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We analyze spin and orbital angular momenta in monochromatic acoustic wave 
fields in a homogeneous medium. Despite being purely longitudinal (curl-free), 
inhomogeneous acoustic waves generically possess nonzero spin angular momentum 
density caused by the local rotation of the vector velocity field. We show that the 
integral spin of a localized acoustic wave vanishes in agreement with the spin-0 
nature of longitudinal phonons. We also show that the helicity or chirality density 
vanishes identically in acoustic fields. As an example, we consider nonparaxial 
acoustic Bessel beams carrying well-defined integer orbital angular momentum, as 
well as nonzero local spin density, with both transverse and longitudinal components. 
We describe the nontrivial polarization structure in acoustic Bessel beams and 
indicate a number of observable phenomena, such as nonzero energy density and 
purely-circular transverse polarization in the center of the first-order vortex beams. 

1. Introduction 

Spin and orbital angular momenta are important properties of both classical light and 
photons, which have been extensively studied in the past few decades [1–5]. It is well-known 
that the spin angular momentum (AM) of photons originates from the circular (or elliptical) 
polarization of electromagnetic waves, i.e., rotation of the electric or magnetic fields, while the 
orbital AM is produced by the circulation of the phase gradient, i.e., canonical momentum 
density in optical fields. Optical beams or photon states carrying longitudinal (i.e., along the 
propagation direction) spin and orbital angular momenta have become ubiquitous in many areas 
of modern optics, including optical manipulations, nano-photonics, quantum information, etc. 
Recently, it was noticed that in inhomogeneous optical fields (e.g., nonparaxial or evanescent), 
rotations of the electric and magnetic fields also occur in the propagation plane, which results in 
a transverse spin [5–13] with unusual properties, such as spin-momentum locking via evanescent 
waves [14–20]. 

Acoustic and elastic waves or phonons exhibit many phenomena similar to those in optics 
and electromagnetism. It has been known that polarization/spin properties of transverse (shear, 
divergence-free) elastic waves [21] are quite similar to those of light, and transverse phonons can 
be regarded as spin-1 particles analogous to photons [22–27]. Furthermore, since orbital AM is a 
phase property largely independent of the polarization (at least in paraxial fields), it has been 
intensively studied, both theoretically and experimentally, in acoustic vortex beams similar to the 
optical ones [28–37]. These acoustic beams in fluids or gases were essentially treated as scalar 
pressure waves. In fact, in terms of the vector velocity field, these are longitudinal (i.e., curl-free) 
vector waves corresponding to spin-0 longitudinal phonons [21]. 

Finally, very recently, it was noticed that longitudinal vector fields, including acoustic 
waves, can also have nontrivial polarization and spin properties [38–40]. Even though acoustic 
plane waves are always linearly polarized (velocity is aligned with the wavevector), 
inhomogeneous waves (e.g., evanescent or interference fields) locally exhibit elliptical 
polarization with rotating velocity vector. This generates non-zero spin AM density in curl-free 
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acoustic fields. It was shown that the transverse spin in inhomogeneous acoustic waves [38–40] 
is quite similar to that in optical fields [5–20], and this phenomenon was observed 
experimentally [39]. 

In this work, continuing the studies in [38–40], we provide general analysis of the spin and 
orbital angular momenta, as well as other dynamical quantities (energy flux, canonical 
momentum, and helicity) in monochromatic acoustic fields. We show that the helicity (chirality) 
density vanishes identically in longitudinal wave fields, while the spin AM density is generically 
non-zero. Furthermore, the integral spin AM of a localized wave field also vanishes, which 
agrees with the spin-0 nature of longitudinal phonons. Due to the presence of spin density, the 
energy flux density (i.e., the kinetic momentum density analogous to the Poynting vector) differs 
from the canonical momentum density. The latter determines the orbital AM of the acoustic 
field. We compare all dynamical characteristics of acoustic fields with their electromagnetic 
counterparts. As an explicit example of acoustic field carrying both spin and orbital angular 
momenta, we consider nonparaxial vortex Bessel beams. We show that such beams have rather 
nontrivial polarization properties, with spin AM having both transverse (azimuthal) and 
longitudinal components, purely-circular vortex-induced transverse polarization in the beam 
center, and non-zero energy density in the center of the first-order vortex beams.  

2. General properties of acoustic wave fields 

We start with the linear equations for acoustic (sound) waves in a homogeneous dense 
medium, fluid or gas [41]: 

 
  
β ∂P

∂t
= −∇ ⋅ v ,      ρ ∂v

∂t
= −∇P . (1) 

Here the variables are: the velocity v r,t( )  and the pressure P r,t( )  fields, while the real-valued 
medium parameters are: the mass density ρ  and the compressibility β = 1/ B  ( B  is the bulk 
modulus). Equations (1) obey the energy conservation law, an acoustic analogue of the 
electromagnetic Poynting theorem: 

 
∂
∂t

β P2

2
+ ρv2

2
⎛

⎝⎜
⎞

⎠⎟
+ ∇ ⋅ Pv( ) = 0 , (2) 

where the expressions in the first and second parentheses determine the acoustic energy density 
and energy flux density, respectively [41]. 

From now on, we consider monochromatic acoustic waves of frequency ω . Making the 
substitution    

v r,t( ) → Re v r( )e− iω t⎡⎣ ⎤⎦  and P r,t( ) → Re P r( )e− iω t⎡⎣ ⎤⎦ , Eqs. (1) are reduced to the 

following equations for the complex velocity and pressure fields v r( )  and P r( ): 

 ∇ ⋅ v = iβω P ,      ∇P = iρω v . (3) 

Equations (1) or (3) support only longitudinal (i.e., curl-free) waves: ∇ × v = 0. For plane waves 
with the wavevector k , ∇ → ik , the dispersion relation and the “longitudinality” condition 
follow from Eqs. (3): 

 ω 2 = k 2c2 ≡ k 2

ρβ
,      k × v = 0, (4) 

where  c  is the speed of sound. 
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Importantly, although commonly classified as “scalar waves”, sound waves also have 
inherent vector properties [38–40]. Indeed, these waves are described by one scalar (pressure) 
and one vector (velocity) fields, which determine the qualitatively-different degrees of freedom 
in the acoustic field. These scalar and vector degrees of freedom are equally important, as can be 
seen from their equal contributions to the energy conservation law (2). In quantum-like terms, 
one can say that acoustic waves are described by the four-component “wavefunction” 

ψ = P,v( )T . In what follows, we will use a fruitful analogy with electromagnetic waves 
described by Maxwell equations. The main difference is that Maxwell waves are described by 
two vector fields (electric and magnetic), ψ = E,H( )T , and these are transverse (i.e., divergence-
free) rather than longitudinal: ∇ ⋅E = ∇ ⋅H = 0. 

Similarly to electromagnetic waves [5,6,42,43], the main dynamical properties of acoustic 
wave fields are: the energy, momentum, and angular momentum. The time-averaged energy 
density and energy flux density (an acoustic counterpart of the Poynting vector) in a 
monochromatic acoustic field follow from Eq. (2): 

 
   
W = 1

4
β P

2
+ ρ v

2( ),      . (5) 

Employing the quantum-like formalism [5,42,43], the energy density can be regarded as the local 
expectation value of the energy (frequency) operator ω , W = ψ( ω ψ ) , where the inner product 

ψ( |ψ ) is defined with the scaling coefficients β / 4ω  and ρ / 4ω  at the pressure and velocity 
degrees of freedom, respectively. Using this formalism, similarly to the electromagnetic case 
[5,6,8,10,42–44], we introduce the canonical momentum density of the acoustic field as the local 
expectation value of the momentum operator p̂ = −i∇ : 

 
   
p = 1

4ω
Im β P*∇P + ρ v* ⋅ ∇( )v⎡⎣ ⎤⎦ , (6) 

where v* ⋅ ∇( )v⎡⎣ ⎤⎦i
≡ v j

*

j
∑ ∇iv j . The momentum density (6) represents the natural definition of 

the local phase gradient (i.e., the local wavevector) in a multicomponent field ψ  (for a single-
component scalar field it would be proportional to ∇Arg ψ( )) [44].  

In analogy with electromagnetism, the energy flux density (5) can also be associated with 
the momentum density (multiplied by c2 ), but this should be regarded as the kinetic momentum 
density  [41]. Using some vector algebra involving the “longitudinality” condition 
∇ × v = 0, the difference between the kinetic and canonical momentum can be written as 

 ,      S = ρ
2ω

Im v* × v( ) . (7) 

Here, S  is the spin AM density of the acoustic waves [39,40]. Thus, entirely similar to the 
electromagnetic case [5,6,8,10,42,43], the difference between the kinetic and canonical 
momentum densities in the acoustic field is related to the presence of the spin AM density. This 

difference can be regarded as the spin momentum density pS = 1
4

∇ × S  [8,10,42,44,45]. The only 

distinction as compared to electromagnetism is the pre-factor 1/ 4  instead of 1/ 2 ; this is 
because the scalar (pressure) part of the “wavefunction” ψ  does not contribute to the difference 
between the kinetic and canonical momentum. Remarkably, the spin density (7) can also be 
presented as the local expectation value of the spin-1 operator Ŝ  acting on the vector (velocity) 
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degrees of freedom such that v* ⋅ Ŝ( )v = Im v* × v( ) [5,42–44]: S = 2 ψ( Ŝψ ), where the factor 

of 2 originates from the same asymmetry between the scalar and vector degrees of freedom [40]. 
We now describe the angular momentum of the acoustic field. The spin density (7) 

represents its intrinsic (i.e., origin-independent) part, while the extrinsic orbital AM density is 
determined by the canonical momentum (6) [5,6,8,10,42,43]: 

 L = r × p ,      J = L + S, (8) 

where J  is the total AM density in the canonical picture. In the kinetic picture, the total AM 
density is extrinsic and is determined by the kinetic momentum:  [29,30,32].  
Akin to the electromagnetic case, the equivalence between the canonical and kinetic pictures can 
be seen when considering integral over the whole space values of the above dynamical 
quantities,   

... ≡ ...∫ dV , for a localized (i.e., sufficiently fast decaying at infinity) acoustic field. 
Namely, the volume integral of any localized solenoidal field vanishes, and  

 ,      M = J = L ,      S = 0. (9) 

The last equality here follows from the potential character of the velocity field, 
v = −i ρω( )−1

∇P , and Eq. (7): 

 S = 1
2ρω 3 Im ∇P* × ∇P( ) = 1

2ρω 3 ∇ × Im P* ∇P( ) . (10) 

Thus, the acoustic spin AM density is a solenoidal field, which can be regarded as the vorticity 
of the scalar part of the momentum density ∝ Im P* ∇P( )  [44], and its integral value (9) 
vanishes. This corresponds to the well-known fact that longitudinal phonons are spin-0 particles. 
Nonetheless, the local spin AM density is generally nonzero in inhomogeneous acoustic fields 
and is an observable quantity [39,40].  

Finally, we consider one more quantity, which plays an important role in Maxwell 
electromagnetism. This is the helicity, which is described by the projection of the spin onto the 
momentum [5,42,46–49]. Using the spin operator Ŝ  and the canonical momentum operator p̂ , 
the helicity operator becomes proportional to the curl operator:  [48,49]. Due to 
the longitudinal character of acoustic waves, the helicity density vanishes identically:  

 . (11) 

Since the helicity can be regarded as a measure of the chirality of the field, this means that 
acoustic waves cannot be chiral (even locally), and the absorption of longitudinal phonons 
cannot distinguish between chiral enantiomers interacting with acoustic fields (cf. the case of 
photons [49–52]). 

Equations (6)–(11) are the main general results of our work. Their comparison with the 
analogous well-studied equations for electromagnetic waves in an isotropic medium with 
permittivity ε  and permeability μ  is shown in the Table I.  

Note that we used the spin-orbital canonical decomposition of the momentum and AM 
based on the canonical momentum density (6), which is “democratic” (i.e., symmetric) with 
respect to the pressure and velocity degrees of freedom. This is similar to the symmetric form of 
the energy and energy-flux densities (5) and to the dual-symmetric (with respect to the electric 
and magnetic contributions) approach to Maxwell electromagnetism [5,6,42–44,47,52]. 
Alternatively, one can introduce asymmetric “pressure-biased” and “velocity-biased” 
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decompositions, which can be convenient for some problems, akin to the electric- and magnetic-
biased quantities in electromagnetism [42,44,45]. Introducing the corresponding biased 

canonical momentum densities, p( P) = β
2ω

Im P*∇P⎡⎣ ⎤⎦  and p(v ) = ρ
2ω

Im v* ⋅ ∇( )v⎡⎣ ⎤⎦ , so that 

   
p = 1

2
p(v ) + p( P)( ), then the biased spin-orbital decompositions become: 

 . (12) 

This shows that the spin momentum density becomes twice as large in the velocity-biased 

approach and vanishes in the pressure-biased approach: pS
(v ) = 1

2
∇ × S  and pS

( P) = 0 . 

Nonetheless, the spin AM density (7) is still well-defined because it corresponds to the real 
mechanical AM produced by the local elliptical motion of the medium particles [38–40]. 
Different relations between the spin AM and spin momentum densities do not cause any 
contradiction because of the integral connection between these quantities and the spin-0 nature 
of the field:    

S = r × pS = r × pS
( P) = r × pS

(v ) = 0 . In contrast, in electromagnetism, the 

relation between the spin momentum and AM densities is fixed as pS = 1
2

∇ × S , to produce 

S = r × pS ≠ 0  [42].  
 

 Acoustics Electromagnetism 

Fields velocity v ,  pressure P  electric E,  magnetic H  

Constraints ∇ × v = 0 ∇ ⋅E = 0,  ∇ ⋅H = 0 

Energy density 
   

1
4

ρ v
2

+ β P
2( )  

1
4

ε E
2

+ μ H
2( ) 

Canonical 
momentum density    

1
4ω

Im β P*∇P + ρ v* ⋅ ∇( )v⎡⎣ ⎤⎦  
1

4ω
Im ε E* ⋅ ∇( )E + μ H* ⋅ ∇( )H⎡⎣ ⎤⎦  

Kinetic  
momentum density    

1
2c2 Re P*v( ) = p + 1

4
∇ × S  

1
2c2 Re E* × H( ) = p + 1

2
∇ × S 

Spin AM density 
  

1
2ω

ρ Im v*× v( ) 
1

4ω
ε Im E*× E( ) + μ Im H*× H( )⎡
⎣

⎤
⎦

 

Orbital AM density L = r × p  L = r × p  

Integral AM values M = L ,  S = 0 M = L + S ,  S ≠ 0 

Helicity   
Table I. Comparison of acoustic and electromagnetic quantities and properties. 
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3. Acoustic Bessel beams 

We now apply the above general theory to the explicit example of acoustic Bessel beams. 
Bessel beams have been repeatedly considered in optics [53–58], quantum physics [59–62], and 
acoustics [32,63–65] as a convenient example of nonparaxial vortex beams carrying both spin 
and orbital angular momenta and allowing a laconic analytical description. It is known that the z
-propagating Bes sel beam of order ℓ = 0,±1,±2,... represents a superposition of plane waves 
with the same frequency and wavevectors k  uniformly distributed over a circle with fixed polar 
angle θ0  (aperture angle), Fig. 1(a). These plane waves have mutual phases which depend on the 
azimuthal angle φ  in k -space as exp iℓφ( ), producing the helical phase (vortex) and the orbital 
AM in the in real-space beam, Fig. 1(b) [1–5]. 
 

 
Fig. 1. Schematics of the acoustic Bessel beams. (a) The momentum (plane-wave) 
spectrum of the beam is a circle with fixed polar angle θ0 . The mutual phases of the 
plane waves (color-marked) have an azimuthal gradient and the 2π ℓ  increment 
around the circle ( ℓ = 2  is shown here). (b) The real-space field forms a 
cylindrically-symmetric vortex beam possessing the helical phase front and carrying 
the orbital AM L ∝ ℓ z . This angular momentum is produced by the spiraling 
canonical momentum density p  in the beam (shown by cyan). Although all plane 
waves in the spectrum (a) are longitudinally polarized (i.e., the Fourier components 
of the velocity ), the local polarization in real space, v r( ) , becomes 

elliptical, which produces a nonzero spin AM density S ∝ Im v* × v( ) (shown by red 
arrows). 
 
To construct the acoustic Bessel beam, we will not calculate the Fourier integral involving 

the above plane-wave spectrum, but will use a simpler approach providing the same result [63]. 
We start with the well-known scalar part of the Bessel beam, described by the pressure field: 

 P = A J ℓ κ r( )exp iℓϕ + ikz z( ). (13) 

Here, A is a constant amplitude, kz = k cosθ0  is the longitudinal wave number, κ = k sinθ0  is 
the transverse (radial) wave number, and r,ϕ ,z( ) are the cylindrical coordinates in real space. 
Then, the vector velocity part of the acoustic Bessel field can be found from the second Eq. (3), 

v = −i ρω( )−1
∇P : 
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 vr = −i ′A
dJ ℓ κ r( )

dr
exp iℓϕ + ikz z( ) = −i ′A κ

2
J ℓ−1 κ r( ) − J ℓ+1 κ r( )⎡⎣ ⎤⎦exp iℓϕ + ikz z( ) ,  

 
   
vϕ = ′A ℓ

r
J ℓ κ r( )exp iℓϕ + ikz z( ) = ′A κ

2
J ℓ −1 κ r( ) + J ℓ+1 κ r( )⎡⎣ ⎤⎦exp iℓϕ + ikz z( ) ,  

 vz = ′A kz J ℓ κ r( )exp iℓϕ + ikz z( ). (14) 

Here, ′A = A / ρω( ) , and we used the cylindrical-coordinate components of the velocity, as well 
as the recurrence relations for the Bessel functions. The Cartesian components can be found as 
vx = vr cosϕ − vϕ sinϕ  and vy = vr sinϕ + vϕ cosϕ , which yields: 

 
   
vx = −i ′A κ

2
J ℓ−1 κ r( )e− iϕ − J ℓ+1 κ r( )eiϕ⎡⎣ ⎤⎦exp iℓϕ + ikz z( ) ,  

 
   
vy = ′A κ

2
J ℓ−1 κ r( )e− iϕ + J ℓ+1 κ r( )eiϕ⎡⎣ ⎤⎦exp iℓϕ + ikz z( ) . (15) 

Equations (13)–(15) describe acoustic Bessel beams. Substituting these expressions into 
Eq. (5), and using and the dispersion relation (4), we find the energy density distribution: 

 W = β
4

A
2

1+ cos2θ0( ) J ℓ
2 κ r( ) +

sin2θ0

2
J ℓ−1

2 κ r( ) + J ℓ +1
2 κ r( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. (16) 

This expression exhibits a phenomenon, which is also seen in electromagnetic [58,66] and Dirac-
electron [59] vortex beams. In the paraxial limit, θ0 ≪ 1, the radial distribution of the energy 
density is given by the single Bessel function as in the scalar case: W r( ) ∝ J ℓ

2 κ r( ) . In particular, 

it vanishes in the center of vortex beams:  for ℓ ≠ 0. However, for nonparaxial beams, 

when θ0
2-order terms are not negligible, the first-order vortex beams with ℓ = ±1 have a nonzero 

energy density in the center: W 0( ) = β A
2
sin2θ0 / 8, as can be seen in Figs. 2 and 3 below. To 

detect this nonzero energy density in the center of the first-order vortex beam, one needs a 
detector sensitive to the kinetic (velocity) part of the energy density. For example, the gradient 
acoustic force on a small particle is determined by the potential involving this kinetic energy 
density [67,68]. 

The energy flux density (5) or kinetic momentum density (7) acquire simple forms in 
acoustic Bessel beams (13)–(15): 

 , (17) 

where the overbars indicate the unit vectors of the corresponding coordinates. The canonical 
momentum density (6) has a more sophisticated form. First, since all the Cartesian components 
of the Bessel-beam fields (13)–(15) share the same phase factor exp ikz z( ), it is easy to see that 
the  z -component of the canonical momentum density (6) and the integral momentum of the 
Bessel beam can be written as: 

 
 
pz = kz

W
ω

,      . (18) 



 8

Here the purely longitudinal direction of the integral momentum follows from the cylindrical 
symmetry of the beam. Second, the canonical momentum density has the azimuthal ϕ -
component, which determines the z -component of the orbital AM density (8). Substituting 
Eqs. (13)–(15) into Eqs. (6) and (8), we obtain these components: 

 Lz = pϕr = ℓ W
ω

−
β A

2

8ω
sin2θ0 J ℓ −1

2 κ r( ) − J ℓ+1
2 κ r( )⎡⎣ ⎤⎦ . (19) 

The spiraling streamlines of the momentum density , Eqs. (18) and (19), are 
schematically shown in Fig. 1(b).  

 

 
Fig. 2. Distributions of the energy-density W x, y( )  (greyscale background plots) and 

polarization ellipses of the velocity field vx ,vy( )  in the transverse cross-sections of 

acoustic Bessel beams with θ0 = π / 4  and different orders ℓ . Magenta and cyan 
colors correspond to right-handed ( Sz > 0 ) and left-handed ( Sz < 0 ) elliptical 
polarizations, respectively. The non-vortex ℓ = 0  beam is radially-polarized, i.e., 
Sz ≡ 0, while vortex beams with ℓ ≠ 0  have nonzero longitudinal spin density Sz  
and purely circular polarization in the center. Flipping the sign of ℓ  flips the 
handedness of the polarization, i.e., Sz . One can also see a nonzero energy density in 
the center of the ℓ = 1 beam. 

 
The spin AM density is also present in acoustic Bessel beams. Substituting the velocity 

components (14) and (15) into Eq. (7), we find the longitudinal and transverse (azimuthal) 
components of the spin AM density: 

 
   
Sz =

A
2

ρω 3

ℓ
r

J ℓ κ r( ) dJ ℓ κ r( )
dr

=
β A

2

4ω
sin2θ0 J ℓ−1

2 κ r( ) − J ℓ +1
2 κ r( )⎡⎣ ⎤⎦, (20) 

 
   
Sϕ = −

kz A
2

ρω 3 J ℓ κ r( ) dJ ℓ κ r( )
dr

= −
β A

2

4ω
kzr
ℓ

sin2θ0 J ℓ−1
2 κ r( ) − J ℓ+1

2 κ r( )⎡⎣ ⎤⎦ . (21) 

We first note that the longitudinal spin AM density (20) is induced by the vortex (proportional to 
ℓ ) and vanishes in the zero-order beam with ℓ = 0. Similarly to electromagnetic waves, the z-
component of the spin can be associated with the polarization ellipticity in the transverse x, y( ) 
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plane. The transverse polarization distribution for the velocity field vx ,vy( )  in acoustic Bessel 

beams is shown in Fig. 2. The ℓ = 0 non-vortex beam has purely linear radial polarization, while 
vortex beams with ℓ ≠ 0 have radially-varying polarization, oscillating between the right-hand 
and left-hand circular polarizations. Notably, the polarization in the center of the vortex beam is 
always purely circular, with the handedness determined by sgn ℓ( ) . This can be seen from 

Eqs. (13) which yield vϕ = isgn ℓ( )vr  for r → 0. This phenomenon can be observed in the first-
order beams with ℓ = ±1, which have nonvanishing transverse velocity components in the center 
(while the longitudinal component vz  vanishes). Remarkably, recent analysis of the acoustic 
torque on a small absorbing particle in a Bessel beam [65] show the radial dependence to be 
exactly proportional to Sz  in Eq. (20), including a non-vanishing torque in the center of the first-
order Bessel beam. It is worth noticing that the circular transverse polarization in the center of 
the beam does not contradict the longitudinal character of the acoustic waves. The field (13) is 
curl-less, ∇ × v = 0, and its transverse polarization in the vortex center is a result of destructive 
interference of multiple purely-longitudinal plane waves with different wavevectors and phases, 
Fig. 1. This phenomenon is an acoustic counterpart of the abnormal longitudinal polarization in 
nonparaxial radially-polarized optical beams [69–72]. Next, the “transverse spin” (21) is quite 
similar to its optical counterpart, which appears in nonparaxial optical beams [5,6,11]. The sign 
of the transverse spin does not depend on the vortex sign, sgn ℓ( ), and it does not vanish in the 

zero-order beam with ℓ = 0. The distributions of the longitudinal-plane polarization vz ,vr( ) in 
acoustic Bessel beams, with its ellipticity corresponding to the transverse spin (21), are shown in 
Fig. 3.  

 

 
Fig. 3. Distributions of the energy-density W r,z( )  (greyscale background plots) and 

polarization ellipses of the velocity field vr ,vz( ) in the longitudinal cross-sections of 

acoustic Bessel beams with θ0 = π / 4  and different orders ℓ . Magenta and cyan 
colors correspond to right-handed ( Sϕ > 0 ) and left-handed ( Sϕ < 0 ) elliptical 
polarizations, respectively. Flipping the sign of ℓ  does not change the handedness of 
the polarization, i.e., does not affect the transverse spin Sϕ . 
 
Equations (19)–(21) reveal remarkable general properties of the spin and orbital AM in 

nonparaxial acoustic vortex beams. Namely, it follows from Eqs. (19) and (20) that 
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Lz +

Sz

2
= ψ( L̂z + Ŝz ψ ) = ℓ W

ω
. (22) 

This means that acoustic vortex beams are eigenmodes of the “total AM” operator L̂z + Ŝz , but 
not eigenmodes of L̂z  and Ŝz  separately. On the one hand, this is entirely similar to cylindrical 
optical [58,73,74] or Dirac-electron [59,61] modes, which have well defined integer total AM 

 “per particle”. This is a consequence of the intrinsic spin-orbit interaction in vector optical 
or quantum fields [58,59,75], and acoustic fields display similar features. On the other hand, 
there is a crucial difference due to the factor of 1/2 in the spin contribution in Eq. (21), which 
originates from the definition of the spin density as S = 2 ψ( Ŝψ )  in Eq. (7). (Note that the 

normalized spin density ω Sz /W  reaches the maximum value of 2 in the circularly-polarized 

center of the ℓ = 1  Bessel beams.) It is tempting to define the acoustic spin density as 

′S = ψ( Ŝψ ) , which would yield Lz + ′Sz = ℓW / ω , but this contradicts the actual physical 

density of the intrinsic AM originating from the local elliptical motion of the medium particles 
[38–40]. Due to this, the physical total AM density (8) is not quantized and equals 
Jz = Lz + Sz = ℓW /ω + Sz / 2. Nonetheless, the general integral relations (9) hold true in acoustic 
Bessel beams, and the integral AM is properly quantized: 

 
ω J

W
=

ω L
W

= ℓ z ,      
S
W

= 0. (23) 

Here, the purely longitudinal directions of the angular momenta follow from the cylindrical 
symmetry of the beam, while the vanishing of the spin contribution follows from Eq. (20) and 

relation ℓ J ℓ κ r( ) dJ ℓ κ r( )
dr0

∞

∫ dr = 0 . Note that the non-integer character of the normalized total 

AM density, ω Jz /W ≠ ℓ , and the integer character of the integral value (23) is in agreement 
with previous calculations [30,32] for nonparaxial acoustic vortex beams. 

We finally note that the spin AM density (20) and (21) has its direction exactly orthogonal 
to the energy flux density (17) [which is a general fact following from Eqs. (5) and (7)], as 
schematically shown in Fig. 1(b): 

 ,      . (24) 

The spin-density direction is described by the unit vector s = S / S , which can be written as 

 . (25) 

Here, the parameter σ = ±1 changes its sign with radius, such that σ r = 0( ) = 1 and it flips sign 

in every maximum or minimum of the radial distribution J ℓ
2 κ r( )  for r ≠ 0 . Indeed, when 

dJ ℓ
2 κ r( ) / dr = 0, the spin density vanishes, S = 0, see Eqs. (20) and (21), and its direction (25) 

is indeterminate (it is well-defined at r = 0 because of the 1/ r  factor in the expression (20) for 
Sz ). Note that the spin direction distribution in the vicinity of the beam axis resembles a 
magnetic skyrmion texture [76,77]. However, skyrmions have a smooth distribution of well-
defined magnetization direction everywhere, while the distribution (25) has singularities (jumps 
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to the opposite direction) at the r ≠ 0  extrema of the radial distribution J ℓ
2 κ r( ) . These 

polarization singularities are the cylindrical “L-surfaces” of purely-linear polarization [78,79]. 

4. Discussion 

We have considered properties of acoustic monochromatic fields in a homogeneous 
medium (fluid or gas). These are longitudinal waves described by one scalar (pressure) and one 
vector curl-free (velocity) fields. So far, mostly the energy and energy-flux densities were 
considered for these fields, and recently it was shown that inhomogeneous acoustic waves also 
possess a nonzero spin AM density [38–40]. We have described the whole set of dynamical 
characteristics of acoustic wave fields, analogues to their electromagnetic counterparts, including 
canonical momentum, spin momentum, orbital AM, and helicity densities. We have shown that 
the helicity density vanishes identically in acoustic fields, which reflects their non-chiral 
character. At the same time, the spin AM density is generically non-zero (the velocity field can 
have an elliptical local polarization), but the integral spin AM for localized acoustic fields 
vanishes. This is in agreement with the spin-0 nature of longitudinal phonons.  

As an example of acoustic beams carrying both spin (locally) and orbital angular momenta, 
we have considered nonparaxial Bessel beams with the vortex of charge ℓ . These beams exhibit 
a rather nontrivial polarization structure and a number of measurable spin-related phenomena, 
such as torque on small absorbing particles [39,65]. In particular, we have found that the energy 
density does not vanish in the center of the first-order, ℓ = ±1, Bessel beams, which is similar to 
optical vortex beams and in contrast to scalar vortex beams. Moreover, the velocity polarization 
in the center of vortex beams is purely circular, with the handedness determined by the vortex 
sign, sgn ℓ( ), and transverse, i.e., orthogonal to the beam axis. This is an acoustic counterpart of 
the purely-longitudinal polarization on the axis of optical radially-polarized focused beams [69–
72]. Remarkably, the spin density in acoustic Bessel beams has both longitudinal and transverse 
(azimuthal) components, which are odd and even with respect to the vortex charge ℓ , 
respectively. Also, the spin density vanishes and changes its direction to the opposite one in the 
r ≠ 0 extrema of the radial Bessel-function distribution J ℓ

2 κ r( ). 
Importantly, all of the above phenomena are experimentally observable. The nonzero 

energy density in the center of the tightly-focused ℓ = ±1 vortex beams can be measured by a 
detector sensitive to the kinetic (velocity) part of the energy density, cf. optical experiment [64]. 
The nonzero spin density can be directly measured via torques on small absorbing particles, 
similarly to the recent experiment [39] and calculations [65]. The main difficulty in such 
measurements is to discriminate between the torque from the spin AM and the torque from the 
orbital AM [32,80,81]. One can notice that the orbital torques always accompany the spin-related 
torques and these often act in the same direction. Therefore, an accurate theory of the acoustic 
field interaction with an absorbing particle and careful experiments are required to study acoustic 
spin- and orbital-induced torques. 

The T-odd and P-even nature of the angular momentum and the local character of the spin 
density makes it the main natural property which can be coupled to an external magnetic field [5] 
(see, e.g., the Zeeman interaction, optical Faraday effect, magnetic circular dichroism, etc.). 
Therefore, it is natural to expect that the acoustic spin density will play an important role in 
magneto-acoustic effects. Note that magnetic circular dichroism [82], as well as interactions with 
the Zeeman-split atomic states [83,84], have been successfully employed to detect nontrivial 
local polarization and spin properties in inhomogeneous optical fields. Moreover, various 
magneto-acoustic interactions involving angular momentum of phonons in solids were recently 
intensively explored [25–27,85]. This marks magneto-acoustics as one of the most promising 
directions for future studies of acoustic spin-related phenomena. 
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We finally note that the separation of the spin and orbital degrees of freedom in 
electromagnetic waves is intimately related to the difference between the “canonical” and 
“kinetic” (Belinfante) pictures in relativistic field theory [8,42,45,86–89]. In this manner, the 
canonical momentum and angular momentum properties, as well as their local conservation 
laws, can be derived from the field Lagrangian and Noether’s theorem. It would be highly 
desirable to develop similar field-theory approach to acoustic fields, to derive the quantities 
introduced in Eqs. (6)–(9), as well as their conservation laws, from the first principles. 
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