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We present a detailed model for the non-adiabatic coupling between ions and electrons in energetic
ion-solid interactions over a wide range of energies in concentrated solid-solution fcc alloys of the 3-d
transition metals Ni, Co, Fe and Cr. The model is based on general statistical mechanical principles
and results in a stochastic modification of the classical nuclei motion which is parameterized by the
first principles calculation of a dissipation function produced by explicit time-dependent electronic
evolution. This model provides a full picture of an entire collision process, from the ballistic to
the thermal phases of a cascade, giving a detailed description of the energy exchange between ions
and electrons till their final thermalization, removing in this way some ad hoc assumptions used
in the state-of-the-art atomistic two-temperature models. This work is separated in two papers;
in the present Part I, we report on the ab initio methodology used to translate stopping power
and electron-phonon interaction into a parameterized dissipation function; Part II, to be published,
addresses the non-adiabatic ion dynamics using our modified Langevin dynamics [Tamm et al. Phys.
Rev. Lett. 120, 185501 (2018)] applying the dissipation functions developed here to specific collision
cascade events.

I. INTRODUCTION

The traditional way to study the dynamics of ions in
solids, and in particular the interaction of energetic ions
with matter relies on the Born-Oppenheimer approxi-
mation (BOA) [1], where ions and electrons can be de-
coupled and their equations of motion solved separately.
An additional approximation, which considers that ions
move classically under the forces derived from a potential
energy function (e. g. the instantaneous ground state,
GS, electronic energy), proves to be useful to describe
both thermal motion and nuclear stopping power, Sn.
However, for ion velocities approaching a fraction of the
Fermi velocity of electrons in a solid target, electronic
losses, or non-adiabatic effects, become increasingly rel-
evant.

The rate of energy transfer to electrons can be cast in
the form of an electronic inelastic cross section, leading
to an electronic stopping power. As a simple extension
of the BOA, Sn and Se are customarily assumed to be
independent of each other; however, in the presence of
non-adiabatic energy exchange, actual materials response
is considerably beyond the BOA [2] and the combined
scattering of ions and electrons needs to be taken into
account.

There is a vast literature reporting decades of theoret-
ical and experimental work related to Sn and Se, which
starts a century ago with Bohr at the time of the for-
mulation of quantum mechanics [3–6] and extending to
these days; for a summary of the key discoveries, see the
recent review by P. Sigmund [7].

Ion-solid interaction models for Sn in the adiabatic or
elastic framework are based on the knowledge of the adia-
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batic potential energy function for ions, Uadiab, which en-
ables the calculation of cross sections and Sn within clas-
sical mechanics using binary collisions theory. Seminal
work addressing this problem by Lindhard and cowork-
ers in the 1960’s, known as the LSS theory [8–11], pro-
vides a simple universal expression for the nuclear scat-
tering cross section with only few parameters, such as
the charges of projectile Z1 and target Z2 atoms. This
universal description is achieved once a model for the
screening of the nuclear charge by electrons is adopted,
for example Thomas-Fermi theory, and translates into a
nuclear stopping power that shows a maximum and tends
to zero at low and high energies.

More recently, with the increase in computer power
and accurate interatomic potentials, stopping power,
range, and microscopic details of the ensuing damage,
could be obtained via full many-body ion-ion interac-
tions within the frame of molecular dynamics that, for a
given potential and within the realm of classical mechan-
ics, provides the solution of the many body interaction
process; for a detailed discussion see Was [12].

Models for Se fundamentally need to resort to quan-
tum mechanics and yet were developed much earlier than
those for Sn by Bohr, Bethe, Moller, Bloch, Lindhard and
others, as summarized in a 1963’s review by Fano [13].
Electronic stopping power is characterized by a curve
that has a maximum as a function of velocity, often called
Bragg maximum, which occurs at a projectile velocity
comparable with the characteristic velocity of electrons
in the target, such as the Fermi velocity in an electron
gas. Regimes of low or high energy refer to energies be-
low or above this maximum, and are described by the
Bethe (high energy) and Fermi-Teller [14] (low energy)
approximate theories (see [7]). The intermediate regime
has been a challenge for theoreticians, as is the very low
energy regime where band structure for solids [15, 16] de-
viate from the results obtained for the uniform electron
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gas, introducing, for example, stopping power threshold
effects in insulators [17].

Electronic stopping in the low-energy regime was stud-
ied using several theoretical approaches, most notably by
Firsov [18] and the LSS theory [8]. These studies led to
the characterization of Se as a friction-like force propor-
tional to the projectile velocity.

The separation of scattering processes into elastic scat-
tering and electronic stopping has been a dominating
principle in ion-solid interaction physics for over 50 years.
All Monte Carlo and binary-collision simulation codes
were built on this principle. The popular TRIM code [19],
and its extension incorporating stopping cross sections
for energies above the stopping maximum, SRIM [20],
are basically an implementation of the LSS theory with
a modified universal potential.

Lindhard’s and Firsov’s expressions for Se for ener-
gies below the maximum predict velocity-proportional
friction-like stopping and, since originating in the
Thomas-Fermi model, suggest a smooth dependence of
the stopping cross section on Z1 and Z2. However, mea-
surements by Ormrod and Duckworth for a series of ions
in carbon [21] first showed Z1 oscillations in electronic
stopping cross sections, unaccounted for in those theo-
ries. The phenomenon was a manifestation of the elec-
tronic shell structure of the scattering centers, highlight-
ing the need for more accurate descriptions of the elec-
tronic structure of projectiles and targets.

From the mid 80’s, atomic scale computer simulations
presented a substantial leap on the predictive power of ra-
diation damage studies, providing the most detailed pic-
ture of this process, with information usually much richer
than experimentally accessible. Direct computer simula-
tions of atomic motion and electron dynamics, a ‘brute
force’ approach, allows solving models whose complex-
ity prevents analytical alternatives. It makes possible
to study ion-solid interaction directly from first princi-
ples, going significantly beyond effective theories. A fully
atomistic first-principles calculation of electronic stop-
ping for a wide range of projectile velocities has only
recently been possible [2, 22–28]. These recent advances
rely on non-perturbative time-dependent density func-
tional theory (TDDFT) [29].

The computational resources required by this first-
principles approach prevent its use in cases where the
ion dynamics needs to be followed over much longer time
scales, e. g. picoseconds, or to study defect creation fol-
lowing cascades. For those cases, the state-of-the-art in
computer simulations for the combined ion and electron
dynamics in the non-adiabatic picture is MD with em-
pirical potentials for the ions, and the continuum heat
diffusion equation for the electrons. The two systems
are connected via electron-ion coupling terms extracted
from the ab initio theories, in what is termed atomistic
two-temperature models, TTMs [30–32].

The parameterization of quantum mechanical results
to feed classical equations of motion for the ions has a
long history of accomplishments, the most successful be-

ing the one leading to SRIM, as mentioned earlier [20].
In the framework of MD, the use of Langevin equations
with a damping term as a function of the local electronic
density was proposed by one of us in the 80’s [33] as a
plausible model of the two-temperature system.

More recently, we showed that TDDFT not only gives
quantitatively accurate values for the stopping power
regime [34], but also for the electron-phonon interaction
regime when seen as a stopping process for energies in the
meV range [35]. TDDFT and Ehrenfest forces [36] were
used to calculate the electronic excitations and dissipa-
tion produced by a moving Ni ion in a Ni crystal in the
MeV range (electronic stopping power regime), as well as
thermal energy meV range (electron-phonon interaction
regime). Generally, results at high energy compare well
to experimental databases of stopping power, and those
at low energy are very similar to linear response calcula-
tions when applicable, and experimental measurements.
This approach to electron-phonon interaction as an elec-
tronic stopping process provides the basis for a unified
framework to perform classical molecular dynamics of
ion-solid interaction with ab initio-derived non-adiabatic
terms in a wide range of energies.

The purpose of this work is to provide a first principles
approach to ion-electron interaction in concentrated al-
loys for MD applications, and is motivated by recent evi-
dence showing that the way radiation energy is deposited
into the lattice in concentrated solutions, and later trans-
ported away, plays a significant role in the early stages of
radiation damage [37]. While it has been shown that dis-
order significantly affects transport within the electronic
and ionic systems, its effects on the interaction between
the two sub-systems has not yet been elucidated. The
materials of interest for our work are the fcc concentrated
solid-solutions based on Ni and its neighbors in the 3-d
transition metal series, namely Co, Fe, and Cr.

This Paper I is organized as follows. Section II de-
scribes the model. In Section III we describe the first-
principles theory and simulation methods we use; Section
IV describes the construction of the dissipation function;
Section V contains the Discussion and Summary of the
work.

II. MODEL

The model for the role of electrons in energetic ion-solid
interactions proposed in this work is based on our gener-
alized Langevin framework [38] for classical MD, where
we replace the scalar values of friction and random forces
over individual particles with many-body forces that act
in a correlated manner over different particles, called here
EPH-MD (Electron PHonon-Molecular Dynamics) [39].
This represents a realistic bath-like interaction with elec-
trons by a friction term [40, 41] for electronic stopping
power and e-ph interaction, and a random force e. g.
produced by electronic fluctuations). In this model the
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force on particle I has three contributions:

fI = −∇IUadiab −
∑
J

BIJvJ +
∑
J

WIJξJ (1)

The first term represents the conservative forces, as-
sumed here to be independent of the electronic exci-
tations. The second and third terms are the friction
and random forces of the generalized Langevin dynamics,
where the random forces are correlated, as made explicit
by the tensor notation.

A model for ionic motion that equilibrates with a ther-
mal bath (electrons) at a locally smooth temperature Te
must fulfill several conditions: first, {ξI}I must be white-
noise and mutually uncorrelated gaussian random vari-
ables normalized to 2kBTe, second, BIJ (and WIJ) is, at
most, a function of positions (and not of velocities); and
third, the tensorial fluctuation-dissipation theorem must
hold [39],

BIJ =
∑
K

WIKWT
JK (2)

Specific choices of WIJ (and Uadiab) and its parameteri-
zation are given later.

The objective of our work is to develop a model for the
second term in Eq. 1 based on ab initio calculations of
the coupling between ion and electrons over a wide range
of energies and ion configurations, and apply it to de-
scribe a full calculation of the collision process. We sep-
arate this work in two papers; in this Part I, we report
on the ab initio methodology used t?o translate stop-
ping power, a complex quantum mechanical result, into
a functional form well suited for the implementation into
classical MD. Namely, to find explicit expressions for the
BIJ function appearing in the second term of Eq. 1 while
simultaneously preserving a correct correspondence with
WIJ appearing in the third term. Part II, to be pub-
lished, addresses the non-adiabatic ion dynamics apply-
ing our modified Langevin dynamics [39], with the dissi-
pation functions developed here, providing a full picture
from the ballistic to the thermal phases of a collision cas-
cade.

III. FIRST PRINCIPLES ELECTRON
DYNAMICS

A. Time-Dependent Density Functional Theory

To study deviations from the BOA, we introduce a
specific quantum mechanics framework, namely ab initio
non-adiabatic TDDFT for electrons [29] combined with
Ehrenfest dynamics for the ions [36]. This parameter-
free method used to model electronic excitations is par-
ticularly suitable in the presence of substantial electronic
excitations and in the limit where ions behave classically;
it opens a window to observe the microscopic dynamics

and dissipative effects for arbitrary configurations, with
unprecedented detail and accuracy.

In this theory, single-electron states evolving in time
are represented by electron wavefunctions {ψi} in a peri-
odic super-cell interacting in a mean field effective poten-
tial produced by other electrons and ions; wavefunctions
are the solutions of these time-dependent equations:

i~
∂

∂t
ψi(r, t) =

{
− ~2∇2

2me
+ Vext[{RJ(t)}J ](r)

+ Vint[n](r)
}
ψi(r, t), (3)

where Vext is the external potential produced by ions
{RJ(t)} and Vint is the Hartree and exchange-correlation
potential for the spatial-dependent electron density n.

When ions move, the energy deposited into the elec-
tronic system above its instantaneous ground state rep-
resents the work done by non-conservative forces.

The practical utilization of TDDFT has the same
system-size limitations of DFT (e. g. hundreds of atoms)
and time-scales limited to a few femto-seconds. These
limitations prevent the utilization of TDDFT in full or
even the smallest meaningful collective ionic events (e.
g. collision cascades), however systems modeled here are
large enough to extract the parameters for coarser models
of the dissipative dynamics.

Due to the limitations mentioned above, the framework
expressed here requires a selection of a special set of well-
controlled trajectories in small systems from which the
full classical dissipative model can be adjusted. There
are at least three representative trajectories that are rel-
evant to the problem of cascades: i) ions (e. g. PKA)
channeling or moving interstitially in the lattice in which
a specific ion (projectile) travels ballistically through at
least several unit cells, ii) head on or binary collision
in which specific pairs of projectile and host atom ap-
proach each other (low impact parameter) at high ener-
gies, and iii) ions at their lattice positions oscillating at
typical phonon frequencies and exchanging, near equilib-
rium, energy with electrons.

Our set of ab initio TDDFT simulations are based on
representatives of these types of trajectories in rather
small systems. The idea is that a model for non-adiabatic
forces will be considered adequate if it can reproduce the
TDDFT dissipative forces (friction terms) in this set of
selected trajectories. The materials of interest are the 3-d
transition metals known to form single-phase fcc concen-
trated solid solutions, namely Ni, Co, Fe, and Cr [37].
As we shall see, the nature of the model calls for its pa-
rameterization via simulations of each element in a rep-
resentative host.

Two types of first principles electronic calculations are
performed; one is the adiabatic or BOA [1], in which
electrons are always at their GS, i. e. standard DFT
calculations. The other method is TDDFT, in which
electrons evolve in time from their GS at time t = 0
[29]. Both types of simulations were performed using
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Figure 1. Energy transfer to the electronic system by a Ni pro-
jectile traveling in fcc Ni at v = 0.3 a. u., along three differ-
ent trajectories. The dashed lines are obtained from TDDFT
calculations and solid lines from the fitted MD model. The
main plot represents the incommensurate trajectory where
also the site density is added for informative purposes. The
subset shows the energy transfer along the channel in the cen-
ter (Channel 4/16) and offset from channel (Channel 2/16).

the plane waves Lawrence Livermore code Qball (for de-
tails see Ref. [42, 43]) with norm-conserving pseudopo-
tentials and an energy cutoff of 150 Ry for the plane wave
basis set. The calculations include 3p semi-core states,
are nonmagnetic, and use the adiabatic LDA exchange-
correlation potential [44].

For all projectile trajectories, a super-cell with 108
atoms on a fcc lattice with a lattice parameter of 3.52 Å
was used, with a projectile velocity of 0.3 a.u. (131 keV
for Ni), kept constant while the target atoms are at rest,
i. e. we do not integrate the equation of motion of any
target atom in the simulation: the projectile is forced to
have a rectilinear trajectory at constant velocity. This
method simplifies the analysis of the relevant informa-
tion; it then represents an open system where energy is
given to or subtracted from the projectile in order to keep
its velocity constant.

A point needs to be made justifying the use of a small
super-cell geometry. Periodic boundary conditions in our
simulations imply that an array of projectiles with par-
allel trajectories separated by 10.56 Å interact simulta-
neously with the target; projectile-projectile interactions
may therefore affect the results. However, in metals the
screening length is of the order of the nearest neighbor
distance, restricting the perturbation caused by the pro-
jectile to its local surroundings. This effect can be seen
in the fact that the stopping power process is basically
a two-body effect involving the projectile and its closest
target atom, as Figs. 4 and 5 in [45] and discussions
therein prove.

Our model is constructed for a bounded set of velocities
(less than 1 a. u.), mainly because we limit electronic
excitations to 3p semi-core states. Given that bound,
the question is whether the cell is large enough to be in
the limit of effective screening between replicas (and their
wakes). Size effects in the limit of large velocity can be
estimated, as we do in [46]. Here, we made sure that
the results are converged with respect to the cell size.
Independent support to this assertion comes from [47];
Fig. 1 in that paper shows that the screening decays
only after the maximum stopping is achieved. In the
case of Ni into Ni, the maximum of stopping occurs at
velocities around 10 a. u., well above the upper limit of
validity of our model. Our case is not |Z|=1 like in this
analytic model, but at the same time, more (semi-core)
electrons participate in the screening as shown in [34], so
the argument holds.

Similarly, time effects for a fixed cell size and velocity
imply that there will be a time after which the energy de-
position is no longer an intensive quantity. In the same
way that we have access to finite size effects (for bounded
velocity) by increasing the cell size, we have access to the
time domain question by running long enough to reach
a steady state and observe the saturation of the energy
deposition later on. Longer times in our simulation cell
are obtained when the projectile wraps around the cell
and reenters. As an example of stationary state, from
Fig. 1 it can be seen that at each equivalent two-body
encounter in a given trajectory, the energy deposited into
electrons is essentially the same, indicating no saturation
effects. Also, we note that after one passage of the projec-
tile across the entire sample, the total energy deposited
into the target is a few hundred eV. The system contains
(109 x 16) 1744 electrons, which means that less than
half an eV/electron is deposited; this is a small amount
in terms of the band energy of the electrons. A pictorial
illustration of this effect is shown in Fig. 8 of [48].

The difference in energy between TDDFT and BOA
calculations for the same trajectory represents the net
energy given to electrons by the projectile, i. e. en-
ergy that would not be given to the electrons if the ions
move adiabatically. Therefore, this energy difference is
the non-adiabatic part of the problem.

It is important to note that, contrary to perturbative
approaches to electronic stopping, adiabatic DFT and
non-adiabatic TDDFT formalism do not require an a pri-
ori choice of the charge state for the projectile. In all
simulations, the total nuclear charge of the 108+1 ions
is exactly compensated by the same number of electrons,
i. e. the sample is electrically neutral. As the projectile
moves, the effective charge that moves with it is part of
the solution to the calculation, and not an input. Analy-
sis of the charge states of the projectile and of the closest
target atoms for similar channeling simulations can be
found in Ref. [49].



5

B. Simulation results

We run TDDFT and BOA simulations for two cases,
namely, a Ni projectile into a Ni target, and Ni, Co, Fe,
and Cr projectiles into a NiCoFeCr alloy target.

1. Ni projectile into Ni target

As a first example, and since Ni is special among other
elements in a recently discovered family of fcc concen-
trated solid-solutions [37], we start by describing the case
of a moving Ni ion (projectile) in a Ni host (target). The
Ni projectile moves through a pristine 108/107 atoms
system along three types of trajectories, two 〈001〉 chan-
neling directions, one at the center of the channel (projec-
tile cartesian position along r(t) = (4/16a0, 4/16a0, vt),
and another off-center r(t) = (2/16a0, 2/16a0, vt), and
one incommensurate direction close to the 〈111〉 direc-
tion, which includes going through a vacancy, intro-
duced purposely to explore dissipation at the lowest host
electronic density, representative of the e-ph interaction
regime. The chosen value for v in these simulations is
0.3 a.u., which allows obtaining a clear numerical result
for dissipation; the results for lower velocities are down-
extrapolated as linear in the velocity by the model. This
is a relatively low velocity in terms of deviations from
linearity of stopping power and validity of the pseudopo-
tential approximation [34].

From the derivative of the energy difference between
TDDFT and BOA runs, we extract the local stopping
power as a function of position along the trajectory,
which is used as input for adjusting the dissipation model.
With dashed lines, Fig. 1 shows ETDDFT(r) − EBOA(r),
the energy transferred from the moving projectile to the
electronic system up to a distance r along the trajec-
tory for the two channeling directions (inset) and for the
incommensurate direction (main panel). The step-wise
structure of these curves reflects the projectile close en-
counters with the target atoms. This figure also shows
the fitting to these curves by our model, which we discuss
later. Finally, Fig. 1 also shows the host GS electronic
density (lowest curve and right y-axis), which will be used
to relate stopping power to electronic GS density.

2. Ni, Co, Fe, Cr projectiles into a NiCoFeCr target

Similarly, we run TDDFT and BOA simulations of self-
irradiated NiCoFeCr, as representative of a concentrated
solid solution. The initial structure was taken from our
previous work [50], where we found that there exists a
degree of short-range order (SRO) in this system. We
studied the same nominal trajectories described above in
the underlying fcc lattice. Clearly our strategy explores
only a few of all possible environments a projectile may
find in a random solid solution, but we assume that the
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Figure 2. Electronic energy as a function of projectile po-
sition for Ni (black), Co (green), Fe (blue), Cr (yellow) pro-
jectiles at v = 0.3 a.u. along rectilinear trajectories. Left col-
umn: total non-adiabatic electronic energy; Center column:
Adiabatic or BOA electronic energy; Right column: difference
between them. Top row: along 〈100〉 direction passing at the
center of the channel; Center row: ‘off-center’ along 〈100〉 di-
rection with an impact parameter of 1.19 a.u. from closest
atoms at the channel; Bottom row: along an incommensu-
rate direction starting at the center of a 〈100〉 channel. The
target is a quasi-random solid solution alloy of equi-atomic
NiCoFeCr.

sampling is good enough to extract a dissipation function
that represents well the real case.

As we studied four projectile types and three directions
on the alloy target, we performed a total of 24 indepen-
dent simulations. The raw data is presented in Fig. 2,
where the electronic energy as a function of projectile po-
sition for Ni, Co, Fe, and Cr projectiles versus position
along rectilinear trajectories is shown. The three columns
represent the total non-adiabatic electronic energy, the
adiabatic or BOA electronic energy, and the difference
between them, respectively. Each of the three rows show
the trajectories studied: along 〈100〉 direction passing at
the center of the channel, ’off-center’ along 〈100〉 direc-
tion with a smaller impact parameter of 1.19 a.u. from
closest atoms to the channel, and along an incommensu-
rate direction close to 〈111〉 starting at the center of a
〈100〉 channel, respectively.

The energy transferred to electrons in the case of the
four types of projectiles in a fcc NiCoFeCr target is shown
in Fig. 3 together with the GS electronic density seen by
the projectile along the trajectories, and the results of
the dissipation model that we discuss later.
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Figure 3. (color online) Energy transfer to electronic system
as four different projectiles travel along three different trajec-
tories through NiCoFeCr alloy. Also shown are electronic site
densities (solid black line) along the trajectories. The element
types selected for projectiles are: Ni (purple), Co (green), Fe
(blue) and Cr (yellow), with arbitrary vertical offsets. The
trajectories studied are: (a) channelling (4/16), (b) off-center
channel (2/16) and (c) incommensurate. The data plotted
with colored dotted lines are obtained from TDDFT calcula-
tions and the MD model predictions are shown with colored
solid lines.

IV. CONSTRUCTION OF THE DISSIPATION
MODEL

A. Electronic density

Purposely, electronic density plays an important role
in defining the model of local dissipation, which by con-
struction is an explicit function of the electronic den-
sity in the vicinity of each moving ion, as envisioned in
Ref. [33]. The explicit dependency on the density allows
to define the dissipation function in a wide range of pos-
sible local environments.
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jectiles in our model.

The data shown in the previous section is used to create
the functions that relate the strength of the dissipation
to the local electronic density of the host, i. e. part of
the BIJ function appearing in the second term of Eq. 1.

Since the goal is to develop a model to be used
in classical MD, with no access to instantaneous self-
consistent electronic densities, in lieu, we use spherical
atom-like densities of isolated atoms (obtained here from
the Opium DFT pseudopotential generation code [51]).
This step is necessary because during a classical MD sim-
ulation, there is no access to the full self-consistent den-
sity solved in the TDDFT code. In a MD simulation, the
host electronic density will therefore be calculated as a
superposition of spherical atomic densities of atoms close
to the moving atom whose electronic friction is being cal-
culated.

Atomic density calculations are done for all four ele-
ments (Ni, Co, Fe, Cr) studied in this paper, and the
results are tabulated for later use in the MD code, Part
II of this work. To control the computational cost of the
classical MD simulations, the densities are modified with
a cutoff function to ensure they go smoothly to zero at
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a cutoff distance (5.0 Å). The resulting radial electronic
density functions used for individual elements are plotted
in Figure 4.

Atomic densities play two roles in the model, first
they define pair correlations of the non-adiabatic forces
to provide local conservation of linear and angular mo-
mentum, and second partial sum of neighboring atomic
densities scale the strength of the local dissipation. Of
these roles, the former, as demonstrated in [39], ensures
a rich electron-phonon interaction regime; in particular,
it provides different phonon lifetimes for different phonon
polarization, while the latter allows to connect the low
energy regime (electron-phonon equilibration) with the
high energy regime (electronic stopping power) under the
umbrella of a single model. The model was set up such
that only a few functional parameters are free; we assume
spatial pair correlations controlled by the functional form
of the electronic densities. The main work is focused in
defining a local dissipation function as a function of the
density.
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Figure 5. Coupling parameter β(ρ) for a Ni projectile moving
with velocity v = 0.3 a.u. into a fcc Ni target. The trajecto-
ries studied are: channelling (4/16), off-center channel (2/16)
and incommensurate, as a function of the unperturbed local
electronic density ρ0, from [45]

.

In summary, electronic density defines the geometrical
aspect of the model and gives an explicit dependency of
the magnitude of dissipation forces (for details see [39],
and Supplementary Material therein).

WIJ =


−αJ(ρ̄J)ρI(rIJ )

ρ̄J
eIJ ⊗ eIJ (I 6= J)

αI(ρ̄I)
∑
K 6=I

ρK(rIK)
ρ̄I

eIK ⊗ eIK (I = J)
(4)

where ρ̄I =
∑
J 6=I ρJ(rIJ). Note that this tensor fully

defines BIJ by the relation given in Eq. 2. This part

of the model, which completes Eq. 1, fully specifies
the equations of motion for the ions, which is imple-
mented by us as the User-Eph fix (plugin) [52] for the
Lammps code [53]. The remainder of the paper explains
the method to adjust the functional parameter αI(ρ) for
each of the four species considered here.

B. Dissipation function

We are interested in deriving an expression for the dis-
sipation of ionic kinetic energy into the electronic system
able to capture the complexity implicit in an interaction
that covers 9 orders of magnitude in energy (from meV
to MeV) and ∼ 2 orders of magnitude in the local elec-
tronic density visited by the moving particle, while at
the same time we aim at a model simple enough so that
it is usable in classical molecular dynamics simulations
with the correct asymptotic equilibration limits. These
constraints force us to make some simplifications.

In connection with our goal of relating the strength of
the dissipation force to the host unperturbed electronic
density ρ0, our previous work [45] shows that, contrary to
the meV e-ph interaction regime that can be represented
as a stopping process with a dissipative force propor-
tional to the velocity and function of the electronic den-
sity, Fdrag = −β(ρ0)v [35], the higher energy regime can-
not be so represented, because β becomes, at the least,
a multi-valued function of ρ0. Here, β symbolically rep-
resents a scalar version of the B in Eq. 1. Since B is the
hermitian square of W (Eq. 2), the drag coefficient β is
dimensionally proportional to α2.
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ship such as that given in Fig. 5 and in Ref. [45]

.

This multi-valued behavior of β is illustrated in Fig. 5,
which shows loops when β is represented in terms of ρ0.
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In Fig. 1, we reported the energy difference (dashed line),
i. e. the energy transferred from the moving projectile
to the electronic system, and the host density (solid line)
along the projectile trajectory. For example, in that fig-
ure one sees two points along the projectile trajectory
that have host density equal to 2 e/Å3. For these points
the derivative of the energy difference divided by the pro-
jectile velocity is different; in other words, for a given den-
sity there are two different dissipation values β. There-
fore, loops appear in the β(ρ) representation.

As we explain in Ref. [45], the origin of the multi-
valued character of β(ρ0) can be traced back to the fact
that the GS electronic density seen by the projectile on
equivalent points in the incoming and outgoing phases
of a collision is the same by symmetry, while the time-
dependent density is not. It is then the dynamic response
of the electrons during the collision that creates the asym-
metry in the dissipation represented as a function of the
projectile coordinate, which prevents the construction of
an ad hoc β(ρ0) (single-valued) functional relation.

For clarity, we highlight here that phonon excitation
energies, i. e. meV, originate when ions move close to
their crystal equilibrium positions, which coincide with
minima of the host electronic density, while high energy
collisions, i. e. in the keV-MeV range, bring ions to close
contact where they explore regions two or more orders of
magnitude higher in electronic density than for the meV
case.

The dissipation function will therefore be an average of
the loops, chosen to give the same TDDFT total energy
dissipation after a full collision, rather than point-by-
point agreement with it. To this end we minimize a fit-
ness function that measures the difference in dissipation
between the ab initio results and the results obtained by
moving a projectile along the same trajectories used in
the ab initio calculation; the dissipation along these tra-
jectories is calculated using the atomic sphere electronic
densities described above and the trial function α(ρ). It
is to note that this is a strong simplification motivated by
the practical limitation of resolving the electronic density
on-the-fly. However, compared to other types of bonding,
for metals this approximation is reasonable.

The fitting was done separately for each case in
which we have ab initio data, using the GNU Octave
software package with the NLOPT optimization mod-
ule [54, 55], which in turn drove a Lammps session with
trial parametrizations of the model, and consisted of
three stages. First, the function value at the electronic
density of a vacancy site, ρv, was set so that the electron-
phonon coupling strength matches the target values for
each case. Next, a cubic spline with 6 knot points was fit-
ted to reproduce simultaneously the incommensurate and
center-channel TDDFT data. Finally, the high-density
region of the coupling parameter model was suppressed
with an exponential cutoff function. Although intuitively
the coupling seems to be an increasing function of the
local density, in a physical atomistic system (and also
reflected by TDDFT) the electronic excitations in high-

density region are suppressed because of the large binding
energy of core electrons.

The dissipation functions so obtained are shown in
Fig. 6 for the elements of interest in this work. These
figures show that the main difference between the effec-
tive coupling and the ab initio data is that the former is
a function, with absence of loops, i. e. at each density
value corresponds a given dissipation (single-valued).

V. DISCUSSION AND CONCLUSIONS

In our objective of modeling the non-adiabatic pro-
cesses involved in energetic ion-solid interactions, we used
TDDFT, an ab initio technique, to study the energy
transferred from moving ions to electrons in a solid both,
in the electron-phonon regime (low energy motion in re-
gions of very low host electronic density), and in the stop-
ping power regime, where ions come to close contact and
overlap large electronic densities. These results show a
complex behavior related to the evolution of the elec-
tronic structure as electrons are excited. Since our model
is to be used in classical MD, with only GS electronic
density available in the form of tables, we established a
relation between the first-principles result and a simpli-
fied model in which the host electronic density seen by
the projectile is simply the superposition of atomic den-
sities, and the resulting dissipation is given by a dissipa-
tion function that, based on the spherical atom densities,
gives the result closest to the ab initio one.

The strength and limitations of our model are repre-
sented by the similarity between the actual TDDFT dis-
sipation and that predicted by the model, Figs. 1 and 3.
We see there that the model is able to predict quite ac-
curately the energy transferred after each collision along
the trajectory, but not point-by-point along the trajec-
tory. This feature was to be expected since we are forced
to use frozen, spherical atomic densities and not actual,
time-dependent ones. This limitation is the price to pay
to have a model that can easily be implemented in classi-
cal MD codes at no significant increase in computational
cost.

The functions shown in Fig. 6 are the main input for
a non-adiabatic MD simulation of collision cascades on
alloys and since they provide the coupling strength at
all relevant densities, i. e. densities visited by moving
atoms at all energies of interest, they will allow the first
calculation of the entire collision process, from the ballis-
tic to the thermal phases of a cascade, giving a detailed
picture of the energy exchange between ions and elec-
trons till their final thermalization. Such calculation is
the goal of our second paper "Role of electrons in collision
cascades in solids. Part II: molecular dynamics".
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