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We present a model for the role of electrons in collision cascades in solids in which the coupling
between ions and electrons is calculated using first-principles models and introduced into the classical
ion equations of motion using our modified Langevin dynamics [Tamm et al. Phys. Rev. Lett. 120,
185501 (2018)]. This model gives a full picture of the entire collision process, from the ballistic to the
thermal phases of a cascade, giving a detailed representation of the energy exchange between ions
and electrons until their final thermalization, removing in this way some ad hoc assumptions used in
the state-of-the-art two-temperature model. This work is separated into two papers; Part I [Caro et
al. Phys. Rev. B (in press)] reports on the ab initio methodology used to translate stopping power
into the parametrized dissipation function; this Part II applies the non-adiabatic ion dynamics using
the dissipation functions developed in Part I to specific collision cascade events.

I. INTRODUCTION

The analysis of the interaction of energetic ions with
matter starts with the concept of primary knock on atom
(PKA). The PKA is the atom of the target that is first
hit by the irradiation particle, a neutron, an electron,
a γ-ray, etc. This atom moves and collides with others
in the solid, creating a collision cascade that damages
the lattice. This damage has profound effects on the
properties of the material. Quantifying this process has
been a primary objective of radiation damage theories for
decades.

The simplest approach to quantify damage, proposed
by Kinchin and Pease (KP) in 1955 [1], has been to con-
sider the energy balance between two-body elastic colli-
sion of hard spheres. The rationale behind this approach
has its grounds in the following main assumptions: (i) an
atom is displaced from its lattice site if, after a collision, it
receives an energy larger than some displacement thresh-
old value Ed; (ii) the arrangement of atoms in the solid
is random, i.e. no crystallinity effects. Using the scatter-
ing cross section for hard sphere collisions, the number
of displacements NKP becomes,

NKP =
TPKA

2Ed
(1)

where TPKA is the PKA kinetic energy. The KP formula
is merely a linear scaling of the available energy for dam-
age in relation to the energy required to produce a single
displacement event.

At high PKA energies, this balance needs to be al-
tered because electronic losses become important. Im-
provements to the KP approach using more elaborate
cross sections and consideration of electronic losses led
Norgett, Robinson, and Torrens to postulate in 1975 an
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expression known as the NRT formula [2],

NNRT = κ
(TPKA − η)

2Ed
= κ

ED

2Ed
(2)

where κ is an efficiency factor, usually ∼ 0.8, η is a mea-
sure of the energy loss to electronic excitations, and T
and Ed were defined above. The quantity ED = TPKA−η
is known as damage energy and is the kinetic energy avail-
able to actually displace atoms once the electronic losses
are accounted for.

For years, the NRT formula and its related concept,
the displacement per atom (dpa), was the workhorse of
radiation damage studies and a key concept in nuclear
engineering designs until the introduction of large scale
molecular dynamics, MD, the ‘brute force’ solution to the
coupled Newton equations for the ions, made its appear-
ance in the ’80s. Within the MD framework, the energy
transfer between ions, including chemical bonding and
crystalline effects, and from ions to electrons could all be
accounted for. For a detailed discussion see Was [3].

With the increase in computer power and the develop-
ment of accurate interatomic potentials, MD represents
the state-of-the-art calculations of stopping power, range,
and microscopic details of the defects produced by radia-
tion damage in solids. One of its main early contributions
was to unveil a more elaborate form for the efficiency fac-
tor κ in Eq. 2. In fact, many-body effects in the collision
cascade, in particular in the quenching stage, led to a sig-
nificant reduction of the number of defects produced; the
efficiency factor became a function of the energy, with
values close to 1 for low PKA energies and decreasing
smoothly to about 0.3 for energies in the range of the
10− 50 keV for Cu for example [4]. This result had im-
portant consequences on the assessment of the relative
damage produced by different sources, e.g. electrons and
light ions are more damaging than heavy ions at the same
TPKA because the PKA energy transferred is low.

Electronic stopping in the low-energy regime was stud-
ied using several theoretical approaches, most notably
by Firsov [5] for atomic collisions, and by Lindhard and
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coworkers in the 1960’s [6–9] for projectiles in electron
gases. These studies led to the characterization of the
electronic stopping Se as a friction-like force proportional
to the projectile velocity. However, effects of the elec-
tronic structure of the target point towards the need for
more accurate descriptions of the electronic structure at
the low energy limit [10]. A fully atomistic first-principles
calculation of electronic stopping for a wide range of pro-
jectile velocities has only recently been possible [11–18].
These advances rely on non-perturbative time-dependent
density functional theory (TDDFT) [19].

The computational requirements of the first principles
approach prevent its use in cases where the ion dynam-
ics needs to be followed over much longer time scales,
e.g. picoseconds, or to study defect creation. For those
cases, the state-of-the-art simulations for the combined
system of ion and electron dynamics, in the non-adiabatic
picture, is classical MD with empirical potentials for the
ions and a continuum heat diffusion equation for the elec-
trons. The two subsystems are connected via electron-
ion coupling terms extracted from the ab initio theories,
in what is termed two-temperature models (TTMs) [20].
For a recent review see Darkins et al. [21].

In its origin, the TTM describes a non-equilibrium
state between electrons and ions. Under a radiation dam-
age event, a non-equilibrium state arises between them.
Since the time required to establish equilibrium in the
electron gas is much shorter than the time required to
establish equilibrium between the electrons and the ions,
the metal can be considered as composed of two inter-
acting subsystems, one of electrons and an other of ions.
The thermalization of the hot electron gas with ions is
a relatively slow process driven by the electron-phonon
interaction. This problem was solved by V. L. Ginzburg
and V. P. Shabanskii in 1955 in the high temperature
limit [22], T > TDebye. The theory of thermal relaxation
of electrons in metals was further extended by Allen [23]
in the continuum approximation. It consists of a coupled
set of heat diffusion equation, namely,

Ce
∂Te

∂t
= ∇ · (κe∇Te)−G(Te − T`) +A

C`
∂T`
∂t

= ∇ · (κ`∇T`)−G(T` − Te)

(3)

where Ce and C` are the specific heat of electrons and
ions (lattice) respectively, κe and κ` are their thermal
conductivities, Te and T` are the electron and ion (lattice)
temperatures, G is the electron-phonon (e-ph) coupling,
and A is an external source term (e.g. additional laser
excitation).

Modern versions of this model replace the second line
in Eq. 3 by full MD for the ions, with an added dissipative
force on every ion I of the form fI = −βIvI to account
for the e-ph interaction, and a random force term in the
framework of Langevin dynamics. The use of Langevin
equations with a damping term that is a function of the
local electronic density β = β(ρ), was proposed by one
of us in the 80’s [24]. At present, in its most common

implementation, the traditional TTM MD assumes β as
a piecewise function [21, 25, 26]:

βI =


βSe-ph + βSe (vI > vth)

βSe-ph (vI ≤ vth)

(4)

where Se and Se-ph represent the electronic stopping and
the e-ph values of the coupling respectively, both con-
stant values and usually taken from tables in SRIM [27],
or theory [28]. The value of vth is an arbitrary thresh-
old parameter, used to adjust the energy absorbed by
electrons to match expected results.

This piecewise form reflects the fact that there is no
established model to account for the changes in the
strength of the electron-ion coupling β as the moving
particles change their energy by orders of magnitude.

We recently used time-dependent density functional
theory and Ehrenfest forces to calculate the electronic
excitations produced by a moving Ni ion in a Ni crystal
in the energetic MeV range (electronic stopping power
regime), as well as in the thermal meV range (e-ph inter-
action regime). This results in a picture where ions are
still classical but electrons evolve quantum mechanically.
We showed that TDDFT not only gives quantitatively
accurate values for the stopping power regime [29], but
also for the electron-phonon interaction regime when in-
terpreted as a stopping process even for energies in the
meV range [30]. Results at high energy compare well to
experimental databases of stopping power, and at low en-
ergy the e-ph interaction strength determined in this way
is very similar to the linear response calculation and ex-
perimental measurements. This approach to e-ph inter-
action as an electronic stopping process provides the ba-
sis for a unified framework to perform classical molecular
dynamics of ion-solid interaction with ab initio-derived
non-adiabatic terms in a wide range of energies.

Additional work on the non-adiabatic equations of mo-
tion led us to propose modifications to the Langevin
equations that capture in detail the wave-vector q-
dependence of the phonon lifetimes, in agreement with
quantum mechanics calculations [31]. The modifications
are based on a local view of the e-ph interaction obtained
as the low-velocity limit of the stopping power of a mov-
ing ion.

The model is parameter free, as its components are de-
rived from ab initio-type calculations; since it is formu-
lated in real space it is readily extended to the case of non
periodic systems e.g. alloys, and it is adequate for large-
scale molecular dynamics computer simulations. We also
showed how this model removes some oversimplifications
of the traditional ionic-damped dynamics commonly used
to describe situations beyond the Born-Oppenheimer ap-
proximation, such as the inadequate damping of the
center-of-mass motion.

More recently we presented a model that further re-
moves previous limitations, in particular the different
coupling strength for different phonon polarizations while
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keeping a rigorous statistical mechanics framework and
conservation laws [32]. In fact, traditional Langevin
dynamics (including traditional TTM MD) relaxes all
modes equally, regardless of their wavelength or polar-
ization. We proposed a generalization of Langevin dy-
namics that captures coupling between collective modes
and the bath by introducing spatial correlations in the
random forces. This generalization allows modeling the
electronic subsystem in a metal as a generalized Langevin
bath endowed with a concept of locality, greatly improv-
ing the applicability of the two-temperature model.

The specific form proposed there for the spatial corre-
lations produces a physical wavevector- and polarization-
dependency of the finite phonon lifetimes in crystals due
to e-ph coupling. We show that the resulting model can
be used for describing the path to equilibration of ions
and electrons and also as a thermostat to sample the
equilibrium canonical ensemble. By extension, the fam-
ily of models presented there can be applied in general
to any dense system, solids, alloys, and dense plasmas.

In this work, we combine the dissipation function ob-
tained in Part I [33] with the modified Langevin molec-
ular dynamics model reported in [32], giving a full rep-
resentation of energy exchanges between ions and elec-
trons in far-from-equilibrium situations as appearing in
radiation damage. To our knowledge, this is the first cal-
culation of the entire process from the collisional to the
thermal phases of a cascade, which provides a detailed
picture of the energy deposition and exchange between
the ion and electron subsystems until their final thermal-
ization.

The paper is organized as follows: In Section II we de-
scribe the model and simulation methods, by introduc-
ing the formalism of our generalized Langevin dynamics
to perform molecular dynamics simulations of radiation
damage. Next, we summarize the first principles the-
ory and simulations utilized in Part I of this work to
parametrize the non-adiabatic electron dynamics as a dis-
sipative contribution to molecular dynamics. Finally, we
describe a family of specific simulations of collision cas-
cades produced by PKA events at different energies in
pure Ni and in the NiFeCr alloy. In Section III we show
the results of the molecular dynamics simulation with
emphasis in the non-adiabatic energy transfer between
ions and electrons. Discussion in Section IV completes
the paper.

II. MODEL AND SIMULATIONS

A. Ion-electron interaction model

In the classical MD simulations proposed here, the mo-
tion of atoms is governed by a modified Langevin dy-
namics based on work that we developed in a previous
paper [32] and briefly reviewed here. The forces acting
on atoms have three contributions: the gradient of the
empirical potential, a viscous-like (drag) force, and a ran-

dom force. To include correlations across particles, the
last two terms are given in a tensorial form, making the
second term not necessarily anti-parallel to individual ve-
locity. Namely,

fI({rK}, {vK}, t) = −∇IUadiab({rK})−

−
∑
J

BIJ({rK})vJ+

+
∑
J

WIJ({rI})ξJ (5)

The first term describes the adiabatic forces, which de-
rives from a conservative potential Uadiab. In the rest of
the paper we use the formalism of the embedded atom
model (EAM potential) [34]. The second and third terms
are the non-adiabatic forces f e-iI arising from the interac-
tion of the ions with an electronic reservoir (e-i), assumed
to be respectively linear with the velocities (second term,
drag) and stochastic (third term, fluctuations). The ma-
trices B and W, which are functions of positions alone,
describe the spatial correlations between particles, and
are related through the fluctuation-dissipation theorem,

BIJ =
∑
K

WIKWT
JK . (6)

The independent random variables (vectors) ξJ in Eq. 5
are white noise generated by a thermal bath at local tem-
perature Te. These random variables are then combined
by the matrix W, resulting in spatially correlated forces
on individual ions, defined as,

WIJ =


−αJ(ρ̄J)ρI(rIJ )

ρ̄J
eIJ ⊗ eIJ (I 6= J)

αI(ρ̄I)
∑
K 6=I

ρK(rIK)
ρ̄I

eIK ⊗ eIK (I = J)

(7)
where eIJ is the unit vector joining atoms I and J . The
coupling function αI(ρ̄I) includes the physics of the cou-
pling strength between specific ion types and electrons.
The projection on eIJ , ensured pair radial forces, remov-
ing local torques.

We introduced the concept of locality via a weight-
ing function across neighbors, represented by decreasing
radial functions ρI associated with each ion I. In the
current study, the atomic electron density is used for the
weighting functions so that the bath effects of an atom at
position rJ on an atom at position rI will decrease with
the distance between ions rIJ .

With this definition of the random forces, the net force
and torque of the system is zero, a condition that we
proved necessary to describe phonon lifetimes with the
correct wave-vector and polarization dependence [32].
This algorithm defines a correlation between the com-
ponents of the random forces on individual particles as
well as across particles. Correspondingly, the set of all
associated friction forces is a linear function in the set of
all the velocities. For instance, the friction (drag) force
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on a specific particle can depend on the velocity of a close
neighbor.

Here, a modification to the initial model [32] is intro-
duced by making the electron-ion coupling strength α(ρ̄)
a function of the local density where the moving atom
is located, similarly as originally proposed by Caro and
Victoria [24]. The nominal site density is calculated as
a superposition of contributions from neighboring atoms:
ρ̄I =

∑
J 6=I ρJ(rIJ); in turn, they are approximated by

using spherical atomic densities obtained by solving the
isolated atomic problem (for each atomic species), as de-
scribed in [33]. For a given configuration, the strength
of the random force and the friction linear operator is
indirectly (through the density construction) a function
of the position.

The only free parameter in this formulation is the cou-
pling factor α(ρ̄), which is species-dependent in this the-
ory. This function has to be defined in the relevant range
of ρ̄ explored by the system; for a bulk calculation the
range extends from a minimum at the vacancy electronic
density (∼ 0.05 e/Å3), all the way to the electronic den-
sities defined by the closest binary collision expected to
occur during the simulation (∼ 2.0 e/Å3). Such function
is obtained by fitting TDDFT data, as described in the
accompanying Part I paper [33].

Once we interpret the electronic subsystem as a ther-
modynamic bath endowed with the concept of locality,
it is natural to think of it as a spatially modulated heat
reservoir. The simplest realization of this heat reservoir
is one in which heat fluxes and temperature gradients
arise. Using a bulk electron thermal conductivity and
Fourier law, we can relate the gradients to the fluxes. The
heat bath composed of electrons is thus modeled with a
heat diffusion equation to be solved simultaneously with
MD for the atoms, where the electronic heat capacity
(Ce) and heat conduction (κe) define the evolution of the
temperature within the electronic system, Eq. (8). The
energy exchange between electronic and ionic system is
controlled by a source term (Qe-i).

Ce
∂Te

∂t
= ∇ · (κe∇Te) +Qe-i (8)

The local source term Qe-i(r) =
∑
I f

e-i
I ·vIδ(r− rI) in

the diffusion equation couples the continuum electronic
system to the atomic system (ions), and is the counter-
part of the second and third terms in Eq. 5. This equa-
tion is also subject to boundary conditions that are not
addressed in this paper.

The model is fully defined by providing, for each ele-
ment, a spherical atomic density ρI(r) (which we regard
as given here) and a coupling function αI(ρ̄) as a func-
tion of the environment density. The coupling function
α(ρ̄) defines the overall magnitude of the random forces,
and therefore, also of the friction forces. The sought-
after function α(ρ̄) must satisfy two main requirements.
First, that the dynamical model reproduces the e-ph cou-
pling strength for a crystalline phase and, second, that

the electronic stopping power is recovered under ballistic,
e.g. channeling conditions. The e-ph coupling can be ob-
tained by either using first order perturbation theory [35]
or by doing TDDFT simulations in the e-ph regime [30],
while the electronic stopping for channeling can be ac-
quired by first principles TDDFT calculations [33].

This generalization of classical molecular dynamics
with e-ph coupling (termed here EPH-MD) provides a
single framework to fully describe the dissipative process
in both, the high-energy stopping and the thermalization,
regimes, which is the main goal of this series of papers.

B. Model parameters

To apply the model in simulations of collision dam-
age cascades in pure Ni and concentrated solid solutions
such as NiFeCr [36], two functions are required for the
former and six for the latter case (one density function
ρ(r) and one density dependent coupling function α(ρ̄)
for each element). The reader is referred to accompany-
ing Part I for the determination of these functions [33],
which are reproduced here for clarity, in Fig. 1 for the
densities, and in Fig. 2 for α(ρ̄). It is important to note
here that the present parametrization of the model is
limited to PKA energies below ∼ 100 keV because the
first-principles calculations in [33] were done with only
up to 3p explicit semicore states, preventing excitation
of deeper core levels at higher PKA energies.
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Figure 1. Electronic density as a function of distance to the
nucleus calculated for isolated atoms in vacuum, an approxi-
mation we adopt to the actual electronic densities along the
trajectory of projectiles in our model. Arrows indicate dis-
tances for neighbors in the fcc lattice. For clarity, the lower
panel is plotted in logarithmic scale.

The classical-continuum model has been implemented
as an extension (fix ) for the Lammps MD code [38] and
is released as open-source at the LLNL software reposi-
tory [39]. Similarly to the close-range-corrected ion-ion
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Figure 2. Dissipation functions for each element of interest
αNi(ρ̄), αCo(ρ̄), αFe(ρ̄), αCr(ρ̄) that parametrizes WIJ and
BIJ in Eq. 5. These functions univocally relate the unper-
turbed electronic density to dissipation, and represent a sim-
plification to the ab initio relationship such as that given in
Ref. [37]. Arrows indicate the density at a vacant site and at
the center of a 〈001〉 channel. Higher densities are explored
by close collision events. The coupling is not necessarily an
increasing function of the density, because in a real material
higher densities are also associated with core atomic-level ex-
citations which are hard to produce by ion motion.

(EAM) empirical potential, the electron-ion part of the
model is supplied with tabulated functions ρ(r) and α(ρ̄)
for individual elements.

The electronic subsystem is integrated with finite dif-
ference method (FDM), using the mid-point forward-
propagation rule in a coarse regular spatial grid where
the time-step is selected so that the numerical stability
criteria are met [40]. This means that depending on the
electronic heat capacity and conductivity, there may be
many steps within the electronic system between each
ionic integration step.

Because in our model the electron-ion interaction is de-
fined with fast decaying spherical functions (Fig. 1), the
size of the atom neighbor-list is controlled by a rather
small radial cutoff (5 Å); the electronic grid size is in-
dependent of ions, implying that if the conductivity is
high, a sparse grid or even single point can be used, since
electronic temperature equalizes quickly.

The maximum grid size for the heat diffusion equation
is set by the maximum value of the heat conductivity,
on the other hand, there exists a possible physical limit
for the smallest grid size given by the electronic mean
free path. Contrary to standard two-temperature MD,
the grid size is independent of the ionic problem since
the ionic temperature does not appear explicitly in our
equations (see Eq. 12 in Ref. [25] and below Eq. 4 in
Ref. [41]).

C. EPH-MD Simulations

Two sets of simulations were run to investigate the non-
adiabatic aspects of radiation damage, one with the dissi-
pation forces alone, to compare our EPH-MD model with
other models in the literature, and one with both, dissi-
pation and random forces acting simultaneously, to study
the dynamics of the energy exchange between electrons
and ions.

In the first type of simulations, we aim at compar-
ing our model to the standard TTM Langevin model, in
which the friction force is a constant times the velocity of
the ion, f e-i = −βv, with β having two values, one cor-
responding to e-ph interaction for low velocities, βe−ph,
and one corresponding to the electronic stopping power
regime for high ion velocities, βSe-ph + βSe , (see Eq. ??
and Eqs. 2 and 3 in Ref. [25]).

For a meaningful one-to-one model comparison, the
trajectories of every atom in a collision cascade are the
same; to this end, the simulations were run in the micro-
canonical ensemble, i.e. with no dissipation forces, but
the work done by the dissipation forces was recorded at
each time step as if they were acting. We ran 20 collision
cascades at three different PKA energies for Ni (0.1, 1,
and 10 keV), up to 10 ps. In the simulations, the lat-
tice was initially at rest and one atom in the center of
the box of a 32× 32× 32 conventional fcc supercell was
given a velocity in a random direction, matching the se-
lected PKA energies. In the case of standard Langevin
we used a constant coupling function given by SRIM for
electronic stopping of Ni in Ni from [27], as is custom-
ary done [26]. For the test of our model, we used the
functions determined in Ref. [33].

The second set of simulations were run for collision
damage events for various PKA energies, with both fric-
tion and random forces active, as well as the heat equa-
tion in the electronic subsystem. The heat equation is
treated at the level of single-cell approximation (i.e., we
solve Eq. 8 with the first term in the r.h.s. equal to
zero), which is equivalent to assume a uniform electronic
temperature in the supercell. This simplification is justi-
fied by the significantly higher heat conductivity of elec-
trons compared to the lattice and the small sample size
(L = 11 nm). We used a constant temperature heat
capacity with a value of 3.5× 10−6 eV/(Å3

K), represen-
tative of the value at the range representative tempera-
tures Te = 300−1000 K [42]. As in the previous case, the
lattice is initially at rest as well as electrons at zero tem-
perature; next, an atom in the center of the box is given
an initial velocity corresponding to the PKA energy in a
random direction. For each energy, 10 simulations with
different initial conditions are carried out for statistics.

For the first term in the r.h.s. of Eq. 5, we used
the modified EAM-type potential for Ni by Stoller et
al. [43], which reproduces the universal Ziegler-Biersack-
Littmark (ZBL) repulsive potential at short distances,
and was modified to match with DFT energies in the
intermediate range.
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Finally, we also studied a concentrated solid solution,
namely NiFeCr, with the EPH-MD model parametrized
from TDDFT data [33], and an EAM-type potential
based on Bonny’s [44] and modified by us previously [45]
to reproduce DFT data at short distances.

III. RESULTS AND DISCUSSION

A. Early stage of collision cascade in Ni

1. Comparison of dissipation terms
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Figure 3. (upper panel) Ion-kinetic Ek (dashed line) and
potential, relative to equilibrium, Ep = Uadiab − U0

adiab (solid
line) of the system as a function of time at three PKA energies
0.1, 1.0, and 10.0 keV along NVE trajectories. (lower panel)
Energy deposition to electronic system in the early stages of
a collision cascade PKA energies for both models, traditional
Langevin (TTM-MD), and EPH-MD (this work). The energy
transfer to electrons is obtained by integration of the friction
forces, which is calculated but not applied in the integration
of the equations of motion. (Solid lines are obtained with our
model and dashed lines with standard Langevin with Se taken
from SRIM tables energies [27] and no threshold velocity).

We report here the first type of simulations described
above, i.e. microcanonical (NVE) trajectory with evalu-
ation of dissipative forces according to both, traditional
Langevin and EPH-MD models. The time evolution of
the atomic kinetic and potential energy is shown in the
upper panel of Fig. 3. These two energy terms reach
the same value at about 0.2 ps, which nominally corre-
sponds to the end of the ballistic phase, after which the
system slowly evolves into equilibrium (and approximate
equipartition between kinetic and potential energy).

The lower panel of Fig. 3 shows the (virtual) work done
by the dissipative forces on all atoms for both models. As
expected, the traditional Langevin viscous damping re-

moves the same fraction of energy linearly with time at a
(large) rate determined by the electronic stopping power,
independently of the PKA energy. It clearly demon-
strates the need to set an arbitrary energy or velocity
threshold (vth in Eq. 4) for this term, or otherwise all
the energy would rapidly transfer to the electrons. For
example, in the work by Zarkadoula et al. a fixed value
around 31− 54 Å/ps was chosen for similar applications
(see Table I in Ref. [26]).

In contrast, the EPH-MD model presented here clearly
shows two distinct regimes, one of strong coupling, when
atoms in the cascade are in ballistic trajectories under-
going close collisions and dissipating significant amounts
of energy, and another, the e-ph regime, with smaller
coupling. The transition is generated by the environ-
ment dependence of the coupling function α, via ρ̄, it is
smooth, it happens at a small fraction of a ps, and it de-
pends on the PKA energy because higher energies imply
higher explored values of ρ̄. As far as we are aware, this
is the first model that captures this transition with a con-
tinuous model and gives quantitative information about
this process. Our tests show that it is unlikely that a
single threshold value in the model of Eq. 4 can match
the energy balance of Fig. 3 (lower panel, solid lines) in
this range of PKA energies.
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Figure 4. Histogram of host electronic densities that a Ni
projectile with different initial energies explores during a colli-
sion cascade event. This gives the range in which the coupling
function α needs to be modeled (Fig. 2). For reference, ρv and
ρch mark typical valence (site) and channel densities respec-
tively. Only briefly after the PKA event and at TPKA > 1 keV
a few ions can explore channel (‘ch’) conditions which is asso-
ciated with maximal electron-ion coupling α (Fig. 2); in turn
producing high electronic dissipation at subpicosecond times
(Fig. 3).

As an illustration of these features of the EPH-MD
model, Fig. 4 shows the host densities that a projectile
explores during a cascade event. At low energy (0.2 keV)
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the projectile explores host densities equal or below those
corresponding to center of the 〈001〉 channel; the main
contribution to dissipation comes from the low-density
region of α(ρ̄) on Fig. 2, while at 10 keV the whole range
of densities of the coupling function α(ρ̄) is sampled.
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Figure 5. Effective instantaneous relaxation time τ as
the cascade progresses for three PKA energies, 0.1, 1.0 and
10 keV. Given an NVE trajectory, the instantaneous relax-
ation time was estimated globally as τ = 2Ek/(dEe/dt). A
lower value of τ means a higher effective coupling.

Since the intensity of the electron-ion coupling is envi-
ronment dependent, it is also natural to assume that the
relaxation time of ionic energy to the electronic system is
also effectively time-dependent. The effective relaxation
time, defined as the rate of energy loss of the ionic system
is illustrated in Fig. 5.

2. Collision cascades of Ni in Ni: Full dynamic evolution

We report here the second set of simulations of collision
damage events for Ni projectiles in a Ni target at vari-
ous PKA energies, with both friction and random forces
active, as well as the heat equation in the electronic sub-
system.

The fraction of the PKA energy transferred to elec-
trons vs. time for collision cascade simulations for Ni pro-
jectile into a Ni target is shown on Fig. 6, while the tem-
perature of both subsystems vs time is shown in Fig. 7.
Figures 5, 6, and 7, are the main result of this work.

The electronic energy evolution clearly shows the two
expected regimes of collision cascades. First, in the
early ballistic stage (lasting a fraction of a picosecond),
a regime with high electronic stopping power is respon-
sible for a transfer from atoms to electrons of up to 35%
of the PKA energy for TPKA = 50 keV. This effect is at
the basis of the damage energy concept: the fraction of
the PKA energy that is actually available to damage the
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Figure 6. Fraction of energy, initially in PKA Ni projectile,
transferred to the electronic system as a function of time dur-
ing a collision cascade event at various PKA energies. The
maximum value is interpreted as the energy loss to electronic
excitations (η in Eq. 2) in a realistic cascade (large open sys-
tem) and plotted in Fig. 8.

lattice. An equilibration stage follows, originated in the
inverse process: electrons transferring excess energy back
to atoms; in the computational model, this is achieved by
the random force term of the modified Langevin dynam-
ics (third term in the Eq. 5).

Fig. 7 shows the time evolution of temperatures in
both electrons and ions. For the lattice temperature,
we see the transition from ballistic to thermal stage at
∼ 0.1 ps, as mentioned when discussing Fig. 3 This fig-
ure clearly shows that the electronic subsystem transition
from an energy absorber to energy emitter occurs at the
same time when the ions evolve from ballistic to thermal
stages.

The combined electron-and-ion system conserves en-
ergy, and since in the initial state all the energy is in
the PKA motion, the final equilibrium temperature is
directly related to the PKA energy, as shown in Fig. 7.

Fig. 7 also shows that the thermal equilibration stage
can last more than 25 ps, which is in agreement with our
previous work on the lifetimes of phonons due to e-ph in-
teraction [32]. Note that the present simulations are done
for a small closed system, with no thermal gradients in
the electronic subsystem and no boundary sink terms for
simplicity. For larger samples, with the full heat diffu-
sion equation for electrons, a faster thermal equilibration
is expected.

From Fig. 6 we extract the highest percentages of
energy deposited into the electronic system and plot
them as a function of projectile energy, shown in Fig. 8.
This quantity can be interpreted as η in the NRT the-
ory (Eq. 2).

SRIM simulations of Ni projectile in Ni are also shown
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Figure 7. Evolution of electronic Te (solid curves) and lat-
tice Tl (dashed curves) temperatures during collision cascade
events initiated by Ni projectiles (PKA) at different energies.
Note that the use of the expression ‘lattice temperature’ is
not well defined during the ballistic regime (before kinetic-
potential crossing in Fig. 3).

for comparison. Fig. 8 shows that our model predicts
significantly larger energy loss than SRIM, effect proba-
bly due to the fact that SRIM assumes a constant scalar
linear stopping power in the projectile energy range from
1 to 130 keV.
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The results are shown for pure Ni projectile in pure Ni (thin
curve) and Cr, Fe, Ni in NiFeCr random alloy (thick curves).

Finally, we ran the 10 keV cascade with TTM MD
with the SRIM stopping power value and our EPH-MD

to compare the defect production with both models. On
average, in our model, the number of Frenkel pairs at the
end of the 50 ps simulation was 18.7 (3.2 standard devi-
ation (SD)) and with TTM MD 26.3 (4.7 SD). Although
these values cannot be compared directly to experiments
(due to small simulations and unrealistic boundary con-
ditions), the results clearly show the difference between
the two models having a significant p-value in Welch’s
t-test (p = 0.0007).

B. Collision cascades of Ni, Fe, and Cr in a NiFeCr
random alloy

In Part I of this work, we report model parametriza-
tion for the four elements in the NiCoFeCr concentrated
solid solution. However, there are no classical potentials
Uadiab of the EAM type to perform MD simulations for
such quaternary system including Co. Therefore, we ap-
plied our EPH-MD model to study collision cascades in
the ternary NiFeCr random alloy, which has an EAM
potential available in the literature [44], and serves to
display the ability of the EPH-MD model to describe al-
loys.
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Figure 9. Energy transfer by different projectiles into the elec-
tronic system as a function of time during a collision cascade
event at various PKA energies. The maxima are interpreted
as energy losses to electronic excitations (η in Eq. 2) and are
plotted on Fig. 8.

The results for cascades initiated by each of the three
different elements are shown on Fig. 9. Same trends as for
pure Ni are also visible in the alloy case, where the initial
collision cascade regime transitions smoothly into the e-
ph regime. No significant differences are observed for
different elements used as PKA’s. Although the electron-
ion coupling functions for different species are slightly
different, the energy deposition curves for the element
types studied are quite similar, reflecting the fact that the
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role of the primary knock-on atom in a collision cascade
at these low energies is not relevant because the energy is
rapidly distributed among all atoms after a few collisions.
In other words, at low energies, the result of a collision
cascade is an average of the alloy properties, regardless
of the chemical identity of the PKA.

In Fig. 8 we compare the cascade simulation results
with similar SRIM calculations. The results are qualita-
tively similar to those of the pure Ni case, namely, that
SRIM reflects a significantly smaller energy dependence
in this energy range.

IV. CONCLUSION

This work presents a study of the dynamics of energy
exchanges between ions and electrons in the cascade col-
lision process that follows the interaction of an energetic
ion with a metallic target. The model is based on a
modified Langevin dynamics for the ions that we pub-
lished recently [32], which takes into account the complex
coupling to electrons. Additionally, due to the explicit
dependence on local density, the model simultaneously
captures the strong coupling corresponding to the elec-
tronic stopping power regime, and the weak coupling cor-
responding the e-ph interaction regime. This last regime
is captured with all its complexity, in particular, with
the dependence of phonon lifetimes on wave vector and
polarization.

The parametrization of the model is presented in Part I
of this work [33], where first-principles time-dependent
density functional theory is used to provide electronic
stopping and electron phonon interactions. This infor-
mation is used to construct dissipation functions readily
usable in classical MD simulations.

The model has been implemented as an extension for
Lammps [38] and is released as open-source at LLNL
github page [39]. The computational cost of this model

is about 50% higher than the standard TTM MD (1.5
times slower), mainly due to the need to calculate the
non-trivial extra dissipative force from ion positions and
velocities.

The simulations reported here present a unified picture
of a collision process, starting with an energetic ion, the
PKA, and ending with a system with both electrons and
ions in thermal equilibrium. Between these initial and
final states, a complex energy exchange process occurs,
starting with kinetic energy of ions going to electrons,
followed by excess electronic energy of electrons going
back to ions. While this picture was qualitatively known,
this model shows quantitatively and with very few free
parameters, the precise nature of this interaction.

These results represent a step further in the descrip-
tion of damage processes, in particular, it helps remove
the arbitrariness in the election of a cut-off energy (ve-
locity threshold) range for the stopping power regime in
the state-of-the-art two-temperature models, providing a
quantitative estimate of the damage energy that is left
available to damage the lattice. It also provides means
to describe cases of high electronic excitations, such as
those in swift heavy ion tracks. Finally, this model also
gives an assessment of the accuracy of the SRIM code.
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