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A major open question in studies of nonequilibrium quantum dynamics is the identification of the
timescales involved in the relaxation process of isolated quantum systems that have many interacting
particles. We demonstrate that long timescales can be analytically found by analyzing dynamical
manifestations of spectral correlations. Using this approach, we show that the Thouless time, tTh,
and the relaxation time, tR, increase exponentially with system size. We define tTh as the time at
which the spread of the initial state in the many-body Hilbert space is complete and verify that it
agrees with the inverse of the Thouless energy. tTh marks the point beyond which the dynamics
acquire universal features, while relaxation happens later when the evolution reaches a stationary
state. In chaotic systems, tTh ≪ tR, while for systems approaching a many-body localized phase,
tTh → tR. Our analytical results for tTh and tR are obtained for the survival probability, which is a
global quantity. We show numerically that the same timescales appear also in the evolution of the
spin autocorrelation function, which is an experimental local observable. Our studies are carried out
for realistic many-body quantum models. The results are compared with those for random matrices.

I. INTRODUCTION

There is currently great interest in the dynamics of
isolated interacting many-body quantum systems. This
is in part due to the advances of experiments with cold
atoms, ion traps, and nuclear magnetic resonance plat-
forms, which allow for the simulation of unitary dynamics
of highly tunable Hamiltonians for long times1–9. Great
efforts have been devoted to conciliate reversible micro-
scopic dynamics and irreversible thermodynamics10–14.
Increasing attention has also focused on the analysis
of the metal-insulator transition15–19 and the quantum-
classical correspondence, especially in the context of
many-body quantum chaos and the scrambling of quan-
tum information20–27. A missing piece in these studies
is a complete picture of the timescales involved in the
relaxation to equilibrium.
Several works have discussed what equilibration in

closed finite quantum systems actually means28–35, a sub-
ject on which we find consensus. Equilibration refers to
the proximity of an observable to its asymptotic value
for most times, despite the presence of temporal fluctu-
ations. Much more problematic is the identification of
the time to reach equilibrium, for which there are several
interesting, but contradictory results. Some suggest that
equilibration happens at very short times, while others
indicate just the opposite, that extremely long times are
required10,36–43.
To properly determine the relaxation time of many-

body quantum systems, one needs to have a complete
picture of the different behaviors that emerge at differ-
ent timescales. Without that, one risks reaching mislead-
ing conclusions. Here, we unveil the timescales by using
an analytical expression that describes the entire evo-
lution of the survival probability for chaotic interacting
systems. The survival probability is the squared overlap
between the initial state and its time evolved counter-
part. Chaotic systems have strongly correlated eigen-

values that show level statistics comparable to what one
finds for full random matrices44,45.

An expression for the evolution of the survival prob-
ability was proposed in Ref.46 for a disordered spin-1/2
model in the chaotic regime. Here, we present all the
steps involved in the analytical derivation, which is not
tied to any specific model. The only assumptions made
are that the system is defined on a finite lattice, has local
two-body interactions only, is strongly chaotic, and that
its initial state is far from equilibrium and has energy
away from the borders of the spectrum. We confirm the
generality of our equation by showing that it describes
the whole evolution of the survival probability for the
following chaotic models: a disordered spin-1/2 model, a
clean (dynamical) spin-1/2 model, and a sparse banded
random matrix model.

In hands of the analytical equation for the survival
probability, we arrive at a central result of this work: an-
alytical estimates for two long timescales. One is what
we call Thouless time, tTh, which is the time for the
survival probability to reach its minimum value at the
bottom of the correlation hole, and the other is the re-
laxation time, tR, which happens later, when the sur-
vival probability saturates to an asymptotic value. The
correlation hole is a dip below the asymptotic value47–51,
that has been observed in local many-body Hamiltonians
with52,53 and without disorder53 and in the Sachdev-Ye-
Kitaev model22–24.

The Thouless time was first introduced in the context
of noninteracting systems, where it refers to the timescale
for a particle to diffuse through a disordered metallic
sample and reach the boundaries54. This definition has
been shown to agree with the inverse of the Thouless
energy ETh, which is the energy scale below which uni-
versality holds55. Our studies bring to light the fact that
these two approaches – diffusion and spectral correla-
tions – give different results for interacting systems. We
demonstrate that our definition of the Thouless time is
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indeed inversely proportional to the Thouless energy gen-
eralized to interacting systems in56. In contrast, our tTh

does not agree with definitions that employ transport
properties13,18,19,43.

According to our physical interpretation, the Thouless
time in interacting systems refers to the time that it takes
for an initially localized many-body state to fully spread
in the exponentially large many-body Hilbert space ac-
cessible to its energy. This picture explains why the two
approaches used to define the Thouless time in nonin-
teracting systems are not equivalent for interacting ones.
For single particle models, the Hilbert space coincides
with the physical space, so complete spread in the for-
mer implies complete spread in the latter. The situation
is quite different for many-body systems, for which the
dimension D of the Hilbert space is exponentially large
in the physical size. Complete spread in the many-body
Hilbert space requires a time exponentially large in the
system size.

We find that the Thouless time depends on the size of
the Hilbert space as tTh ∝ D2/3/Γ, where Γ is the width
of the energy distribution of the initial state. The relax-
ation time, tR ∝ D/Γ, also extracted directly from our
analytical equation for the survival probability, coincides
with the Heisenberg time, which is the longest possible
timescale for the system. Both scalings are confirmed by
exact numerical simulations.

These results are compared with the timescales ob-
tained analytically for full random matrices from a Gaus-
sian Orthogonal Ensemble (GOE). While the expression
for the relaxation time still coincides with the Heisenberg
time, full spreading in the Hilbert space is reached at a
time which is independent of the matrix size.

In addition to the survival probability, which is a global
quantity, we also investigate the local spin autocorrela-
tion function, which is equivalent to the density imbal-
ance measured in experiments with cold atoms7. Using a
disordered spin-1/2 model, we show that the timescales
for the spin autocorrelation function to reach the mini-
mum of the correlation hole and to later saturate coincide
with those found for the survival probability.

A natural question that emerges from these studies is
what happens to the timescales outside the chaotic re-
gion. To address this point, we investigate the dynamics
of the disordered spin model as the disorder strength in-
creases and the model leaves the chaotic regime toward
a many-body localized phase, where the eigenvalues are
no longer correlated. This affects the dynamics before57

and after the Thouless time52,53. We show that tTh grows
exponentially with the disorder strength and approaches
the relaxation time, that is tR/tTh → 1. In noninteract-
ing systems, this ratio is known as Thouless dimension-
less conductance.

The remainder of this article is organized as follows.
In Sec. II, we provide the general structure of the mod-
els considered and introduce the survival probability.
In Sec. III, we study numerically and analytically the
timescales for the survival probability evolving under

GOE Hamiltonians. In Sec. IV, we present the analytical
equation for the survival probability in realistic chaotic
interacting models and use it to obtain tTh and tR an-
alytically. The expression is compared with numerical
results for three realistic models of various system sizes.
In Sec. V, we study numerically how the timescales for
the disordered spin-1/2 model change as the system ap-
proaches localization in space. We also show that our
definition for the Thouless time is inversely proportional
to the Thouless energy. In Sec. VI, we study numerically
the spin autocorrelation function and find that the long
timescales agree with those for the survival probability.
In Sec. VII, we summarize our results and outline some
future directions. Appendix A describes the steps in-
volved in the derivation of the expression for the survival
probability for realistic chaotic systems.

II. GENERAL DEFINITIONS

The systems studied in this article are described by
real and symmetric Hamiltonians of the form

H = H0 + gV. (1)

We take ~ = 1. H0 is the integrable part of H , V rep-
resents the perturbation, and g = 1 is the perturbation
strength. The eigenvalues and eigenstates of H are la-
beled Eα and |ψα〉, respectively.
The system is prepared in an eigenstate |Ψ(0)〉 of H0

with energy

E0 = 〈Ψ(0)|H |Ψ(0)〉 (2)

close to the middle of the spectrum. Due to V , the initial
state spreads in time in the many-body basis defined by
H0. The perturbation takes the system very far from
equilibrium. To study the evolution of the initial state,
we compute the survival probability

PS(t) =
∣

∣〈Ψ(0)|e−iHt|Ψ(0)〉
∣

∣

2
, (3)

which represents the probability to find the system in the
initial state at time t.
The survival probability allows for two different inte-

gral representations. The first one is obtained by writing
it as

PS(t) =

∣

∣

∣

∣

∣

∑

α
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∣
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∣

∣

∣
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2

=

∣

∣

∣
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ρ0(E)e−iEtdE

∣

∣
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∣

2

, (4)

where C
(0)
α = 〈ψα|Ψ(0)〉 is the component of the initial

state over the energy eigenbasis and

ρ0(E) =
∑

α

∣

∣

∣C(0)
α

∣

∣

∣

2

δ(E − Eα) (5)

is the energy distribution of the initial state, which is
also known as local density of states (LDOS) or strength
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function. The width Γ of this distribution is given by

Γ2 =
∑

n6=0

|〈φn|H |Ψ(0)〉|2, (6)

where |φn〉 are the eigenstates of H0. Γ
2 is related to the

number of states |φn〉 directly coupled to the initial state
by V .
We take averages over initial states with energies close

to the middle of the spectrum, E0 ∼ 0. For random
models, we also average over different realizations of the
Hamiltonian. We denote the total average by 〈.〉. For
clean models, the average is performed only over initial
states.
The asymptotic value of the survival probability cor-

responds to its infinite time-average,

PS =

〈

∑

α

∣

∣

∣C(0)
α

∣

∣

∣

4
〉

. (7)

If the coefficients C
(0)
α are Gaussian random numbers sat-

isfying normalization, PS ∼ 3/D, where D is the size of
the many-body Hilbert space.

III. TIMESCALES FOR THE SURVIVAL

PROBABILITY IN THE GOE MODEL

The first model that we study corresponds to GOE
random matrices. We take H0 to be the diagonal part of
the random matrix H and V to be the off-diagonal part.
The elements are independent random numbers from a
Gaussian distribution with mean 0 and variance 2 for H0

and 1 for V . The model is unrealistic, since it implies
the simultaneous interaction between all particles, but it
allows for the identification of universal properties.
For matrices with a large dimension D, the analytical

expression for the entire evolution of the survival proba-
bility under GOE matrices is given by46,58

〈PS(t)〉 =
1− PS

D − 1

[

D
J 2
1 (2Γt)

(Γt)2
− b2

(

Γt

2D

)]

+ PS , (8)

where J1(t) is the Bessel function of the first kind, the
two-level form factor is

b2(t) = [1− 2t+ t ln(1 + 2t)]Θ(1− t) (9)

+ {t ln[(2t+ 1)/(2t− 1)]− 1}Θ(t− 1),

and Θ is the Heaviside step function. Following Eq. (6),

Γ =
√
D for the GOE model.

A plot of the analytical Eq. (8) is provided in Fig 1 (a)
for different sizes D of the Hamiltonian matrix. The nu-
merical curve for D = 12870 is also shown and, apart
from fluctuations at long times, it is undistinguishable
from the analytical expression. The evolution of 〈PS(t)〉
is initially determined by J 2

1 (2Γt)/(Γt)
2, which at very

short times gives 1 − Γ2t2 and later leads to oscillations

that follow a power-law decay ∝ t−3. This decay persists
until the minimum of 〈PS(t)〉 is reached at a time that we
call tGOE

Th . After tGOE
Th , 〈PS(t)〉 is dominated by the b2(t)

function and increases toward saturation. The b2(t) func-
tion describes the correlation hole. This dip below the
saturation point is a direct manifestation of the rigidity
of the spectrum, being nonexistent in integrable models,
where the level spacing distribution is Poissonian.
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FIG. 1. Survival probability for the GOE model. (a) An-
alytical expression for the survival probability as a func-
tion of time [Eq. (8)] for GOE matrices of dimensions D =
924, 3 432, 12 870, 48 620, from top to bottom. ForD = 12 870,
we also provide the numerical curve. The timescales tGOE

Th and
tGOE
R are marked for each curve. (b) The time tGOE

Th to reach
the minimum of the correlation hole as a function of D. The
data converge to the asymptotic value (3/π)1/4 of Eq. (13)

(horizontal dashed line) as 1/
√
D (solid line). (c) Relaxation

time tGOE
R as a function of D. The data follow the behavior

tR ≃ (1/3)
√

D/δ (solid line) obtained in Eq. (19).

A. Time for the Minimum of the Correlation Hole

We use Eq. (8) to compute the dependence of tGOE
Th

on D. Since the first term in Eq. (8) depends on Γt,
while the second term depends on Γt/D, we expect the
minimum of 〈PS(t)〉 to happen at times which are large

with respect to 1/Γ ∼ 1/
√
D, but short with respect to

D/Γ ∼
√
D. As a consequence, we expand the first term

of Eq. (8) for long times,

D
J 2
1 (2Γt)

(Γt)2
→ D

π(Γt)3
for Γt≫ 1, (10)

and expand the two-level form factor b2 for short times,

b2

(

Γt

2D

)

→ 1− Γt

D
for

Γt

D
≪ 1. (11)
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Combining Eq. (10) and Eq. (11) in the derivative of
〈PS(t)〉, we have

d 〈PS(t)〉
dt

∣

∣

∣

∣

t=tGOE

Th

≃ 1− PS

D − 1

[

−3
D

πΓ3t4
+

Γ

D

]∣

∣

∣

∣

t=tGOE

Th

= 0.

(12)
In the fully connected GOE model, all factors that de-
pend on D cancel out, resulting in

tGOE
Th =

(

3

π

)1/4 √
D

Γ
=

(

3

π

)1/4

. (13)

While the initial decay determined by Γ gets faster with
D, the subsequent power-law decay lasts for longer, which
leads to the constant value of tGOE

Th . This is in stark
contrast with physical chaotic models, where, as we shall
see in Sec. IV, tTh grows with system size.
The minimum value reached by the survival probability

can be found by plugging Eq. (13) into Eq. (8), which
gives

〈PS(t)〉|t=tGOE

Th

≈ 1− PS

D − 1

[

D

π(ΓtGOE
Th )3

−
(

1− ΓtGOE
Th

D

)]

+ PS ∼ 1− PS

D − 1
(−1) + PS . (14)

Since all eigenstates of GOE matrices are Gaussian ran-
dom vectors, so is |Ψ(0)〉. This implies that PS ∼ 3/D
and

〈PS(t)〉|t=tGOE

Th

≈ 2

D
. (15)

It is worth comparing our result in Eq. (13) with Ref.50,
where the expression for 〈PS(t)〉 does not properly cap-
ture the short time decay. As a consequence, it is found
there, incorrectly, that tGOE

Th scales with D. If, however,

the matrix elements are rescaled by a factor 1/
√
D, as

done in22, so that the width of the density of states is
independent of D, then Eq. (13) changes and tGOE

Th be-
comes indeed dependent on D.
In Fig. 1 (b) we plot the dependence of tGOE

Th onD. The
data are obtained by numerically minimizing Eq. (8). As
we can see, tGOE

Th converges asymptotically to the value
given in Eq. (13), which is indicated with the horizon-
tal dashed line. A power-law fitting of the data gives
0.25/

√
D, which is shown with the solid line.

B. Relaxation Time

To estimate the relaxation time, we study the relative
difference between 〈PS(t)〉 and PS . To do so, we expand
the two-level form factor for long times:

b2

(

Γt

2D

)

→ D2

3Γ2t2
for

Γt

D
≫ 1. (16)

We also neglect the term involving the Bessel function,
since it goes to zero faster than quadratically for t→ ∞.
Substituting Eq. (16) into Eq. (8) gives

∣

∣〈PS(t)〉 − PS

∣

∣

PS

≈ 1− PS

PS(D − 1)

D2

3Γ2t2
≈

(

D

3Γt

)2

. (17)

This shows that 〈PS(t)〉 approaches the saturation value
following a power-law behavior, so the timescale for com-
plete relaxation is not well defined. Yet, one can define
the relaxation time as the point where

∣

∣〈PS(tR)〉 − PS

∣

∣

PS

∼ δ, (18)

for some small value δ > 0. This gives

tGOE
R ∼ D

3Γ
√
δ
∼ 1

3

√

D

δ
. (19)

The relaxation time is therefore inversely proportional
to the mean level spacing Γ/D, which is the definition
of the Heisenberg time. This is the largest possible
timescale for a quantum system, derived directly from
Eq. (8). Unlike tGOE

Th , the time to reach actual satura-
tion diverges with D.

As for δ, we choose a value δ ≪ σPS
/PS , where σPS

is
the width of the ensemble fluctuations of PS at asymptot-
ically long times. Since σPS

∼ PS
59, this implies δ ≪ 1.

In our plots we take δ = 0.01.

In Fig 1 (c), we plot the dependence of tGOE
R on D.

The numerical data (squares) are compared with the an-
alytical prediction of Eq. (19), finding perfect agreement.
No fitting parameters were used for this comparison.

IV. TIMESCALES FOR THE SURVIVAL

PROBABILITY IN REALISTIC CHAOTIC

MODELS

The GOE model is not appropriate to describe phys-
ically relevant chaotic systems. This is so because, in
a random matrix model, no notion of locality is present
and simultaneous interaction of all degrees of freedom is
assumed. As a consequence, one cannot expect a priori
the predictions of Sec. III to hold for realistic models.

In this section, we provide an analytical equation for
〈PS(t)〉 for generic chaotic many-body quantum systems.
With this analytical expression, we find estimates for
the timescales for the evolution of the survival probabil-
ity. These predictions are then checked against numerical
data. We find that, while the behavior of the system at
short times is very different from that of the GOE, at
long times the two models behave in an equivalent way.
This is because the dynamics at long times depend on
spectral correlations only.
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A. Analytical expression for the survival

probability

We consider a many-body quantum system on a lat-
tice, in the strongly chaotic regime. The interactions are
local and two body only, which implies that the density
of states has a Gaussian shape60. In the bulk of the
spectrum, the eigenstates of these systems are close to
Gaussian random vectors.
When the system is taken very far from equilibrium,

as done here [in Eq. (1), g = 1], initial states with E0 ∼
0 are very delocalized in the energy eigenbasis61,62. In
this case, the LDOS defined in Eq. (5) is also Gaussian.
Because the coupling determined by the V part of the
total Hamiltonian is local and short range, H is a very
sparse matrix and, according to Eq. (6), the width Γ

of the LDOS is proportional to
√
L ≪

√
D. This is a

main difference from the GOE model, where Γ =
√
D.

No further assumptions on the nature of the system and
initial state are made.
Since the eigenstates in the bulk of the spectrum are

nearly random vectors, they are statistically independent
from the eigenvalues. This fact is used in the derivation of
the analytical expression for 〈PS(t)〉, which is explained
in detail in Appendix A. The equation is given by,

〈PS(t)〉 =
1− PS

(D − 1)

[

De−Γ2t2

4N 2
F(t)− b2

(

Γt√
2πD

)

]

+PS ,

(20)
where

F(t) =

∣

∣

∣

∣

erf

(

Emax + itΓ2

√
2Γ

)

− erf

(

Emin + itΓ2

√
2Γ

)∣

∣

∣

∣

2

,

(21)
N is a normalization constant (see Appendix A), erf is
the error function, Emax is the largest eigenvalue of H
and Emin is the lowest eigenvalue.
In addition to the asymptotic value PS , Eq. (20) con-

tains two other terms. The one with F(t) describes the
initial decay of the survival probability. At short times,

the decay follows a Gaussian, ∼ e−Γ2t2 , up to t ∼ 1/Γ,
which is the characteristic time for the depletion of the
initial state. Later, when the bounds of the spectrum are
reached, this term behaves like a power law ∝ t−263–65:

De−Γ2t2

4N 2
F(t) → D

Γ2t2
for Γt≫ 1. (22)

At yet longer times, the dynamics become dominated by
the b2 function. Its functional form is the same as that for
the GOE in Eq. (9), because the level statistics of real-
istic chaotic models described by real symmetric Hamil-
tonian matrices are comparable to those for the GOE.
We reiterate that up to this point, no specific model was
considered.
Figure 2 illustrates the entire evolution of the survival

probability for a generic chaotic many-body model that
satisfies the conditions described above. Up to tTh, which
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FIG. 2. Different stages of the evolution of the survival proba-
bility for a realistic chaotic model with local two-body interac-
tion and initial states very delocalized in the energy eigenba-
sis. Same model and parameters as in Fig. 4 (a) with L = 16.

marks the minimum of the correlation hole, the dynamics
differ from what we have for the GOE matrices in Fig 1.
Here, a Gaussian behavior and a power-law decay ∝ t−2

are observed. Universality, in the form of the correlation
hole, takes place only beyond tTh. The dynamics saturate
at tR, after which there are only fluctuations around the
infinite time average PS .

B. Analytical estimation for the Thouless time and

relaxation time

With Eq. (20), one can obtain analytical estimates for
the time of the minimum of the hole tTh and for the
relaxation time tR, following the procedure of Sec. III.

1. Thouless time

To obtain tTh, we expand the first term in Eq. (20) for
long times, as done in Eq. (22), which gives the power-
law decay ∝ t−2. And we expand the b2 function to short
times, which gives the linear increase in t,

b2

(

Γt√
2πD

)

→ 1− 2
Γt√
2πD

for
Γt

D
≪ 1. (23)

Combining the expansion in Eq. (22) and the expansion
above in the derivative of 〈PS(t)〉, we arrive at one of our
central results,

tTh ∝ D2/3

Γ
∼ e2cL/3L√

L
, (24)

where we used that the Hilbert space dimension of the
system is D ∝ ecL, for some constant c > 0. This re-
sult for tTh is completely different from what we have for
the GOE model in Eq. (13). While for full random ma-
trices, tGOE

Th is independent of system size, for realistic
chaotic systems tTh grows exponentially with L. Such
exponential increase of tTh is a general result for realis-
tic many-body quantum systems with local interactions.
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Mathematically, this is caused by two combined factors:
the rate of the initial Gaussian decay of 〈PS(t)〉 increases
just linearly with L, because the Hamiltonian matrices
describing real systems are sparse, and this decay is fol-
lowed by a power-law behavior that lasts for longer as L
grows.
In noninteracting models, the time that it takes for a

particle to diffusively cross a disordered medium is called
Thouless time. For realistic interacting quantum sys-
tems, we use the same terminology to denote the time
for 〈PS(t)〉 to reach the minimum of the correlation hole.
The region of the correlation hole is exclusively present
in finite quantum systems with a discrete spectrum and
correlated eigenvalues. It takes the time tTh for the dy-
namics to resolve the discreteness of the spectrum and
detect spectral correlations. After tTh, the dynamics con-
sist purely of dephasing processes, and are fully quantum
in nature.
Physically, we interpret the Thouless time in interact-

ing systems as the time for the initial many-body state
to spread over an exponentially large many-body Hilbert
space via local interactions, which takes an exponen-
tially long time. The initially localized state, given by
one eigenstate of the unperturbed HamiltonianH0, needs
time tTh to acquire weight over all many-body states of
H0 in the microcanonical energy shell. This contrasts
with the GOE model, where the initial state is directly
coupled with all eigenstates of H0, so the time to reach
the minimum of the correlation hole does not depend on
system size.
To describe the spread of the initial state in the many-

body space of a realistic system, we compute the evolu-
tion of the inverse participation ratio,

〈IPR(t)〉 =
∑

n

∣

∣〈φn|e−iHt|Ψ(0)〉
∣

∣

4
, (25)

which quantifies the inverse of the number of unper-
turbed many-body states that contribute to the dynam-
ics. When 〈IPR(t)〉 reaches its minimal value, the spread-
ing of the initial state in the Hilbert space is maximal.
This is illustrated in Fig. 3 for the same generic chaotic
many-body model considered in Fig. 2. Figure 3 confirms
that the minimum of 〈IPR(t)〉, just as the minimum of
〈PS(t)〉, happens at tTh.

2. Relaxation time

We now examine the relaxation time tR. For long
times,

b2

(

Γt√
2πD

)

→ πD2

6Γ2t2
for

Γt

D
≫ 1. (26)

Since the term above is proportional toD2, while Eq. (22)
is proportional to D, we can discard the latter for large
D. Following the same procedure as in Sec. III B, one
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FIG. 3. Spread in time of an initially localized state through
the many-body Hilbert space. The spread is quantified by the
inverse participation ratio. In the figure, 〈IPR(t)〉 is multi-
plied by the dimension D of the Hilbert space. Same realistic
chaotic model with local two-body interaction used in Fig. 2
and in Fig. 4 (a) with L = 16. The vertical dashed line marks
the Thouless time and the horizontal dashed line indicates the
saturation value.

finds that

tR ∝ D

Γ
√
δ
∼ ecL√

Lδ
. (27)

Since for realistic chaotic systems and for the GOE
model, the dynamics at long times are dominated by the
same function b2, we obtain again that tR is inversely pro-
portional to the mean level spacing. This result demon-
strates analytically that the time beyond which the ob-
servable simply fluctuates around the infinite-time aver-
age is the Heisenberg time.
By comparing Eq. (24) and Eq. (27), one sees that

as the system size L grows, the Thouless and relaxation
times move exponentially far apart from each other and
the correlation hole gets elongated.

C. Numerical results for different realistic chaotic

models

In Fig. 4, we compare our analytical Eq. (20) for the
survival probability with numerical data for three differ-
ent realistic chaotic models. We use the lower bound
Emin as a single fitting parameter.
In Fig. 4 (a), we plot the data for a disordered spin-1/2

chain with nearest-neighbor couplings only. The total
Hamiltonian Hds has two terms,

Hds = Hds
0 + V ds, (28)

Hds
0 = J

L
∑

k=1

(hkS
z
k + Sz

kS
z
k+1),

V ds = J

L
∑

k=1

(Sx
kS

x
k+1 + Sy

kS
y
k+1).
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Above, Sx,y,z
k are the spin operators on site k, L is the

size of the chain, and the amplitudes hk are uniform ran-
dom numbers in [−h, h], h being the disorder strength.
We set J = 1 and periodic boundary conditions are as-
sumed. This system can be mapped into models of hard-
core bosons and spinless fermions and has been stud-
ied experimentally in the context of many-body localiza-
tion7.
The Hamiltonian Hds conserves the total magnetiza-

tion Sz =
∑

k S
z
k . We work with the largest subspace

Sz = 0, where the dimension of the Hilbert space is
D = L!/(L/2)!2 ∼ eL ln 2, so c = ln 2 in Eq. (24) and in
Eq. (27). We take the disorder strength h = 0.5, where
the model is maximally chaotic52. To compute 〈PS(t)〉,
an average over initial states with energies close to the
middle of the spectrum and over disorder realizations is
performed.
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FIG. 4. Survival probability for realistic chaotic models. In
(a), (c) and (d) we compare numerical data (full lines) with
the analytical Eq. (20) (dashed lines). In (a): disordered
spin-1/2 model from Eq. (28) with disorder strength h = 0.5
and system sizes L = 10, 12, 14, 16 from top to bottom. In
(c): clean spin-1/2 model with next-to-nearest-neighbors cou-
plings from Eq. (29) and system sizes L = 12, 14, 16 from top
to bottom. In (d): sparse banded random matrix model with
matrices sizes D = 924, 3 432, 12 870. In (b) we compare the
values of tTh (circles) and tR (squares) extracted numerically
for the disordered spin-1/2 model with the analytical Eqs. (24)
and (27) (full and dashed lines, respectively), finding excellent
agreement.

As clearly seen in Fig. 4 (a), the analytical prediction
from Eq. (20) describes accurately the numerical curve
for 〈PS(t)〉 for more than six orders of magnitude in time,
covering the entire evolution, from t ∼ 1/Γ to t ∼ tR.
The figure shows that both tTh and tR grow with the
system size. A more quantitative analysis is provided
in Fig. 4 (b), where we plot tTh and tR as a function
of L and compare them with our analytical estimates in
Eq. (24) and Eq. (27). The agreement is excellent. The
exponential growth of both tTh and tR is clearly visible,

as well as the growth of the difference between them,
which indicates the stretch of the correlation hole with
L.
To show that Eq. (20) is indeed general, we test it for

two other models. In Fig. 4 (c), we plot the survival prob-
ability for a clean spin-1/2 model with next-to-nearest-
neighbors couplings. Its Hamiltonian reads

Hcl = Hcl
0 + V cl, (29)

Hcl
0 = J∆

L
∑

k=1

(

Sz
kS

z
k+1 + λSz

kS
z
k+2

)

,

V cl = J

L
∑

k=1

[

Sx
kS

x
k+1 + Sy

kS
y
k+1 + λ

(

Sx
kS

x
k+2 + Sy

kS
y
k+2

)]

.

We choose open boundary conditions, J = 1, anisotropy
parameter ∆ = 0.48, the strength of the next-to-nearest-
neighbors coupling λ = 1, and Sz = 0, so that again D =
L!/(L/2)!2. Despite the absence of random elements, this
model is strongly chaotic as well66. The average is now
performed over initial states only, which explains why
the numerical data in Fig. 4 (c) show larger fluctuations
than for the disordered spin model in Fig. 4 (a). The
analytical curves for different system sizes capture the
numerical behavior of 〈PS(t)〉 extremely well.
As a third example, in Fig. 4 (d), we plot the data for a

sparse banded random matrix model. This model has the
same nonzero entries as the Hamiltonian in Eq. (29), but
they are drawn independently from a Gaussian distribu-
tion with mean value 0 and variance J2. An average over
initial states with energies at the middle of the spectrum
and over several realizations of the Hamiltonian is per-
formed. This model is not related to any specific physical
system. Once again, the numerical evolution of 〈PS(t)〉
follows very well the analytical expression.

V. TRANSITION FROM CHAOS TO

LOCALIZATION

In the previous section, we considered only systems in
the strongly chaotic regime. It is now natural to ask how
the results change for systems away from this regime. In
this section, we analyze this question for the disordered
spin-1/2 model of Eq. (28). At a critical value hc > 2.25,
this system transitions to a many-body localized phase,
where the eigenvalues are uncorrelated. We consider dis-
order strengths 0.5 ≤ h ≤ 2.25, where the energy levels
have some degree of correlation. We find that as h is
increased above 0.5, the Thouless time progressively ap-
proaches the relaxation time until their values coincide
and the correlation hole disappears.

A. Growth of the Thouless time with disorder

In Fig. 5 (a), we plot the survival probability for dif-
ferent disorder strengths, increasing from bottom to top,
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at system size L = 16. The consequence of the presence
of disorder is different at different timescales. For short
times, where the Gaussian decay holds, the disorder has
no effect on the dynamics, because Γ depends only on
the off-diagonal entries of the Hamiltonian, which are in-
dependent of h. For Γt . 1, all curves fall on top of each
other. At later times, in the region of the power-law de-
cay, the power-law exponent decreases as a function of
h, as explained in Ref.52,57. At even later times, the b2
function is also affected by disorder: the correlation hole
gets delayed and tTh grows as h increases. Finally, while
the saturation value PS naturally increases as the disor-
der strength increases, since the initial states become less
spread out in the energy eigenbasis, the time tR at which
such value is reached does not change. This is because tR
is inversely proportional to the mean level spacing, which
does not strongly depend on disorder for 0.5 ≤ h ≤ 2.25.
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FIG. 5. Survival probability (a) and long timescales (b) for
the disordered spin-1/2 model (28) with different disorder
strengths. In (a): 〈PS(t)〉 for h = 0.5, 1.0, 1.5, 2.0, from bot-
tom to top, and system size L = 16. In (b): Thouless time
(circles) and relaxation time (squares) as a function of disor-
der strength. The solid line shows the fit tTh ∼ 37e2.6h.

The dependence of the long timescales on the disorder
strength can be seen more quantitatively in Fig. 5 (b),
where we plot tTh and tR as a function of h. The Thou-
less time grows exponentially with h, indicating that
the spread of the initial state in the many-body space
becomes much slower. tTh eventually reaches tR for
h > 2.25, when the system localizes and the correlation
hole ceases to exist. We do not show data for this re-
gion, because for h & 2.25, the hole becomes tiny and it
becomes challenging to distinguish numerically the Thou-
less time from the relaxation time.

We notice that, in noninteracting disordered systems,
the ratio tR/tTh is called Thouless dimensionless conduc-
tance. It is large in the metallic phase and it approaches
1 as the system approaches the localized phase. For the
interacting disordered spin model from Eq. (28) in the
chaotic regime, our results show that tR/tTh ∝ eL(ln 2)/3.
As the disorder strength grows and the system leaves the
chaotic region toward many-body localization, the gap
between the two timescales decreases exponentially with
h and tR/tTh → 1. This ratio is thus an additional tool
for the studies of localization in interacting systems.

B. Relation between the Thouless time and the

Thouless energy

In noninteracting disordered systems, the Thouless
time was originally defined as the diffusion time of a par-
ticle through the sample. It is inversely proportional to
the Thouless energy, ETh, which is determined by the
diffusion constant and the system size 44,54. Later, it
was shown that, within the energy scale defined by ETh,
the level statistics of these systems follow those from ran-
dom matrices55. The analysis of level statistics can then
be used as an alternative way to identify the Thouless
energy.
Here, we investigate how this picture can be extended

to interacting systems. For our definition of the Thouless
time, namely the time to reach the minimum of the cor-
relation hole, we indeed recover that tTh ∝ 1/ETh. But
before showing these results, let us explain how ETh is
obtained from the spectral correlations of chaotic models.
The energy levels of chaotic systems are strongly cor-

related. Long-range correlations can be quantified by
computing the level number variance Σ2(ℓ). This is done
as follows. One first has to unfold the spectrum, in or-
der to set the smooth part of the density of states to
a constant44. Then, one partitions the spectrum into
intervals of length ℓ, counts the number of levels in-
side each interval, and computes the variance of the re-
sulting distribution. For GOE random matrices, strong
correlations between the eigenvalues manifest as a log-
arithmic growth for the level number variance, Σ2(ℓ) =
2
π2

[

log(2πℓ) + γe + 1− π2

8

]

, where γe = 0.5772 · · · is the
Euler-Mascheroni constant.
For chaotic noninteracting disordered models, it was

found in55 that Σ2(ℓ) grows logarithmically with the en-
ergy interval ℓ for ℓ < ETh, where ETh is the Thouless
energy. For level separations larger than the Thouless
energy, Σ2(ℓ) deviates from this behavior. This notion
of the Thouless energy was extended to the interacting
disordered model of Eq. (28) in Ref.56. There, it was
shown that the Thouless energy becomes smaller as the
disorder strength increases and the system approaches a
many-body localized phase.
In Fig. 6 (a), we compare the data for Σ2(ℓ) for var-

ious disorder strengths with the analytical GOE curve
(dashed line). The Thouless energy is extracted as the
point at which Σ2(ℓ) deviates from the logarithmic be-
havior. In Fig. 6 (b), we then analyze the relationship
between ETh and tTh for various values of h and confirm
that ETh ∝ 1/tTh for our interacting model. This fur-
ther justifies referring to the time to reach the minimum
of the correlation hole as the Thouless time.

VI. SPIN AUTOCORRELATION FUNCTION

The survival probability and the inverse participation
ratio shown in Fig. 3 are non-local quantities. In this
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FIG. 6. Level number variance (a) and relation between
the Thouless energy and the Thouless time (b) for the dis-
ordered spin model from Eq. (28) with different disorder
strengths. In (a): the analytical GOE curve (dashed line)
for Σ2(ℓ) is compared with numerical results (solid lines) for
h = 0.5, 0.75, 1, 1.25, 1.5 from bottom to top. In (b): the nu-
merical data (triangles) are fitted with ETh = 2724/tTh (solid
line), showing that the Thouless energy and the Thouless time
are inversely proportional to each other. Both panels: L = 16.

section, we investigate the long timescales for the spin
autocorrelation function, which is a local observable in
real space. It is given by

I(t) =
4

L

L
∑

i=1

〈Ψ0|Sz
i e

iHtSz
i e

−iHt |Ψ0〉 . (30)

This quantity measures how close the spin configuration
at time t is to the initial one. It is analogous to the
density imbalance measured in experiments with cold
atoms7.
At long times, the behavior of 〈I(t)〉 is remarkably sim-

ilar to 〈PS(t)〉, as seen in Fig. 7 (a). There, a correlation
hole is also clearly visible. In Fig. 7 (b), we plot the
numerical values for tTh and tR vs L for the spin au-
tocorrelation function. It shows again that the time to
reach the minimum of the correlation hole increases ex-
ponentially with system size. The same estimate found
for the survival probability in Eq. (24) matches very well
the numerical results for 〈I(t)〉. The time to later relax to
the infinite-time average follows again Eq. (27), that is,
it is given by the inverse of the mean level spacing. This
shows that the long timescales that we unveiled for global
quantities can manifest themselves for local experimental
quantities as well.
Evidently, the short-time evolution of the spin autocor-

relation function is different from the survival probability,
as one can see by comparing Fig. 4 (a) and Fig. 7 (a). Up
to tTh the dynamics depend on the initial state, model,
and observable. Beyond the minimum of the correlation
hole, as mentioned at different occasions in this work,
the dynamics become universal and governed by spectral
properties. It may happen, however, that the amplitude
of the dynamical effects caused by correlated eigenvalues
is not large, as seen for 〈IPR(t)〉 in Fig. 3. Open ques-
tions include why this happens and which observables
have pronounced correlation holes, as the survival prob-
ability and the spin autocorrelation function. Another
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FIG. 7. Spin autocorrelation function for the spin model.
〈I(t)〉 in (a) and (c). Thouless and relaxation times as a func-
tion of system size (b) and of disorder strength (d). Circles
are for tTh, squares for tR. In (b): Solid line is for Eq. (24)
and dashed line for Eq. (27). In (d): Solid line is for the fit
124e1.8h. In (a): L = 12, 14, 16 from top to bottom. In (a),
(b): h = 0.5. In (c), (d): L = 16.

interesting question is whether for the observables with
visible correlation holes, the time to reach the minimum
value always follows Eq. (24). This is indeed what our re-
sults indicate, where the particular features of the short-
time evolution of 〈I(t)〉 conspire to achieve the same L-
dependence for tTh as for 〈PS(t)〉.
The analogy between the spin autocorrelation function

and the survival probability extends also to the transition
region between chaos and localization. Just as for the
survival probability, the minimum of the correlation hole
for 〈I(t)〉 gets postponed to later times as h increases, as
illustrated in Fig. 7 (c). This time grows exponentially
with h, as shown in Fig. 7 (d), until tTh ∼ tR. Therefore,
the analysis of how the ratio tR/tTh approaches 1 may
be used to detect the transition to localization also when
local observables are considered.
The fact that the time to achieve complete relaxation

increases exponentially with system size, be the observ-
able global or local, is of consequence to theoretical and
experimental studies of relaxation and thermalization.
Needless to say, reaching tTh or tR experimentally is chal-
lenging. However, coherence times are being pushed to
ever longer values. In particular, the Thouless time for
systems with L ≤ 18 might soon be within reach.

VII. CONCLUSION

This work promotes the use of dynamical manifesta-
tions of spectral properties, which emerge when the time
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evolution resolves the discreteness of the spectrum, as a
means to identify the long timescales involved in the re-
laxation process of interacting many-body quantum sys-
tems. In doing so, we find that there is not only one, but
two very long timescales: the Thouless time, tTh, and the
relaxation time, tR.

We derive analytical estimates for tTh and tR for re-
alistic interacting systems in the chaotic regime. They
match extremely well our numerical results for a global
quantity and an experimental local observable. These
are the survival probability and the spin autocorrelation
function, respectively.

We provide a physical interpretation for the Thou-
less time in interacting systems. When interactions are
present, the dynamics cannot be completely captured in
terms of real space processes, but require instead the
analysis of the evolution in the many-body Hilbert space.
Using the inverse participation ratio, we showed that tTh

corresponds to the time for a many-body initial state to
get completely spread out, via local interactions, in the
many-body Hilbert space. Since this space is exponen-
tially large in the system size L, the Thouless time grows
exponentially with L. This is to be contrasted with our
results for the GOE model, where the matrices are fully
connected and tGOE

Th is therefore independent of the ma-
trix size.

Our derivations demonstrate that the relaxation time
coincides with the Heisenberg time, being thus the largest
timescale of the system dynamics. The analytical esti-
mate for tR is the same for realistic systems and for the
GOE model, since the dynamics beyond tTh become uni-
versal.

In noninteracting disordered systems, the ratio be-
tween the Heisenberg time and the Thouless time is the
Thouless dimensionless conductance, which goes to 1 as
the system approaches the localized phase. This prompts
us to use the disordered interacting spin model to ana-
lyze tR/tTh, finding that the ratio approaches 1 expo-
nentially fast with the disorder strength. We verify that
the parallel between interacting and noninteracting dis-
ordered systems extends also to the relationship between
the Thouless time and the Thouless energy. We find that
tTh ∝ 1/ETh, which gives further support to our defini-
tion of the Thouless time.

Definitions of the Thouless time based on transport
properties13,18,19,43 lead to a power-law scaling of tTh

with system size. This result does not agree with our def-
inition, which is based on the dynamical manifestations
of spectral correlations. While these two approaches co-
incide for noninteracting systems, they are not equiva-
lent for interacting many-body systems. Understanding
this discrepancy is a critical point for future works on
nonequilibrium many-body quantum dynamics and re-
lated subjects, such as many-body localization, many-
body quantum chaos, and thermalization.
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Appendix A: Derivation of the expression for the

survival probability for realistic many-body

quantum systems

Here, we show the steps to obtain Eq. (20), which de-
scribes the entire evolution of the averaged survival prob-
ability. We reiterate that Eq. (20) is general and valid
for realistic many-body quantum systems on a finite lat-
tice, which are strongly chaotic, present only local two-
body interactions, and are perturbed very far from equi-
librium (i.e. beyond the Fermi golden rule regime). The
initial states correspond to site-basis vectors (computa-
tional basis vectors) with energies away from the edges
of the spectrum, so that they are highly delocalized in
the energy eigenbasis.
The equation for the survival probability can be writ-

ten in the following forms,

PS(t) =
∣

∣〈Ψ(0)|e−iHt|Ψ(0)〉
∣

∣

2
=

∣

∣

∣

∣

∣

∑

α

∣

∣

∣C(0)
α

∣

∣

∣

2

e−iEαt

∣

∣

∣

∣

∣

2

=
∑

α6=β

∣

∣

∣
C(0)

α

∣

∣

∣

2 ∣
∣

∣
C

(0)
β

∣

∣

∣

2

e−i(Eα−Eβ)t +
∑

α

∣

∣

∣
C(0)

α

∣

∣

∣

4

=

∫

G(E)e−iEtdE, (A1)

where C
(0)
α = 〈α|Ψ(0)〉 and the integrand G(E) is

G(E) =
∑

α6=β

∣

∣

∣C(0)
α

∣

∣

∣

2 ∣
∣

∣C
(0)
β

∣

∣

∣

2

δ(E − Eα + Eβ)

+
∑

α

∣

∣

∣C(0)
α

∣

∣

∣

4

δ(E). (A2)

This function is similar to the spectral autocorrelation
function,

∑

α,β δ(E −Eα +Eβ), the difference being the

weights |C(0)
α |2.

To obtain the averaged survival probability,

〈PS(t)〉 =
∫

〈G(E)〉e−iEtdE, (A3)

we take into account the asymptotic value,

PS =

〈

∑

α

∣

∣

∣
C(0)

α

∣

∣

∣

4
〉

, (A4)
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and need to compute

〈G(E)〉α6=β =

〈

∑

α6=β

∣

∣

∣C(0)
α

∣

∣

∣

2 ∣
∣

∣C
(0)
β

∣

∣

∣

2

δ(E − Eα + Eβ)

〉

.

(A5)

1. Factorization of eigenvalues and eigenvectors

In full random matrices, where the eigenstates are
random vectors and the coefficients are then uncor-
related random numbers, the eigenvalues and eigen-
states are statistically independent, which allows for the
factorization50,58,65,

〈G(E)〉α6=β =
∑

α6=β

〈

∣

∣

∣C(0)
α

∣

∣

∣

2 ∣
∣

∣C
(0)
β

∣

∣

∣

2
〉

〈δ(E − Eα + Eβ)〉 .

(A6)
For realistic chaotic many-body quantum systems, it

is reasonable to expect a similar (but not identical) sce-
nario, provided they are perturbed very far from equilib-
rium and the initial state has energy close to the middle
of the spectrum, i.e. E0 ∼ 0, as indeed considered in our
work. In the bulk of the spectrum, the eigenstates are
chaotic61,62,67,68, while states close to the edges of the
spectrum are not. By chaotic states, we mean states for
which the coefficients are (nearly) uncorrelated and fill
the entire energy shell11,69. In the limit of very strong
perturbation, beyond the Fermi golden rule regime, ini-
tial states with E0 ∼ 0 fall within the chaotic region
of the spectrum, being themselves chaotic states, so the

majority of their components |C(0)
α |2 are nearly uncorre-

lated.
To further support the assumption of the chaoticity

of the initial state, we study in Fig. 8 (a) the distribu-

tion of its components |C(0)
α |2. In random matrix theory,

the components of chaotic states are known to follow the
Porter-Thomas distribution60,

PT

(

∣

∣

∣C(0)
α

∣

∣

∣

2
)

=







D

2π
∣

∣

∣C
(0)
α

∣

∣

∣

2







1/2

exp

(

−D
2

∣

∣

∣C(0)
α

∣

∣

∣

2
)

.

(A7)
As seen in Fig. 8 (a), this is indeed the distribution

obeyed by |C(0)
α |2 for the chaotic disordered spin-1/2

model from Eq. (28). Notice that it holds even though
we consider in the figure a single initial state and a single
disorder realization.
The explanations above justify proceeding with the

factorization in Eq. (A6), although corrections do exist.
For instance, while both the energy distribution of the
initial state (LDOS),

ρ0(E) =
∑

α

|C(0)
α |2δ(E − Eα)
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FIG. 8. Shaded areas: (a) Distribution of the coefficients

|C(0)
α |2 for a single initial state with energy in the middle

of the spectrum and (b) energy distribution of this initial
state (LDOS). In (a): The solid line is the Porter-Thomas
distribution given in Eq. (A7). In (b): The solid line is the
density of states and the dashed line is the Gaussian fit for
the LDOS. Disordered spin-1/2 model described in Eq. (28)
with size L = 16 and disorder strength h = 0.5.

and the density of states,

R1(E) =
∑

α

δ(E − Eα)

have a Gaussian shape, as expected for many-body quan-
tum systems with two-body couplings60,70, the LDOS is
narrower than the density of states. This is clearly seen in
Fig. 8 (b). However, as our numerical results in Sec. IVC
show, these corrections do not affect the general features
of the initial decay of the survival probability, only details
that are not relevant for our estimates of the timescales
obtained in Sec. IVB.
Since the average over the components of the initial

state is

〈

∑

α6=β
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〉

=

〈

1−
∑

α

∣
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∣C(0)
α

∣

∣

∣

4
〉

= 1− PS ,

(A8)
we are left with

〈PS(t)〉 =
(

1− PS

)

∫

〈δ(E − Eα + Eβ)〉 e−iEtdE + PS .

(A9)
To compute the integral above, we use the fact that the
average over the spacing distributions can be written
in terms of the two-point spectral correlation function
R2(Eα, Eβ), as

45,50

〈δ(E − Eα + Eβ)〉 =
(D − 2)!

D!

∫

dEαdEβ (A10)

× δ(E − Eα + Eβ)R2(Eα, Eβ).

The function R2(Eα, Eβ) can be decomposed into the
density of states R1(Eα) and the two-level cluster func-
tion T2(Eα, Eβ), so that

R2(Eα, Eβ) = R1(Eα)R1(Eβ)− T2(Eα, Eβ). (A11)
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2. Gaussian density of states

Plugging the first term of Eq. (A11) into the Fourier
transform in Eq. (A9) gives

(D − 2)!

D!
×

∫

e−iEtδ(E − Eα + Eβ)R1(Eα)R1(Eβ) dE dEα dEβ

=
1

D(D − 1)

∣

∣

∣

∣

∫

e−iEαtR1(Eα)dEα

∣

∣

∣

∣

2

. (A12)

In accordance with Fig. 8 (b), we use that the width of
the Gaussian density of states is approximately the same
as the width of the LDOS, ΓDOS ∼ Γ, and write

R1(E) =
D√

2πΓN
exp

(

− E2

2Γ2

)

. (A13)

In addition, the spectrum is bounded63,64 between en-
ergies Emin and Emax, which explains the normalization
factor,

N =
1

2

[

erf

(

Emax√
2Γ

)

− erf

(

Emin√
2Γ

)]

. (A14)

Plugging Eq. (A13) into Eq. (A12) gives

1

D(D − 1)

∣

∣

∣

∣

∣

∫ Emax

Emin

dEe−iEtR1(E)

∣

∣

∣

∣

∣

2

=
D

D − 1

e−Γ2t2

4N 2
F(t),

(A15)
where

F(t) =

∣

∣

∣

∣

erf

(

Emax + itΓ2

√
2Γ

)

− erf

(

Emin + itΓ2

√
2Γ

)∣

∣

∣

∣

2

.

(A16)
In the above, erf is the error function.
For very short times, t ≪ 1/Γ, Eq. (A15) leads to

the universal quadratic decay of the survival probability
1 − Γ2t2. This is followed by a true Gaussian behavior,
exp(−Γ2t2), as expected from the Fourier transform of a
Gaussian energy distribution61,62,67–69.
For long times, Eq. (A15) can be written as63,64,

D

D − 1

1

2πN 2Γ2t2

[

exp

(

−E
2
max

Γ2

)

+ exp

(

−E
2
min

Γ2

)

−2 exp

(

−E
2
max + E2

min

2Γ2

)

cos[(Emax−Emin)t]

]

. (A17)

Since the cosine term averages to zero at large times, we
are left with

D

D − 1

1

2πN 2Γ2t2

[

exp

(

−E
2
max

Γ2

)

+ exp

(

−E
2
min

Γ2

)]

,

(A18)

which shows that, later in time, a power-law decay ∝ t−2

develops.
3. Correlation hole

Let us now go back to Eq. (A11) and compute the
Fourier transform of the second term,

− (D − 2)!

D!
×

∫

e−iEtδ(E − Eα + Eβ)T2(Eα, Eβ)dEdEαdEβ .

For full random matrices, following Ref.45, one writes the
energies in terms of the mean level spacing, µ = 1/R1(E),
introducing the variables ǫα,β ≡ Eα,β/µ. In the limit
D → ∞, one has

− (D − 2)!

D!

∫

e−i(Eα−Eβ)tT2(Eα, Eβ) dEα dEβ =

− (D − 2)!

D!

∫

e−iµ(ǫα−ǫβ)tY2(ǫα, ǫβ)dǫαdǫβ , (A19)

where Y2(ǫα, ǫβ) = µ2T2(Eα, Eβ). In the bulk of the
spectrum, the cluster function is translation-invariant,
i.e. Y2(ǫα, ǫβ) = Y2(r), with r = |ǫα − ǫβ|. This is not
true if Eα or Eβ are close to the boundaries of the spec-
trum, but such anomalous contributions are negligible for
large D. Taking into account the change in variables, the
Fourier transform of Y2(r) gives

45

− (D − 2)!

D!

∫

De−irµtY2(r)dr =
1

D − 1
b2

(

µt

2π

)

,

(A20)
where

b2(t) = [1− 2t+ t ln(1 + 2t)]Θ(1− t) (A21)

+ {t ln[(2t+ 1)/(2t− 1)]− 1}Θ(t− 1),

is the two-level form factor presented in Eq. (9).
For chaotic noninteracting disordered quantum sys-

tems in more than two dimensions, spectral correlations
are analogous to those found in random matrices for en-
ergy separations |Eα − Eβ | ≪ ETh, with ETh ≫ s be-
ing the Thouless energy44,55. The same is also true for
chaotic interacting systems56. Furthermore, it is known
that T2(Eα, Eβ) is exponentially small for |Eα−Eβ | ≫ s,
so the same procedure to get the b2 function described
above holds for realistic chaotic systems as well, the only
difference in this case is that the mean level spacing
comes from the Gaussian distribution, µ =

√
2πΓ/D,

Plugging Eqs. (A15) and (A20) into Eq. (A10), and
this one back into Eq. (A9), one obtains the final expres-
sion of Eq. (20), that is,

〈PS(t)〉 =
1− PS

(D − 1)

[

De−Γ2t2

4N 2
F(t)− b2

(

Γt√
2πD

)

]

+ PS .

(A22)
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