1 − e−|x|)/|x|.
In fact, the integration in Eq. (4.1) yields identical ze-
ros for all the off-diagonal components, so the tensor
F̂k has only 3 nonzero components, Fxx,k, Fyy,k and
Fzz,k. Finally, we also need to take into account the
perpendicular surface magnetic anisotropy, which is es-
pecially important for ultrathin magnetic films. Ac-
cording to Eqs. (2.10, 2.20), the corresponding contri-
bution to the SW tensor has only one nonzero compo-
nent, (N̂an,k)zz = nan = −2Ks/(µ0M

2
s h), where Ks is

the constant of the surface magnetic anisotropy.
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In the Hamiltonian formalism the effective SW ten-
sor should be expressed in the coordinate system having
axis z′ parallel to the static magnetization (x′y′z′ sys-
tem in Fig. 1). The rotation of the coordinate system is
expressed via the rotation tensor:

T̂ =





− cosφM sinφM 0
0 0 1

sinφM cosφM 0



 . (4.3)

Then, the effective SW tensor in the new (auxiliary) coor-

dinate system is expressed as N̂
(x′y′z′)
k

= T̂ ·N̂ (xyz)
k

·T̂−1.
By direct calculations one finds the following expressions
for the components of the effective SW tensor:

Nx′x′,k = λ2
exk

2
y + Fxx,k cos

2 φM + Fyy,k sin
2 φM ,

Nx′y′,k = −Ny′x′,k = −ikyd̃ sinφM ,

Nx′z′,k = Nz′x′,k = (Fyy,k − Fxx,k) sinφM cosφM ,

Ny′y′,k = λ2
exk

2
y + Fzz,k − nan ,

Ny′z′,k = −Nz′y′,k = ikyd̃ cosφM ,

Nz′z′,k = λ2
exk

2
y + Fxx,k sin

2 φM + Fyy,k cos
2 φM ,

(4.4)

where we used the short notation d̃ = 2D̃/(µoM
2
s ). Us-

ing these expressions for the components of the effective
SW tensor, we derived the following expressions for the
coefficients (2.24 - 2.27):

Qk =
ωM

2

(

2λ2
exk

2
y + Fxx,k cos

2 φM + Fyy,k sin
2 φM

+Fzz,k − nan + 2kyd̃ sinφM ) ,

Bk =
ωM

2

(

Fzz,k − nan − Fxx,k cos
2 φM − Fyy,k sin

2 φM

)

,

Dk =
iωM√

2

[

(Fyy,k − Fxx,k) sinφM + ky d̃
]

cosφM ,

Γz′z′,k = ωM

(

λ2
exk

2
y + Fxx,k sin

2 φM + Fyy,k cos
2 φM

)

.
(4.5)

The equilibrium condition (2.34) in our case is re-
duced to µ0MsFxx,0 sinφM cosφM = Be sin(φB − φM ),
which is a pretty standard condition for a ferromag-
netic nanowire. Naturally, this condition is not affected
by the IDMI. For the derivation of this condition we
used the identities Fyy,0 = 0 and B̃⊥,0 = iBe,x′/

√
2 =

−iBe sin(φB − φM )/
√
2.

According to Eq. (2.37), the coefficient Ak = ωH +Qk,
where ωH = γBe cos(φB−φM )−ωMFxx,0 sin

2 φM . Using
these expressions in the general equation Eq. (3.6), we
can directly calculate the dispersion relation of the linear
SWs propagating in the nanowire:

ωk =
√

ωH + ωM

(

λ2
exk

2
y + Fxx,k cos2 φM + Fyy,k sin

2 φM

)

×
√

ωH + ωM

(

λ2
exk

2
y + Fzz,k − nan

)

+ ωMkyd̃ sinφM .

(4.6)

A similar SW dispersion equation in different particular
cases was previously derived in Refs. 46, 47, 55, and 60.

The influence of the IDMI results in the appearance of the
last term, which is linear in the SW wavenumber, and is
nonreciprocal. Note, that this peculiarity is general. The
nonreciprocity coming from an antisymmetric magnetic
self-interaction always appears as an additive term in the
dispersion relation for SWs, as can be seen from Eq. (3.6).
Next, let us look at the three-wave terms of the Hamil-

tonian. The coefficients of the three-magnon interaction
V12,3 and U123 are proportional to the values D1, D2,
D3. The Di values are proportional to Dk ∼ cosφM , in-
dependently of the length of the SW wave vector. Thus,
in the case φM = 90o (often called the “Damon-Eshbach
geometry”), i.e. when the nanowire is magnetized in its
plane perpendicularly to the nanowire axis, the three-
magnon interaction efficiency is identically zero for all the
SWs independently of the magnitude of their wave vec-
tor. Thus, the fundamental SW mode of a transversely
magnetized nanowire cannot split into two other SWs of
the fundamental SW branch (notes on the splitting of a
propagating fundamental SW into different SW branches
are given below).
This feature could be very useful, as the three-magnon

splitting is often an undesirable process, which limits the
maximum power at which the SW propagation is stable.
It is also important, that the three-magnon splitting is
prohibited for the propagation angle φM = 90o, at which
the nonreciprocity of a linear SW dispersion is maximum.
Thus, the nanowires made of the ferromagnetic-heavy-
metal bilayers with a proper magnetization direction can
support the propagation of stable nonreciprocal SWs of
a relatively large amplitude.
Now, we consider the influence of the IDMI on the non-

linear frequency shift of SWs propagating in a ferromag-
netic nanowire. This nonlinear frequency shift is a result
of the 4-magnon interaction of the type (k,k) → (k,k),
and leads to the following power-dependent modification
of the SW dispersion:

ωk(ck) = ωk(0) + Tk|ck|2 , (4.7)

where ωk(0) describes the linear SW dispersion, given
by Eq. (4.6), and the coefficient Tk ≡ Wkk,kk. For this
particular four-wave process the general expression (3.13)
is greatly simplified, and yields:

Wkk,kk = Ψkk,(−k)(−k)u
4
k + 4Ψk(−k),k(−k)u

2
k|vk|2

+Ψ(−k)(−k),kk|vk|4 + 2
[

Φkkk,kukv
∗
k

(

u2
k
+ |vk|2

)

+ c.c.
]

.

(4.8)

For simplicity, we consider here only the case of the
Damon-Eshbach geometry, i.e. φM = φB = 90o. As it
was pointed out above, in this geometry all the three-
magnon splitting processes have zero efficiency, and,
therefore, one does not need to calculate the contribu-
tion from the non-resonant three-magnon processes to
the four-magnon scattering efficiency.
Calculating the values of the coefficients Ψ12,34 ac-

cording to Eq. (2.24), and using the definitions (3.5), we,
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finally, arrive to the following compact expression for the
coefficient of the nonlinear frequency shift:

Tk = (γBe − Āk) +
B2

k

2ω̄2
k

(

ωM

[

4λ2
exk

2
y + Fxx,2k − Fxx,0

]

+3γBe)− kyd̃
ωM Āk

ω̄k

.

(4.9)

Here, for brevity, we introduce Āk ≡ (Ak + A−k)/2 and
ω̄k = (ωk + ω−k)/2, which are, in fact, the values of Ak

and ωk in the absence of the IDMI. The first two terms
in the expression (4.9) are standard ones for a ferromag-
netic nanowire without the IDMI77. The influence of
the IDMI is reflected in the appearance of the last term,
which is nonreciprocal. It is important, that this nonre-
ciprocal contribution to the nonlinear frequency shift has
the sign that is opposite to the sign of the IDMI contri-
bution to the linear SW dispersion (see Eqs. (4.6, 4.9)).
This means that with the increase of the SW amplitude
the nonlinear nonreciprocal term in the dispersion law
will partly compensates the linear one. Thus, the nonre-
ciprocal splitting of the SW dispersion will decrease with
the increased SW power, and the dispersion relation of
a nonlinear SWs becomes less nonreciprocal with the in-
crease of the wave amplitude.

To illustrate this effect we calculated the dispersion re-
lation of SWs having different amplitudes for the example
of a CoFeB/Pt bilayer nanowire of the width wx = 50 nm,
and CoFeB thickness h = 1.5 nm. The material parame-
ters used in calculations are56: saturation magnetization
µ0Ms = 1.28T, exchange stiffness A = 2 × 10−11J/m
(corresponding exchange length λex = 5.5 nm), constant
of the surface magnetic anisotropyKs = 5.5×10−4 J/m2,
and the effective IDMI strength per 1.5 nm film is
Db/h = 6.6 × 10−4 J/m (corresponding value d̃ = 1).
The value of the external bias magnetic field is assumed
to be Be = 0.2T.

The calculated SW spectra are shown in Fig. 2. For
all the SW wave vectors the nonlinear frequency shift
is negative (which is typical for the in-plane magne-
tized ferromagnetic films and nanowires), and increases
with the SW wave number. It is also clearly seen, that
the nonreciprocity of the SW spectrum decreases with
the increase of the SW amplitude. While for small-
amplitude linear SWs the spectrum is clearly nonrecip-
rocal, having the nonreciprocal linear frequency shift of
(ωk − ω−k)/2π = 7.2GHz at |ky| = 0.1 nm−1, the spec-
trum of nonlinear SWs with the amplitude ck = 0.8 looks
much more reciprocal, and the corresponding nonrecipro-
cal spectral shift at the same value of the SW wavenum-
ber is only 2.4 GHz. This effect can be useful for the
development of power-dependent nonreciprocal devices.
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FIG. 2. SW spectrum of a CoFeB/Pt bilayer nanowire for
different dimensionless amplitudes ck of the propagating SWs.
The calculation parameters are given in the text.

B. Ferromagnetic film

The case of a ferromagnetic film, magnetized in its
plane, is considered in a similar way. All the expres-
sions (4.4) for the effective SW tensor remain the same
with only the change of the dynamic dipolar contribution,
namely Fxx,k = 0, Fyy,k = f(kh) and Fzz,k = 1 − f(kh)

(note, that f(x) = 1 − (1 − e−|x|)/|x|). Making this
substitution in Eq. (4.6), one gets a well-known disper-
sion relation for the linear SWs in a thin ferromagnetic
film46,56.
Considering three-magnon splitting, we arrive at the

same conclusion, that an SW, which propagates perpen-
dicular to the static magnetization, cannot split into two
SWs, propagating in the same direction. Indeed, in this
case we get D1 = D2 = D3 = 0, and, consequently,
V12,3 = 0.
However, in the case of a film that is unrestricted in

its plane the SWs can propagate at an arbitrary angle to
the static magnetization, and the three-magnon splitting
into non-collinear SWs is allowed. To analyze this case,
it is convenient to use the components of the SW wave
vectors instead of the angles φ in respect to the static
magnetization direction. The reference coordinate sys-
tem is shown in Fig. 3(a). Then, the coefficient Dk for
an arbitrary SW can be obtained from Eqs. (4.5) in the
form:

Dk =
iωM√

2

(

kxky
k2

f(kh) + kxd̃

)

. (4.10)

Denoting the initial SW as the third one, and the sec-
ondary SWs as the first and second (i.e. considering
the three-wave splitting process k3 → (k1,k2)), we get
Dk3

= 0. Additionally, the momentum conservation rule
requires that k3 = k1+k2, or, in terms of the wave vector
components, ky,3 = ky,1 + ky,2 and kx,1 = −kx,2.
Substituting these expressions into the definition of the
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FIG. 3. Three-magnon splitting in a ferromagnetic-heavy-
metal bilayer film: (a) considered geometry of the static mag-
netization and initial SW propagation direction, (b) & (c) –
prohibited splitting processes, (d) – allowed splitting process.

three-magnon scattering coefficient Eq. (3.11), we found,
that in a general case, the splitting coefficient V12,3 is
not required to be zero, and the three-magnon splitting
processes are allowed. The are only two exceptions: (i)
splitting of an SW into two collinear SWs, and (ii) a sym-
metric splitting, when the wave vectors of the resulting
waves possess a mirror symmetry relative to the initial
SW, i.e. when ky,1 = ky,2. Thus, in a ferromagnetic-
heavy-metal bilayer film three-magnon splitting can oc-
cur even in the Damon-Eshbach geometry, if, of course,
the resonance conditions are satisfied. A schematic illus-
trations of the prohibited and allowed splitting processes
are shown in Fig.3.
These results can be generalized qualitatively to the

case of a relatively wide ferromagnetic nanowire, in which
many different width modes are degenerate, and the 3-
magnon splitting resonance condition ω3 = ω1 + ω2 can
be satisfied for the SWs belonging to different branches
of the SW spectrum (i.e. to the modes having different
width profiles).
If we consider a higher-order SW width mode as a su-

perposition of a plane wave with a transverse component
of the wave vector kx and −kx, it becomes clear, that in
the Damon-Eshbach geometry a fundamental (uniform)
SW mode cannot scatter into higher-order SWs of the
same SW branch. At the same time, the scattering into
SW modes having different width profiles could be al-
lowed. The SW property that in a symmetric system
a symmetric three-magnon SW splitting is prohibited,
while a non-symmetric one is allowed, is not unique, and
was described for the SWs in bulk ferromagnets2, and for
SW modes of a magnetic vortex65.
Finally, we note that the nonlinear frequency shift

in the case of a bilayer film and magnetization angle
φM = 90o is also expressed by Eq. (4.9) with corre-
sponding substitution of the dipolar tensor components.
Indeed, as it is shown in Refs. 2 and 75, only the non-
resonant three-magnon processes involving the SWs with
wave vectors ±k, ±2k and k = 0 contribute to the renor-
malization of the four-magnon nonlinear coefficients. In
the considered case all the three-magnon processes that
involve the SWs, which are collinear, and propagate per-
pendicular to the static magnetization, have zero effi-

ciency, and, therefore, it is not necessary to calculate
corrections caused by these three-wave processes to the
expression (4.9).

V. SUMMARY

In this work we presented a generalization of the theory
of nonlinear spin-wave dynamics based on the Hamilto-
nian approach to the case when the antisymmetric mag-
netic interactions are present. The developed formalism
allows one to calculate the linear SW dispersion and the
coefficients of nonlinear SW interactions for propagating
SWs in a uniformly magnetized sample with arbitrary
symmetric and antisymmetric magnetic self-interactions,
quadratic in magnetization. In particular, it allows to
account for the various types of a bulk and interfacial
Dzyaloshinskii-Moriya interactions, spin flexoelectric in-
teraction, etc. .
It was shown, that the presence of antisymmetric mag-

netic self-interactions reduces the symmetry of the ef-
fective SW tensor, and, consequently, the symmetry of
the coefficients of the Hamiltonian function expansion,
both for quadratic terms, three-magnon, four-magon,
and higher-order terms. We derived the generalized
third Holstein-Primakoff transformation, which diagonal-
izes the quadratic part of the SW Hamiltonian function
in a general case, as well as the explicit expressions for the
three- and four-magnon interaction coefficients. At the
same time, it was shown, that the antisymmetric interac-
tions can lead to the frequency nonreciprocity of the SW
spectrum, and could affect the nonlinear SW processes.
Also, it turned out, that the structure (ellipticity) of the
linear SWs is not affected by the antisymmetric inter-
actions, and the SWs propagating in opposite directions
have the same ellipticity (in the case of a uniform SW
spatial profile).
As an example of application of the developed gen-

eralized formalism, we considered nonlinear SW interac-
tions in ferromagnetic-heavy-metal bilayer nanowires and
films, subjected to the IDMI. It was shown that three-
magnon splitting, that is often undesirable in practical
signal-processing applications, can be completely avoided
in a nanowire, which is in-plane magnetized perpendicu-
larly to the nanowire axis.
In the case of a magnetic film which is unrestricted

in-plane, however, the three-magnon splitting for non-
collinear SWs could be allowed. Thus, the three-magnon
splitting into non-collinear SWs can occur for any magne-
tization direction, if, of course, the resonance conditions
for this splitting are satisfied.
It was, also, shown, that the nonlinear frequency shift,

which is caused by the four-magnon interaction processes,
is nonreciprocal, and the sign of the nonreciprocal term
in the nonlinear frequency shift is opposite to the sign of
the term describing the frequency nonreciprocity of linear
(small-amplitude) SWs. Consequently, the nonreciprocal
shift of the SW dispersion decreases with the increased



15

of the SW amplitude. This fact can be used for the de-
velopment of power-dependent nonreciprocal devices.
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29 Q. Wang, R. Verba, T. Brächer, P. Pirro, and A. V. Chu-
mak, “Integrated magnonic half-adder,” arXiv:1902.02855
[physics.app-ph].
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140403(R) (2008).

44 K.-W. Kim, H.-W. Lee, K.-J. Lee, and M. D. Stiles, Phys.
Rev. Lett. 111, 216601 (2013).

45 K. Zakeri, Y. Zhang, J. Prokop, T.-H. Chuang, N. Sakr,
W. X. Tang, and J. Kirschner, Phys. Rev. Lett. 104,
137203 (2010).

46 J.-H. Moon, S.-M. Seo, K.-J. Lee, K.-W. Kim, J. Ryu, H.-
W. Lee, R. D. McMichael, and M. D. Stiles, Phys. Rev.
B 88, 184404 (2013).

47 M. Kostylev, J. Appl. Phys. 115, 233902 (2014).
48 V. L. Zhang, K. Di, H. S. Lim, S. C. Ng, M. H. Kuok,

J. Yu, J. Yoon, X. Qiu, and H. Yang, Appl. Phys. Lett.
107, 022402 (2015).



16

49 G. A. Melkov, V. I. Vasyuchka, V. V. Lazovskiy, V. S.
Tiberkevich, and A. N. Slavin, Appl. Phys. Lett. 89,
252510 (2006).

50 B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra,
R. E. Camley, and Z. Celinski, Appl. Phys. Lett. 94,
202505 (2009).

51 T. J. Fal and R. E. Camley, J. Appl. Phys. 110, 053912
(2011).

52 J. Wu, X. Yang, S. Beguhn, J. Lou, and N. X. Sun, IEEE
Trans. Microwave Theory Techniques 60, 3959 (2012).

53 M. Mruczkiewicz, M. Krawczyk, G. Gubbiotti, S. Tacchi,
Y. A. Filimonov, D. V. Kalyabin, I. V. Lisenkov, and S. A.
Nikitov, New J. Phys. 15, 113023 (2013).

54 R. Verba, V. Tiberkevich, and A. Slavin, Appl. Phys. Lett.
107, 112402 (2015).
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and A. V. Chumak, “Spin pinning and spin-wave
dispersion in nanoscopic ferromagnetic waveguides,”
arXiv:1807.01358 [cond-mat.mes-hall].

68 In Refs. 66 and 67 the effective spin-wave tensor is denoted
by the symbol F̂k.

69 G. A. Melkov, A. A. Serga, V. S. Tiberkevich, Y. V. Kobl-
janskij, and A. N. Slavin, Phys. Rev. E 63, 066607 (2001).

70 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
71 N. N. Bogoljubov, Nuovo Cim. 7, 794 (1958).
72 J. G. Valatin, Nuovo Cim. 7, 843 (1958).
73 In the most of papers these new variables are denoted as

bk. Here we use notations ck, in order to not confuse with
the notations of microwave external field.

74 V. E. Zakharov, Sov. Phys. JETP 24, 740 (1967).
75 V. L. Safonov, Noneequilibrium Magnons:Theory, Experi-

ment and Applications (Wiley-VCH, Germany, 2013).
76 Q. Shi, V. L. Safonov, M. Mino, and H. Yamazaki, Phys.

Lett. A 238, 258 (1998).
77 R. Verba, M. Carpentieri, G. Finocchio, V. Tiberkevich,

and A. Slavin, Sci. Rep. 6, 25018 (2016).


