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We investigate the spectral profiles of time signals attributed to coherent phonon generation
in an undoped Si crystal. Here, the retarded longitudinal-optical (LO) phonon Green function
relevant to the temporal variance of induced charge density of ionic cores is calculated by employing
the polaronic quasiparticle model developed by the authors [Y. Watanabe et al., Phys. Rev. B 95,
014301 (2017); ibid., 96, 125204 (2017)]. The spectral asymmetry is revealed in the frequency domain
of the signals under the condition that an LO phonon mode stays almost energetically resonant with
a plasmon mode in the early time region; this lasts for approximately 100 fs immediately after the
irradiation of an ultrashort pump-laser pulse. It is understood that based on the adiabatic picture
in time, this asymmetry is caused by the Rosen-Zener coupling between both modes. The associated
experimental results are obtained by measuring time-dependent electro-optic reflectivity signals, and
it is proved that these are in harmony with the calculated ones. The spectra become more symmetric,
as the photoexcited carrier density further changes from that meeting the above condition to higher
and lower sides of carrier densities. Moreover, the effect of optical nutation of carrier density on
the CP signals is addressed, and the present results are compared with the asymmetry caused by
transient Fano resonance and the spectral profiles observed in a GaAs crystal in the text.

PACS numbers: 78.47.jh,63.20.kd,42.65.Sf

I. INTRODUCTION

Using ultrafast laser pulse irradiation to semiconduc-
tors, it is possible to impulsively generate bare particles,
e.g., phonons, and observe their subsequent dressing by
the many-body interactions, that is, formation of a quasi-
particle.1,2 The use of quasiparticles in semiconductors
may revolutionize modern semiconductor-based optical
and electronic device technologies, such as quantum com-
puting.3,4 Coherent phonon (CP) generation5 induced by
an ultrashort pulse laser has been investigated in various
materials,2,6–19 and efforts of exploration in this research
area have been devoted to the understanding of the un-
derlying microscopic mechanism governing the CP gen-
eration20–23 and the concomitant quantum mechanical
effects just after the pulse-irradiation.2,11,13 The exper-
imental results of the CP generation have been exam-
ined on the basis of the two well-known classical mod-
els subject to a damped forced-oscillation; the impulsive
stimulated Raman scattering model24 and the displacive
excitation of CP model.25 These models succeed in part
in demonstrating the qualitative features of the CP os-
cillation.8,26–28 However, such an approach is confronted
with difficulties in describing the early stage of the CP
generation dynamics that is governed by an interaction
of strongly photoexcited carriers with longitudinal opti-
cal (LO) phonons. Hereafter, this stage is termed as the
early time region (ETR), which lasts up to approximately

100 fs after the irradiation of pump-pulse. Actually, it
is commonly observed in the ETR in experiments that
oscillatory patterns of transient electro-optic reflectivity
signals for the CP are largely deviated from signals ob-
served in the temporal region following the ETR; this is
termed hereafter as the classical region.

Such anomalous signals sharply distinguished from a
damped harmonics are considered to result from cer-
tain quantum-mechanical effects. There have been few
studies toward the understanding of the anomaly so far,
aside from the exploration of coherent coupling usually
related to nonlinear optical effects of four-wave mixing
due to pumping and probing radiation.29 Transient Fano
resonance observed in lightly n-doped Si is a vestige of
the quantum-mechanical effects;2 though not observed
in polar-semiconductors such as GaAs and GaP.30 The
manifestation of this effect is understood based on the
polaronic-quasiparticle (PQ) model, where photoexcited
carriers are dressed in LO phonons by means of a strong
coupling between these two particles in the ETR.22 A
classical Fano oscillator model derived from the Fano-
Anderson Hamiltonian31 is also applied for this experi-
mental result.32 Further, based on the above PQ model,
the following two effects are revealed.23 One is a differ-
ent quantum-mechanical effect of transient plasmon-LO-
phonon resonance, that is energetically resonant interac-
tion of the plasmon with the LO phonon via dynamically
screened Coulomb interaction, which causes irregular os-
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cillatory patterns of the CP time signals in the ETR and
vanishes out of the ETR.23 The other is the effect of Rabi
flopping with respect to pulse area of a pump laser; this
effect is reflected on both of the amplitude and initial
phase of the time signals in the classical region.

In this paper, we delve deeper into the issue of the tran-
sient plasmon-LO-phonon resonance. The aim of it is to
examine how the formation of such resonance affects the
degree of asymmetry of the spectral profiles associated
with the CP time signals by means of both theory and
experiment. The spectral asymmetry is still one of the
significant subjects in the study of the CP, and the tran-
sient Fano resonance mentioned above has been explored
thus far exclusively on the view of the understanding of
this subject.2,22 Here, based on the adiabatic picture with
respect to time that is incorporated in the PQ model,
the transient dynamics of the CP generation is described
in terms of adiabatic energy curves of particles partici-
pating in this dynamics. A particular attention is paid
to the curve-crossing behavior between the plasmon and
the LO-phonon, and the origin of the discernible asym-
metry is analyzed by virtue of the adiabatic two-state
models,33 namely, the Landau-Zener (LZ) model and the
Rosen-Zener (RZ) model, as is mentioned in more detail
later. Also, the effect of optical nutation34 relevant to the
above-mentioned Rabi flopping on the spectral asymme-
try is taken into consideration.

This paper is organized as follows. The theoretical
framework and the experimental setup are given in Sec. II
and Sec. III, respectively. The results and discussion are
given in Sec. IV, followed by the conclusions in Sec. V.
Hereafter, atomic units (a.u.) are used throughout unless
otherwise stated.

II. THEORY

The theoretical framework of the PQ model is surveyed
for the CP generation dynamics available for both of po-
lar and non-polar semiconductors on an equal footing;
for more detail, consult Refs. [22] and [23]. The total

Hamiltonian of concern Ĥ(t) at time t is composed of an

electron Hamiltonian Ĥe, an interaction between an elec-
tron and an external pump-pulse Ĥ ′(t), an LO phonon

Hamiltonian Ĥp, and an electron-LO-phonon interaction

Ĥe−p. This is given as follows:

Ĥ = Ĥe + Ĥ ′(t) + Ĥp + Ĥe−p, (1)

where

Ĥe =
∑
bk

εbka
†
bkabk +

1

2

∑
q 6=0

V (C)
q

×
∑
bb′kk′

a†bk+qa
†
b′k′−qab′k′abk, (2)

Ĥ ′(t) = −
∑
k

[
Ωcv(t) a

†
ckavk + Ωvc(t) a

†
vkack

]
, (3)

Ĥp =
∑
q

ωqc
†
qcq, (4)

and

Ĥe−p =
∑
b,q,k

(
gbqcqa

†
bk+qabk + g∗bqc

†
qa
†
bkabk+q

)
. (5)

Here, a two-band model including conduction (c) and

valence (v) bands is employed. a†bk and abk are creation
and annihilation operators of electron, respectively, with
its energy dispersion εbk at Bloch momentum k in band

b(= c, v). V
(C)
q is a Coulomb potential with momentum

q. c†q and cq are creation and annihilation operators of
LO-phonon, respectively, with its energy dispersion ωq at
Bloch momentum q. The interaction of the laser pulse
with electron in band b at t is given by

Ωbb̄(t) = Ω0bb̄f(t) cosω0t, (6)

where Ω0bb̄ represents the Rabi frequency35 given by the
product of peak electric-field strength of the laser pulse
and the electric dipole moment between Γ-points of c and
v bands; b̄ 6= b. Here f(t) represents the pulse envelope
function given by the Gaussian function with temporal
width (the full width at half maximum) τL satisfying
τL � Tq ≡ 2π/ωq, and ω0 is the center frequency of the
external laser-field. gbq is a coupling constant of b-band
electron with the LO-phonon.

We consider the time-evolution of a composite operator

defined by A†q(kbb′) = a†bk+qab′k on the basis of adiabatic

approximation with respect to t.22,23 A†q(kbb′) represents
a carrier density matrix for the transition from b′-band
to b-band with an anisotropic momentum distribution de-
termined by the transferred momentum q; this is quite
small, but finite (q 6= 0). Here, the rotating wave approx-
imation35 is employed in order to remove high-frequency
contributions from the equations of motion, and thus
A†q(kbb′) is replaced by Ā†q(kbb′) = A†q(kbb′)e−iω̄bb′ t,
where ω̄cv = ω0, ω̄vc = −ω0, and ω̄bb = 0. Further
a creation operator of a collective excitation mode —
a plasmon — B†q with the plasma frequency ωqpl is in-
troduced by a linear combination of the intraband den-
sity matrices A†q(kbb)’s.23 As regards the single-particle
excitation mode, just the interband contributions from
A†q(kbb̄)’s are retaimed, and the intraband contributions

from A†q(kbb)’s are neglected because these vanish in the

long wave-length limit (|q| → 0).23,35

The equations of motion of c†q, Ā†q(kbb̄), and B†q are

provided in a matrix form of23

−i d
dt

[
c†q, Ā

†
q(kbb̄), B†q

]
=
[
c†q, Ā

†
q(kbb̄), B†q

]
Z̄q. (7)

Here, Z̄q = {Z̄qjj′} represents a non-Hermitian matrix.
Hereafter, it is understood that j, j′ = {ph, (kbb̄), pl}
with the LO-phonon mode ph, the single-particle excita-
tion mode (kbb̄), and the plasmon mode pl. The explicit



3

form of Z̄q is given as

Z̄q =


ω̄qph 0 0 M∗qph

0 ω̄q(kbb̄) 0 M ′
q(kbb̄)

0 0
. . .

...
Mqph Mq(kbb̄) · · · ω̄qpl

 , (8)

with ω̄qj = ωqj + iγqj , where ωqph ≡ ωq, and ωq(kbb̄) ≡
ε

(r)
bk+q − ε

(r)

b̄k
− ω̄bb̄; ε

(r)
bk represents a renormalized b-

band electron energy with a Coulomb correction to εbk.
γqj represents a damping constant of the jth mode.
Mqph represents an effective coupling between the LO-
phonon and plasmon modes, which is mostly dominated
by gbq, while Mq(kbb̄) and M ′

q(kbb̄)
represent effective cou-

plings between the single-particle excitation and plas-
mon modes, which arise from an equal-time commutator
[Ā†q(kbb̄), B†q], where M∗

q(kbb̄)
6= M ′

q(kbb̄)
.23 In addition,

the argument of t in c†q, Ā
†
q(kbb̄), B†q, and Z̄q is omitted

just for the sake of simplicity, and hereafter this conven-
tion is used unless otherwise stated.

Now, we introduce the PQ operator as follows:36

P †qj = c†qV
R
qphj +B†qV

R
qplj +

∑
kb

Ā†q(kbb̄)V Rq(kbb̄)j , (9)

where left and right eigenvalue problems37 of Z̄q as

V L†qj Z̄q = EqjV
L†
qj and Z̄qV

R
qj = V RqjEqj , respectively, are

solved in an adiabatic sense to obtain the jth eigenvalue
Eqj and the corresponding biorthogonal set of eigenvec-

tors {V Lqj , V Rqj}. The time-evolution of P †qj is obtained
by solving the associated Heisenberg equation, where a
non-adiabatic coupling between jth and j′th modes are
assumed negligibly small in the practical calculations.23

In the linear response theory, the retarded phonon
Green function DR

q (t, t′) indicates an induced charge den-
sity of ionic cores probed at time t′ by a weak external
potential with a delta-function form δ(t′).38 This is pro-

vided by DR
q (t, t′) = D̄R

q (t, t′) +
[
D̄R

−q(t, t′)
]∗

in terms of

the PQ operator with the relation of c†q =
∑
j P
†
qjV

L†
qj,ph

as follows:

D̄R
q (t, t′) = −i

〈[
cq(t), c†q(t′)

]〉
θ(t− t′)

= −i
∑
jj′

V Lqph,j(t)
〈[
Pqj(t), P

†
qj′(t

′)
]〉

×V L†qj′,ph(t′)θ(t− t′) (10)

and D̄R
−q(t, t′) = D̄R

q (t, t′), where the ground-state ex-

pectation value is taken in 〈· · · 〉. The induced charge
density attributed to the CP generation is provided by

Qq(τ) ≡ DR
q (τ + t′, t′)−DR(0)

q (τ + t′, t′) (11)

with τ = t− t′ ≥ 0, and it is considered that Qq(τ) cor-
responds to a displacement function of the CP at time τ
aside from an unimportant proportional constant. Here,
the contribution of the incoherent phonon signal is sub-
tracted, where this is given by the free phonon Green

function D
R(0)
q (τ + t′, t′) without the pump laser, and

hereafter the probing time of t′ = 0 is exclusively con-
cerned. The oscillatory pattern of the CP is extracted by
representing Qq(τ) as

Qq(τ) = Aq(τ) cos [ωqτ + Θq(τ)] , (12)

where Θq(τ) and Aq(τ) represent a renormalized phase
modulus π and a transitory amplitude at τ , respectively.
The Fourier transform (FT) of Qq(τ) is provided by

Q̃q(ω) =

∫ ∞
0

e−iωτQq(τ)dτ, (13)

and the associated power spectrum Sq(ω) is given by

Sq(ω) ∝ |Q̃q(ω)|2. (14)

In the long-time limit of τ ensuring τ � Tq, Θq(τ) and

Aq(τ) become θq and A0
q e
−τ/Tqph , respectively, where

θq and A0
q are constants and Tqph represents a relax-

ation time constant attributed to phonon anharmonicity,
namely, Tqph = 1/γqph. In this time region, Eq. (10)
becomes

D̄R
q (τ, 0) = −ie−iωqτξq(τ, 0)V L†qph,ph(0) θ(τ), (15)

where the relations of V R†qph,j(−∞) = δph,j ,

V Lqph,ph(τ) ≈ 1,
[
cq(−∞), c†q(−∞)

]
= 1, and[

cq, B
†
q

]
=

[
cq, A

†
q(kbb̄)

]
= 0 are used. In fact,

ξq(τ, 0) given by

ξq(τ, 0)

≈ exp

[
−
∫ τ

−∞
dt′′ImEqph(t′′)−

∫ 0

−∞
dt′′ImEqph(t′′)

]
× exp

[
−i
∫ τ

0

dt′′ {ReEqph(t′′)− ωq}
]

(16)

is approximately unity. Thus, θq and A0
q are provided as

θq =
π

2
− arg [δVqph] (17)

modulus π, and

A0
q = |δVqph| , (18)

respectively, where

δVqph = V L†qph,ph(0)− 1. (19)

Numerical calculations for undoped Si are conducted.
Material parameters employed here are given in Ref. 22
with τL = 10 fs, Tq = 66 fs equivalent to ωq = 63 meV
= 15.2 THz, and Tqph = 2 ps.
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III. EXPERIMENTS

The anisotropic transient reflectivity of n-doped (∼
1×1015cm−3) Si(001) sample is measured in air at 295 K2

by the electro-optic (EO) sampling technique.39 Nearly
collinear, pump and probe beams — with center fre-
quency ωp = 2.989 - 3.180 eV (390 - 415 nm) and Gaus-
sian pulse duration ≈ 10 fs corresponding to τL — are
overlapped at a 7.2×10−7cm2 spot on the sample. The
maximum average pump power of 18 mW generates N
≈ 3.0×1019cm−3 carriers estimated from the absorption
coefficient α = 8.0×104cm−1 at 397 nm.40 This is 10
times less than the critical density for screening of the
carrier-phonon interaction.41 After reflecting from the
sample, the probe is analyzed into polarization compo-
nents parallel and perpendicular to that of the pump and
each is detected with a photodiode. The resulting pho-
tocurrents are subtracted and their difference (∆Reo/R
= (∆R‖−∆R⊥)/R) was recorded versus the pump-probe

delay. The delay is scanned over 8 ps at 20 Hz frequency.9

IV. RESULTS AND DISCUSSION

Figure 1 shows the calculated results of Qq(τ) as a
function of τ and the associated Sq(ω) for ∆ = −136
meV, −54.4 meV, −27.2 meV, and 108.8 meV, respec-
tively with Ω0cv =108.8 meV. Here, ∆ represents the de-
tuning defined as the difference of the center frequency of
a pump-laser pulse ω0 from the direct band gap energy
at Γ point Eg, that is, ∆ = ω0 − Eg. Qq(τ) in Fig. 1(a)
looks almost sinusoidal. The spectrum Sq(ω) in Fig. 1(e)
peaks at ω = ωq with a symmetric profile. It is seen that
in Figs. 1(b) and 1(c), the amplitudes of Qq(τ) in the
ETR (τ . 100 fs) are much larger than those in the clas-
sical region (τ & 100 fs), and the spectral profiles are
found asymmetric in Sq(ω) seen in Fig. 1(f) and 1(g).
In contrast, in Fig. 1(d), Qq(τ) oscillates almost in a
sinusoidal manner with a constant amplitude to show a
symmetric spectral profile as seen in Fig. 1(h). The irreg-
ularity with the enhancement of amplitudes in the ETR
shown in Figs. 1(b) and 1(c) is attributed to the almost
energetically resonant interaction between both modes of
plasmon and LO-phonon, as discussed in Ref. 23, so is
the associated spectral asymmetry.

The asymmetry observed in Sq(ω) of Fig. 1 is evaluated
by fitting these spectra in the vicinity of each peak to
Fano’s spectral formula,42

I(ω) = C
(qa + ε)2

1 + ε2
+ const., (20)

where ε = (ω−ωr−∆ω)/Γ, C is the amplitude, qa is the
asymmetry parameter, ωr is the unperturbed frequency,
and the frequency shift ∆ω and the broadening param-
eter Γ are the carrier density dependent real and imagi-
nary parts of the LO phonon self-energy associated with
the interaction with photogenerated carriers.2,43 Figure 2
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FIG. 1. The calculated results of the oscillatory patternQq(τ)
as a function of τ (in the unit of fs) and the associated power
spectrum Sq(ω) as a function of ω (in the unit of meV) for
the detuning ∆ = (a) and (e) −136 meV, (b) and (f) −54.4
meV, (c) and (g) −27.2 meV, and (d) and (h) 108.8 meV.
The insets in Figs. (b) and (c) show Qq(τ) for 300 fs ≤ τ ≤
500 fs.

shows the inverse of the asymmetry parameter 1/qa hav-
ing a negative value as a function of ∆ with Ω0cv =108.8
meV; where a spectrum Sq(ω) becomes symmetric with
the decrease of 1/|qa|, while this becomes asymmetric
with the increase of it aside from 1/|qa| � 1 showing a
(symmetric ) spectral dip. At ∆ < −100 meV, 1/|qa| is
reduced. As ∆ increases, 1/|qa| becomes larger, because
the plasmon-phonon resonance likely occurs in the ETR.
Within our calculations, the profile is the most asymmet-
ric at ∆ = −54.4 meV with 1/qa = −0.286. As ∆ further
increases, 1/qa approaches zero again to show symmetric
profiles.

Figure 3(a) shows the experimental results of transient
EO reflectivity as a function of time delay for different
photon energy ωp, and the FTs of these oscillatory sig-
nals are shown in Fig. 3(b). For the 2.989 eV excita-
tion, aperiodic electronic response near the zero delay
dominates the signal. For higher energies, in addition,
there appears a coherent oscillation with a period of ∼
66 fs that persists for ∼ 8 ps due to the |q| ≈ 0 coher-
ent LO phonons.2,43 The phonon amplitude monotoni-
cally increases with increasing the photon energy, reach-
ing a maximum of ∆Reo/R ∼ 2.5×10−5 at the high-
energy limit of the tuning range, where it is compara-
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FIG. 2. The inverse of the calculated asymmetry parameter
1/qa for the power spectrum Sq(ω) as a function of ∆ (in the
unit of meV).

ble to the electronic response. As with the spontaneous
Raman spectra, the LO phonon signal is enhanced by
resonance with the direct band gap of Si (attributed to
two nearly overlapping transitions E’0 (3.320 eV) at the
Γ point and the more intense E1 (3.396 eV) for a range
of momenta along Λ44). The FT spectra show a pro-
nounced asymmetry, which we fit to a Fano lineshape
given by Eq. (20).42,43

Further, Fig. 3(c) shows the inverse of the asymmetry
parameter 1/qa as a function of ωp, which is extracted
from the signals of Fig 3(b) in the same manner as that
of Fig 2. The intensity of the pulse laser irradiated here
corresponds to Ω0cv =110 meV almost equal to that used
in the theoretical calculations for Figs. 1 and 2. In ac-
tual experiments accompanying high-density carrier ex-
citation, a primitive bandgap Eg ≈ 3.3 eV is likely modi-
fied to Ēg due to the effect of bandgap renormalization.9

Accordingly, it is considered that the photon energy ωp
necessary for the carrier excitation is reduced to some
extent from ω0, that is, ωp = ω0 − ∆g with the magni-
tude of the bandgap renormalization as ∆g ≡ Eg − Ēg.
Thus, the detuning is represented by ∆ = ωp − Ēg. As
shown in Figs. 3(b) and 3(c), for ωp . 3.05 eV, the spec-
tral profiles are asymmetric, and the profile is the most
asymmetric at ωp = 3.025 eV with 1/qa = −0.348, where
the amplitudes of the time signals in the ETR are much
larger than those in the classical region. On the other
hand, for ωp & 3.05 eV, as ωp increases, the profile be-
comes symmetric. These results are in agreement with
the calculated results shown in Figs. 1, and 2, if the es-
timate of ∆g is considered to be roughly 200 meV; as a
whole, however, the experimental results look somewhat
more asymmetric than the theoretical ones for an uncer-
tain reason. Actually, the photoexcited carrier density is
2.0 × 1019 cm−3 for ∆ = 54.4 meV in the present cal-
culations, leading to ω0 ≈ 3.35 eV. On the other hand,
the photoexcited carrier density is 3.0 × 1019 cm−3 for
ωp = 3.12 meV in the experiment cited in Ref. 9. Be-
cause both of the photoexcited carrier densities are al-
most equal, we obtain ∆g ≈ 230 meV, which is the same
order of magnitude as that calculated by a first-principle
technique and the GW approximation for the self-energy

FIG. 3. The experimental results in lightly n-doped Si for
different photon energy ωp of (a) the transient electro-optic
reflectivity as a function of time delay (in the unit of fs), (b)
the associated FT power spectra of the reflectivity signals —
represented by blue dots — as function of frequency (in the
units of THz and meV). The black solid line represents a fit
using Eq. (20). (c) The inverse of the asymmetric parameter
1/qa for the power spectrum as a function of ωp (in the unit of
eV); ωp is converted to ∆ (in the unit of meV) used in Fig. 2
by means of the relation ∆ = ωp − Ēg with Ēg ≈ 3.07 eV.

operator.45

Next, with the goal of deepening the understanding
of the asymmetry observed in Fig. 2, first, we examine
the detail of the pronounced behavior of the CP signals
shown in Figs. 1(b) and 1(c) in the time region of τ . 20
fs much smaller than the period Tq. To do this, an adia-
batic two-state model, namely, the LZ model and the RZ
model,33 is introduced for Z̄q given in Eq. (8), where time
τ is considered as an adiabatic parameter. The way of in-
teraction between the LO-phonon mode and the plasmon
mode can be understood based on the these models. In
the LZ model, two adiabatic-energy curves, namely, real
parts of [Eqph(τ)] and [Eqpl(τ)], tend to swerve sharply
around the local time τ = τLZ , at which both are clos-
est to each other forming anti-crossing, while in the RZ
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model, these curves evolve in a parallel manner over τ af-
ter τRZ with almost energetically degeneracy. Here, the
diagonal component of the plasmon mode ωqpl and that
of the LO-phonon mode ωq in Z̄q accept roles of diabatic
energy levels; the former is proportional to square root
of carrier density, thus increases in time due to optical
excitation, while the latter is kept constant.

Figure 4 shows the real parts of adiabatic energy
curves of plasmon mode Eqpl(τ) with respect to τ for
∆ = −54.4 and −27.2 meV with Ω0cv =108.8 meV.
Eqpl(τ)’s are renormalized by the electron-laser interac-
tion, the Hartree-Fock interaction, and the electron-LO-
phonon interaction to lead to the deviation from an un-
renormalized plasmon frequency ωqpl(τ) to some extent.
In particular, this stands out in the region of τ . 10 fs.
Actually, at τ = 9 fs, despite τ > τL/2, Re[Eqpl(τ)]’s dif-
fer from ωqpl(τ) by roughly 10 and 5 meV for ∆ = −54.4
and -27.2 meV, respectively, due to the renormalization
of still non-negligible electron-laser interaction in the tail
region of the pulse, where Ωcv(τ) = 11.5 meV. As time
passes, Ωcv(τ) vanishes, and Re[Eqpl(τ)] becomes closer
to ωqpl(τ) aside from the energy difference between these
two energy-values due to the Hartree-Fock interaction
and the electron-LO-phonon interaction that are still re-
tained in the ETR, as seen in Fig. 4. Concerning another
adiabatic energy of LO-phonon mode Eqph(τ), the real
part of it, Re[Eqph(τ)], is almost equal to ωq within a
couple of meV due to the renormalization of the electron-
LO-phonon interaction;23 thus, for the sake of simplicity,
hereafter, let Eqph(τ) be represented by ωq in Fig. 4.

It is seen in Fig. 4 that ωqpl(τ) can overtake ωq during
optical excitation leading to the LZ model, and ωqpl(τ)
remains constant and can be close to ωq after optical
excitation leading to the RZ model. To be specific,
for ∆ = −27.2 meV, Re[Eqpl(τ)] traverses Re[Eqph(τ)]
around τLZ ≡ 9 fs, while for ∆ = −27.2 and -54.4 meV,
Re[Eqpl(τ)] becomes constant after τRZ ≡ 12 fs to form
the RZ coupling in the ETR. Let the energy difference of
Re[Eqpl(τ)] from Re[Eqph(τ)] in the ETR be represented
by δEq, that is, δEq ≡ Re[Eqpl(τ)]−Re[Eqph(τ)]; where
δEq is determined by the Rabi frequency Ω0cv as well
as ∆, because Re[Eqpl(τ)] as well as ωqpl is subject to
the photoexcited carrier density, and δEq is considered
almost constant in τ > τRZ . It is evident that with the
decrease of |δEq|, the effect of the RZ coupling becomes
more significant. Actually, ∆’s in Fig 1 are put in an in-
creasing order of |δEq| as -54.4, -27.2, -136.0, and 108.8
meV. Incidentally, for ∆ = 108.8 meV, an anticrossing
due to the LZ coupling likely occurs just in the region of
τ . τL/2, though the overall oscillatory pattern is little
affected by this.

The interaction between the two modes of plasmon
and LO-phonon causes abrupt changes of Aq(τ) and
Θq(τ) in the oscillatory pattern of Qq(τ).23 Figure 5
is the enlarged view of Figs. 1(b) and 1(c) in the lim-
ited region of τ ≤ 50 fs to show the detailed behavior
of Qq for ∆ = −54.4 and -27.2 meV, respectively. In
Fig. 5(a), Aq(τ) becomes pronouncedly enhanced around
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FIG. 4. The real part of the adiabatic eigenvalue of the plas-
mon mode Re[Eqpl(τ)] (in the unit of meV) as a function of τ
(in the unit of fs) for ∆ = −54.4 meV (blue square) and −27.2
meV (green square). The blue and green dot lines represent
the associated plasma frequencies ωqpl(τ), and the black dash
line represents the bare phonon energy ωq.
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FIG. 5. The enlarged view of Figs. 1(b) and 1(c) in the limited
temporal region of τ for ∆ = (a) -54.4 meV and (b) -27.2 meV,
respectively.

τRZ . This consists with the formation of the RZ cou-
pling between the plasmon and LO-phonon modes, as is
seen in Fig. 4. Concerning the case of Fig. 5(b), both
of Aq(τ) and Θq(τ) change sharply just in the vicinity
of τLZ , followed by the enhancement of Aq(τ) in the re-
gion of τ & τRZ . Also, this consists with the instan-
taneous formation of the LZ coupling between the two
modes, followed by the RZ coupling in the rest of the
ETR, as is seen in Fig. 4. In addition, for ∆ = −136.0
and 108.8 meV, Qq’s oscillate in a more sinusoidal man-
ner than those for ∆ = −54.4 and -27.2 meV, as is seen
in Figs. 1(a) and 1(d), respectively.

Figure 6 is the enlarged view of Fig. 3(a) for ωp = 3.025
and 3.040 eV in the limited region. It is seen that
transient electro-optic reflectivity signals oscillate with
anomalously larger amplitudes and more varying phases
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FIG. 6. The enlarged view of Fig. 3(a) in the limited temporal
region for ωp = (a) 3.025 eV and (b) 3.040 eV corresponding
to ∆ ≈ -45 meV and -30 meV, respectively.

in time, compared with those in the classical region.
These oscillatory patterns are in overall agreement with
those in Fig. 5, aside from the rapid change of Θq(τ)
observed in Fig. 5(b). It is remarked that such a rapid
change caused by the LZ coupling would be possibly mod-
ified by the non-adiabatic correction, because this cor-
rection is considered still effective to some extent in the
tail region of the pulse in τ . 10 fs; though neglected
here, as mentioned in Sec. II. To be specific, a diag-
onal part of the correction would modify the adiabatic
energy Re[Eqpl(τ)], while the off-diagonal parts of it, es-
pecially, providing the interaction of the plasmon mode
with other modes would blur the location of the crossing
around τLZ .

Now, more detailed discussion is made on the asym-
metry observed in Figs. 2 and 3(c) by dividing the region
of τ for the CP signals shown in Fig. 1(a) into two re-
gions inside and outside the ETR, namely, τ . 100 fs
and τ & 100 fs, respectively. Accordingly, the power
spectrum Sq(ω) is cast into the sum of the contribu-

tions from the inner region S
(in)
q (ω) and the outer region

S
(out)
q (ω), and the cross contribution between these two

regions S
(cross)
q (ω), that is,

Sq(ω) = S(in)
q (ω) + S(out)

q (ω) + S(cross)
q (ω). (21)

It is speculated that S
(out)
q (ω) shows the Lorentzian pro-

file with the peak frequency of ωq and the full-width at
half maximum of 1/Tqph. By contrast, as seen in Fig. 1,

the spectral profile of S
(in)
q (ω) is more or less affected by

the aperiodic oscillatory pattern of Qq(τ) in the ETR,
and is deformed from the Lorentzian shape. Hence, Sq(ω)

is considered asymmetric if S
(in)
q (ω) is comparable to or

dominant over S
(out)
q (ω) + S

(cross)
q (ω); otherwise this is

symmetric. The asymmetric spectra of Figs. 1(f) and
1(g) are the case. The degree of asymmetry in Sq(ω) is
mostly governed by the magnitude of the RZ coupling
in the ETR that is evaluated in terms of δEq. Actually,
with the increase in |δEq|, Sq(ω) is apt to be more sym-
metric within the scope of the calculations implemented
here, as is shown in Figs. 2 and 3(c).

For an additional consideration, Fig. 7 shows the alter-
ation of θq and A0

q as a function of ∆ for different values

of Ω0cv’s of 54.4, 108.8, and 244.8 meV. θq and A0
q are

determined by δVqph; see Eqs. (17)-(19), bearing in mind
that δVqph is subject to the photoexcited carrier density,
similarly to δEq. Thus, with the increase of the carrier
density, (π/2−θq) and A0

q tend to increase as a whole, as
seen in Figs. 7(a) and 7(b), respectively. Aside from this,
the non-monotonic change of A0

q is observed for Ω0cv =
244.8 meV. This is attributed to reduction of photoex-
cited carrier density due to an optical nutation. Incide-
tally, when the pump-pulse irradiation is completed, the
total amount of photoexcited carrier density per site is
given by DL = (Ω0cv/ΩN )2 sin2(SL/2) by employing a
square pulse with f(t) = θ(t+τL/2)θ(τL/2−t) in Eq. (6)
instead of the Gaussian pulse adopted above. Here, a
pulse area represented by SL is assumed to be evalu-
ated as the product of the nutation frequency given by
ΩN =

√
Ω2

0cv + ∆2 and τL, that is, SL = ΩNτL, where
a dispersionless two-level model is adopted without the
Coulomb correction to Ω0cv.

Finally, three more remarks are given regarding the
spectral asymmetry of concern. First, it is noted that
there are many combinations of Ω0cv and ∆ for ΩN which
give the same value of the photoexcited carrier density
DL, namely, δEq. For instance, let the special case of
Ω0cv = 108.8 meV and ∆ = −54.4 meV — providing
ΩN = 121.6 meV and SL/π = 0.5880 < 1, — in Fig. 2
be taken into consideration, where 1/qa = −0.286 with
δEq ≈ 0 that leads to the maximized RZ coupling. This
value of 1/qa is retrieved for ΩN = 255.8.0 meV, that
is, SL/π = 1.3766 > 1, with Ω0cv = 244.8 meV and
∆ = −74.17 meV, if 1/qa is assumed to be determined
solely by δEq. Such a fact would also show the possibility
that 1/qa changes in an oscillating manner as ∆ further
increases in Fig. 2.

Second, it is pointed out that the spectral asymmetry
attributed to the CP generation is observed exclusively
in a lightly n-doped Si crystal and semimetals/metals
such as Bi and Zn,13,14,46,47 though not observed in a
GaAs crystal.48 Obviously, the amplitude A0

q of Qq(τ)
in the classical region for GaAs is much greater than
that for Si, because in the former, the CP is driven
by a much stronger electron-LO-phonon coupling due
to the Fröhlich interaction. Therefore, it is speculated

that S
(out)
q (ω) dominates Sq(ω) to result in symmetric

spectral-profile, that is, S
(out)
q (ω) � S

(in)
q (ω). However,

it might be possible that Sq(ω) is asymmetric49 when a
certain condition leading to δEq ≈ 0 is ensured. Thus, it
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would also be necessary to scrutinize spectral profiles at
time τ in the ETR under this condition, for instance, by
using the continuous-wavelet transform of Qq(τ).

Third, it is reported that an asymmetric spectral-
profile observed in a lightly n-doped Si crystal is at-
tributed to transient Fano resonance.2,22,32 In Ref. 22,
based on the PQ model incorporating the Fano model,42

the spectral asymmetry attributed to the Fano resonance
is obtained just in the ETR, where Ω0cv = 16.4 meV and
∆ = 82 meV corresponding to δEq ≈ −40 meV; hence,
the RZ model is no longer significant. There, Sq(ω) also
shows the asymmetry, since the associated Qq(τ) tends

to vanish rapidly out of the ETR, and thus S
(in)
q (ω) be-

comes dominant over S
(out)
q (ω). Therefore, it is specu-

lated that the asymmetry parameter 1/qa discussed in

Figs. 2 and 3(c) becomes finite, namely, non-zero, due to
the Fano resonance, even though |δEq| increases consid-
erably with δEq < 0.

V. CONCLUSIONS

The degree of asymmetry of the spectral profiles of the
CP time signals is scrutinized in undoped Si by using
the PQ model, and the adiabatic energy curves of the
plasmon and the LO-phonon are examined based on the
LZ and RZ models. The asymmetric spectral-profiles are
discerned, as long as the RZ interaction is dominant in
the ETR with S

(in)
q (ω) greater than or comparable with

S
(out)
q (ω) + S

(cross)
q (ω). Since the magnitude of the RZ

interaction depends decisively on the adiabatic plasmon
energy, thus 1/qa varies with respect to the photoexcited
carrier density. Actually, it is confirmed in both of the
present calculation and experiment that the spectra be-
come more symmetric with larger change of the carrier
density from the critical carrier density at which the ef-
fect of the RZ interaction is maximized.

The particular emphasis is put on 1/qa in both of the
far-lower (ωqpl � ωq) and far-higher (ωqpl � ωq) carrier
density regions than the region concerned in this study
(ωqpl ≈ ωq). In ωqpl � ωq, it is reported that the tran-
sient Fano resonance with an asymmetric profile is dis-
cerned in the ETR.22 On the other hand, in ωqpl � ωq

where SL > π, it would be possible that 1/qa varies fol-
lowing the optical nutation of the photoexcited carrier
density. Here, the RZ interaction still plays a significant
role of determining the degree of asymmetry. These two
phenomena occurring in the respective regions are still
unexplored in experiments. Therefore, it is expected to
measure the spectral profiles of CP over the wider region
of photoexcited carrier density than the present, and to
reveal the underlying quantum-mechanical effects gov-
erning the alteration of the profiles.
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