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Broad-beam low-energy ion bombardment can lead to the spontaneous formation of nanoscale
surface structures, but the dominant mechanisms driving evolution remain controversial. Using
coherent x-ray scattering to examine the classic case of ion beam rippling of SiO2 surfaces, we
study the relationship between the average kinetics of ripple formation and the underlying fluctu-
ation dynamics. The early stage growth of fluctuations is well fit with a linear theory formalism
employing a viscous relaxation term with full wavenumber dependence. In this regime, the x-ray
photon correlation spectroscopy (XPCS) two-time correlation function shows novel behavior, with
memory stretching back to the beginning of the bombardment. For a given length scale, correlation
times do not grow significantly beyond the characteristic time associated with the early-stage ripple
growth. In the late stages of patterning, when the average surface structure on a given length scale
is no longer evolving, dynamical processes continue on the surface. Nonlinear processes dominate
at long length-scales, leading to compressed exponential decay of the speckle correlation functions,
while at short length-scales the dynamics appears to approach a linear behavior consistent with
viscous flow relaxation. This behavior is found to be consistent with simulations of the anisotropic
Kuramoto-Sivashinsky equation. In addition, it is shown that the surface ripple velocity, an impor-
tant parameter of the ion-driven surface evolution, can be measured with coherent x-ray scattering
in conjunction with use of an inhomogeneous ion beam. The change in viewpoint exemplified by this
study, from a focus on only average surface kinetics to one incorporating the underlying nanoscale
dynamics, is rapidly becoming more widely applicable as new and upgraded x-ray sources with
higher coherent flux come online.

Hyperthermal ion and atom beams are ubiquitous in surface science and technology. In addition to plasma etching
and surface passivation, common processes employing hyperthermal beams include sputter etching, sputter deposi-
tion, ion beam assisted deposition and a variety of plasma-enhanced growth techniques. Moreover, depending upon
materials properties and irradiation conditions, broad-beam low-energy ion bombardment can lead to the spontaneous
formation of nanoscale surface structures, such as ripples1 and dots2, or instead to the ultra-smoothening of surfaces3.
This has the potential of being useful for inexpensive large-scale patterning. However, fundamental questions remain
about the dominant processes driving spontaneous ion beam nanopatterning in a given situation1,4−10.

Understanding the interplay between nanoscale kinetics and dynamics on the self-organizing surface is an essential
task, though one not often explicitly attempted. By “kinetics”, we mean the evolution of the average nanoscale surface
structure, which can be powerfully investigated in real time by “non-coherent” x-ray scattering in a surface sensitive
mode. By “dynamics” we mean the evolution of fluctuations about the average, which occurs not only on the atomic
scale but on the nanoscale as well. The difference between the two is perhaps most obvious in thinking about the
late stage of many surface growth and modification processes in which the surface reaches a dynamic steady state,
so that there is no longer an average kinetic evolution. However surface processes of ion impact or atom arrival and
diffusion continue so that there is still ongoing dynamics. Investigating these dynamics has become possible using
surface-sensitive coherent x-ray scattering, though as yet, the limited coherent x-ray flux available and the challenge
of integrating in-situ surface equipment into an appropriate synchrotron x-ray beamline have limited the number
of existing experiments11−15. In particular, x-ray photon correlation spectroscopy (XPCS) uses correlations of the
scattering speckle pattern to investigate the dynamics of fluctuations16,17.

Here we use surface-sensitive coherent x-ray scattering to investigate the classic case of ion beam nanoscale rippling
of an SiO2 surface18,19. Analyzing the speckle-averaged scattering provides information about the average kinetic
evolution of the surface during ripple formation while analyzing speckle correlations, and even the speckle motion
itself, gives insight into the underlying dynamics. Both come from the same data set, providing a clear view of how
the kinetics and dynamics evolve together.
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FIG. 1: Schematic diagram of coherent small-angle x-ray scattering (Co-GISAXS) measurements during Ar+ ion
bombardment of SiO2. The sample is inclined by a small angle αi with respect to the incoming X-ray beam and the

diffuse scattering is recorded as a function of the exit angles αf and ψ using a 2D detector.

I. METHODS

Samples were 1000 nm wet thermal oxide on p-doped(B) Si(100) with resistivity 1-100 Ω · cm, affixed to a molybde-
num sample platen with silver paste. The entire area of the sample platen was covered with Si to minimize secondary
collisions that can lead to sputtering of impurities onto the surface. The sample platen was mounted in a custom
vacuum chamber with base pressure 1× 10−8 Torr. Samples were bombarded with 2 keV Ar+ ions at angles of either
45° or 65° at room temperature. These are conditions that lead to the spontaneous formation of nano-ripple patterns.
The ion beam was generated by an RBD Instruments 04-165 Sputter Ion Gun with multiple focus settings. The ion
flux was in the range of 5× 1013− 3× 1014 ions

cm2·sec depending on the ion beam focus position. The 45 °data were taken
with both an unfocused and a focused ion beam (focus position 4 - highly focused) and the 65 degree data were taken
with focus position 2.5 (less focused).

The coherent x-ray scattering studies were performed at sector 8-ID-I of the Advanced Photon Source at Argonne
National Laboratory. The photon energy of 10.9 keV (0.114 nm wavelength) was selected by a Ge(111) monochromator
with a resulting flux of approximately 1 × 1010 photons/s and beam dimensions 0.02 mm × 0.02 mm. Experiments
used an X-Spectrum Lambda detector with 1536 x 512 pixels 55 µm in size and located 3.93 m from the sample.

Figure 1 depicts the grazing-incidence small-angle x-ray scattering (GISAXS) geometry. The sample is inclined by
a small angle αi with respect to the incoming X-ray beam and the diffuse scattering is recorded as a function of the
exit angles αf and ψ using a 1536 × 512 pixel Lambda X-ray detector. The X-ray measurements were performed
with an incidence angle αi = 0.24° and with projected incident x-ray beam direction perpendicular to the ion beam
direction (i.e., revealing corrugations with wavevector parallel to the ion beam).

Figure 2 displays an example of a GISAXS scattering pattern. At both ion incidence angles investigated, the
GISAXS evolution is qualitatively similar, with an early time peak growth that shifts in to lower q|| values.The
analysis presented in the manuscript is for data at the Yoneda wing position for which αf is equal to the critical
angle. Both the vertical and horizontal axis on the detector image include qx components; however, since qx � qy and
qx � qz as a result of the small incidence and exit angles, and because the surfaces are isotropic, the horizontal axis q||
(parallel to the surface) can be approximated as simply qy and the vertical axis can be considered as qz (perpendicular
to the surface). When there is no danger of confusion, we will simply refer to qy as q.
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FIG. 2: Example x-ray detector image recorded during beam nanopatterning. The Yoneda wing is the
surface-sensitive scattering exiting the sample at the critical angle. The Yoneda wing intensity centered at

X-position of approximately 150 pixels is due to the growth of correlated nanoripples on the surface. The intensity
at lowest X-position is due to long wavelength surface roughness. The components of the wavevector transfer q have

been written on the detector image.

II. OVERALL BEHAVIOR

XPCS experiments use an x-ray beam with partial coherence, so that the structural disorder within the illuminated
sample volume produces speckle in the x-ray scattering pattern. Averaging over the speckle pattern produces the same
information obtained from a real-time "non-coherent" experiment – namely a measure of the average sample structure
evolution. Figure 3 shows the general behavior observed for bombardment at 45°; qualitatively similar behavior is also
observed for 65° bombardment. In the figure, the speckle-averaged scattered x-ray intensity is shown as a function of
the wavenumber q, which is the in-plane component of the wavevector transfer during x-ray scattering. Intensity at a
given wavenumber q is closely related to the strength of surface fluctuations at a corresponding length-scale d = 2π/q.

FIG. 3: Averaged x-ray scattering pattern evolution during ion beam nanopatterning at 45° bombardment angle.
The inset shows that the averaged intensity at a given wavenumber (reflecting the average surface spatial

fluctuations on the corresponding length scale) increases to a maximum and then relaxes to a steady-state value
.
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FIG. 4: Evolution of the Two-Time Correlation Function during nanopatterning at 45°. The two-time correlation
function (TTCF) shown in the top image measures the extent to which the surface structure has changed between
times t1 and t2. The width of the central diagonal line t1 ≈ t2 therefore shows the time over which the surface

remains correlated during the patterning process. The ion bombardment began at 250 s, marked by red lines on the
blow-up shown in the bottom left image. The bottom right image shows perpendicular cuts through the TTCF as
the patterning proceeds. The width of the correlation peak increases from the time that bombardment begins

(reflecting increasing surface correlation times) but eventually saturates. For comparison purposes in this figure, the
heights of the perpendicular cuts are normalized to a constant value.

As seen in Fig. 3, a peak grows in the averaged scattering pattern; this is due to the formation of correlated ripples
on the surface with an initial wavelength of approximately 2π/qinitial ≈ 2π/0.17 nm−1 ≈ 37 nm. With time, the
peak shifts to lower wavenumbers showing that the average wavelength coarsens. As shown in the inset of Fig. 3, for
medium- and high-wavenumbers, the intensity reaches a maximum and decreases to a steady state.

While the evolving speckle-averaged x-ray scattering pattern reveals the average patterning kinetics, in XPCS
experiments temporal correlation functions of the detailed speckle patterns themselves are used to probe fluctuations
about the average – the underlying dynamics itself. The two-time correlation function (TTCF) C(q, t1, t2):

C(q, t1, t2) =

〈
I(q, t1)I(q, t2)

〉〈
I(q, t1)

〉 〈
I(q, t2)

〉 (1)

measures how structure on a given length-scale changes between time t1 and time t2 as the sample evolves. Here
the angular brackets denote an average over equivalent q values. Figure 4 shows the TTCF at q = 0.167 nm−1.
The central diagonal ridge of correlation going from the bottom left to top right of the upper and left heat-maps
correspond to the high correlation expected for t1 ≈ t2. One way to evaluate how long it takes for the surface to
change configuration on a given length-scale as nanopatterning proceeds is to examine the width of this central ridge
by taking cuts through it, as shown by the white dashed lines in the figure. The bottom right hand plot of of Fig.
4 shows such cuts for different values of the total time T = (t1 + t2). As can be seen, the width of the correlation
function increases during the early stages of bombardment, indicative of growing correlation times, and then reaches
a steady state.

Figure 5 displays an AFM topograph taken after approximately 6000 seconds of bombardment at 45°. Well-defined
ripples with 10-15 nm of amplitude and 75-100 nm of wavelength form on the surface. This is consistent with the
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FIG. 5: AFM topograph of the surface after 6000 s of bombardment at irradiation angle of 45°.

earlier study of Umbach et al.18. The more recent studies of Kumar et al.19 and Keller et al.20 used ion energies of
200-1000 eV, below the 2000 eV energy used here. However, extrapolating ripple wavelength values from their data
suggests that they are also consistent with the present results.

III. EARLY-TIME KINETICS

The goal of most studies of ion-induced pattern formation is to understand the evolution of the surface height
h(r, t) = h(x, y, t). A powerful approach is to focus on early times during pattern development, when the amplitude of
fluctuations in the surface height is small. Linear stability theory applied to surface evolution during ion bombardment
takes the form1:

∂h̃ (q, t)

∂t
= R (q) h̃ (q, t) + η̃ (q, t) (2)

where h̃ (q, t) is the Fourier transform of the surface height h (r, t), R (q) is the amplification factor or dispersion
relation whose sign for a given wavenumber denotes stability or instability at the corresponding length-scale, and
η̃ (q, t) is the Fourier transform of a stochastic noise. The amplification factor can be determined experimentally by
measuring the speckle-averaged height-height structure factor evolution6,21:

I(q, t) =
〈
h(q, t)h∗(q, t)

〉
=

(
I0(q) +

η

2R(q)

)
e2R(q)t − η

2R(q)
(3)

where η is the magnitude of the stochastic noise:
〈
η (r, t) η

(
r′, t
)〉

= η δ(r − r′)δ(t − t′). The amplification factor
contains the essential physics determining surface stability or instability. A positive R(q) at a given bombardment
angle drives exponential amplification of modes of wavevector q leading to topographic instability. Conversely a
negative R(q) damps fluctuations and stabilizes modes of wavevector q.

To determine R(qx ≈ 0, qy) ≡ R(qy), the intensity values I(qy, t) at each wavenumber have first been averaged over
10 detector pixels in the qy direction and 21 pixels in the qz direction (approximately the width of the Yoneda wing)
to remove speckle from the coherent scattering pattern. The temporal evolution of each wavenumber bin was then fit
with a function I(qy, t) = a+ b · exp[2Rt], with a, b and R being the fit parameters for each qy bin (Fig. 6).

Figure 7a displays the resulting fit R(qy) values for an incidence angle of 45°, and Fig. 7b shows the values for
irradiation angle 65°. The fit R(qy) values can themselves be fit as a function of qy. Work in the field has usually
assumed a generic long-wave form:

R(qy) = −Sy q2
y −B q4

y (4)

where Sy is a coefficient of curvature-dependent surface evolution and B is a coefficient of surface viscous flow
smoothening1,18. We have recently shown21 that grazing-incidence small-angle x-ray scattering (GISAXS) includes
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FIG. 6: Early time intensity evolution at different wavenumbers and linear theory fits for irradiation angle 45°.

high-wavenumber information which cannot be fit by the long-wave form of Eq. 4 but instead requires a more detailed
model based on the physical processes operating on the surface. The q4

y term is a long-wave approximation to the full
Orchard solution of viscous flow in a surface layer22. Using the full Orchard term gives an amplification factor of the
form:

R(qy) = −Sy q2
y −

γ

2ηh0

(
Q
(
sinh(2Q)− 2Q

)
1 + 2Q2 + cosh(2Q)

)
(5)

where γ is the surface energy, h0 is the viscous amorphous layer thickness, Q = qyh0, and η is the viscosity, which
in this case characterizes the ion-enhanced viscous flow (IVF). For the q2

y term of Eq. 4, which determines the low-
wavenumber stability/instability, there are physical models of erosive-23 and stress-9,10 driven patterning that predict
a full wavenumber dependence of the term rather than just its low-q limit. We have examined fits of the experimental
R(q) data to the predictions of different models and found that the longwave form of Eq. 4 does not well fit the
experimental results, particularly for the 45° data set for which R(q) can be fit to a higher wavenumber. Use of the
full Orchard term for surface viscous flow, Eq. 5, produces good fits when used with a simple q2 curvature term or
any of the other three terms determining stability. Figure 7 shows both fits using the long-wave form of Eq. 4 and
fits using the full Orchard form of Eq. 5. For the 45° data, the fits of the long-wave form to the entire q-range are so
poor that we have fit only the R(q) data for q < 0.21 nm−1 with that model.

For the long-wave fits using Eq. 4, the fit parameters for 45° bombardment are:

Sy(45◦) = −0.37 nm2/s; B(45◦) = 6.63 nm4/s =⇒ qmax =

√
|Sy|
2B

= 0.168 nm−1 (6)

and for 65° bombardment are:

Sy(65◦) = −0.0466 nm2/s; B(65◦) = 0.781 nm4/s =⇒ qmax =

√
|Sy|
2B

= 0.173 nm−1 (7)

Comparing the ratio of |Sy|B for the two cases, we conclude that the relative contributions of the terms Sy and B
are almost equal for the two bombardment angles. The data at 45° was taken with a more highly focused ion beam
compared to the 65°; therefore, the absolute value differences of Sy and B at these two bombardment angles can be
largely due to the different values of the ion flux (approximately 3× 1014 ions/cm2s for the 45° bombardment versus

approximately 5× 1013 ions/cm2s for the 65° data). In linear theory, the fastest growth rate occurs at qmax =
√
|Sy|
2B ;
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the calculated values are consistent with the early time peak positions of the intensity profile. Note that Fig. 3 shows
significant coarsening with time as the peak shifts to lower wavenumbers.

For the fits using the Orchard term, we obtain:

Sy(45◦) = −0.503 nm2/s; h0 = 3.4 nm;
γ

2ηIV Fh0
= 2.03× 10−1s−1 (8)

Sy(65◦) = −0.0691 nm2/s; h0 = 3.1 nm;
γ

2ηIV Fh0
= 3.78× 10−2s−1 (9)

These detailed results invite comparison with theory and simulation. SRIM simulations24 give the average pene-
tration depth of 2 keV Ar+ ions into SiO2 at 45° and 65° as 3.8 nm and 2.9 nm respectively. Thus the fit values of
the the viscous layer thickness h0 are reasonable.

The amplitude of the Orchard relaxation term is proportional to the ratio γ/ηIV F . Literature values of the SiO2

surface energy γ vary, but are typically in the range of 0.2 J/m2. This implies values for the ion-enhanced viscosity
of ηIV F = 1.4 × 108 Pa·s for the 45° bombardment and 7.8 × 108 Pa·s for the 65° bombardment. There are few
numbers in the literature to which these can be compared. In their recent paper, Kumar et al.19 suggest that for
65° bombardment, ηIV F = 5 × 1022 Pa·ions/cm2 for 500 eV Ar+ bombardment of SiO2. If we use the Kumar et al.
value without correction for differences in ion energy and incidence angle, it gives predicted values for the present
experimental conditions of: η(45°) = 1.7 × 108 Pa·s and η(65°) = 1 × 109 Pa·s. Given the many uncertainties in
parameters, this is in remarkably good agreement with our experimental fit values.

As noted above, curvature-dependent sputter yield, lateral mass redistribution (often combined within a crater-
function approach) and stress could all play a role in determining Sy. Calculation of the erosive contribution to the
curvature coefficient is complicated, though, by uncertainties in the sputter yield as a function of ion incidence angle
Y (θ). Seah and Nunney25 suggest that adding together the sputter yields of Si and O from the SRIM simulation
package gives reasonable results at zero bombardment angle. However, Seah et al.26 argue that SRIM considerably
overestimates the angular dependence of the Ar+ sputter yield for low mass targets, and that the angular dependence
of Yamamura et al.27 is more accurate. Using SRIM values for Y (θ = 0), penetration depth and straggle at 45°,
coupled with the Yamamura correction to Y (θ) using known parameters from Si, gives Serosivey ∼ -0.31 nm2/s. Given
the many uncertainties, this must be viewed as quite close to the value of -0.50 nm2/s obtained from the fit using the
Orchard term, which is presumably the most reliable of the two fitting approaches. At 45°, simple models of lateral
mass redistribution and stress suggest that they should have no contribution.

At 65°, the erosive contribution to Sy is calculated to be stabilizing, with a magnitude of 0.056 nm2/s. SRIM
collision results can be used to estimate the average total displacement per ion to be approximately d = 16.0 nm,
giving a lateral mass redistribution contribution to Sy that is destabilizing but smaller in magnitude, with a value of
-0.013 nm2/s. Thus the observed instability to ripple formation at this angle might be driven by stress effects. Simply

a b

FIG. 7: Linear theory amplification factors with fits. Fits are for low-wavenumber (Eq. 4) and full Orchard term
(Eq. 5) forms. a) Irradiation angle 45°. The low-wavenumber (-Syq2-Bq4) fit is performed only for data with q <

0.21 nm−1. b) Irradiation angle 65°.
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FIG. 8: Novel behavior of the early-time two-time TTCF and comparison with predictions of linear theory. Each
succeeding TTCF curve is offset vertically by 0.1 for clarity. The thick diagonal line is the time horizon at which
|∆t| = T , marking the point at which bombardment began. Beyond this point (the shaded area), the TTCF values
of unity reflect the presence of a small incoherent scattering background present before bombardment began. The
black curves are linear theory predictions resulting from Eq. 10 and a model of the background. The thin dashed
line for the top curve is a compressed exponential fit. A clear transition from the linear theory behavior to the
compressed exponential dynamics is observed with increasing time T . The data is for a wavenumber range

surrounding 0.16 nm−1, corresponding to length scales comparable to the initial ripple wavelength.

using ion flux to scale the stress curvature coefficient obtained for 1 keV Ar+ bombardment of Si by Norris et al.21

would lead to a destabilizing contribution to Sy of roughly -0.03 nm2/s. Since the observed Sy(65◦) = -0.069 nm2/s
is destabilizing, perhaps the stress contribution is higher than simple scaling of the existing Si results would suggest.

IV. EARLY-TIME DYNAMICS

XPCS enables us to go beyond the study of the early-time kinetics to the examination of the dynamics, though
accurately measuring the TTCF in the early regime is challenging because the individual speckle x-ray intensities are
much lower than the average intensity used to study the average growth kinetics. However, there is sufficient coherent
intensity in these measurements to examine the TTCF near the peak in scattered intensity and cuts through it during
the early stages of patterning are shown in Fig. 8. The thick diagonal line is the time horizon at which the difference
in time is equal to the total time since bombardment began. This occurs when |∆t| = T . In dynamical processes,
correlations typically exhibit exponential decay (perhaps stretched or compressed) to a baseline, as seen in the top
curve, i.e. the latest time T , of the figure. However, at early times, Fig. 8 shows that correlations instead decrease
with a nonzero slope to unity at the time horizon. That is, the structure keeps a memory of its early evolution going
back to the time that bombardment started. Beyond the time horizon (the shaded area), the TTCF values of unity
reflect the presence of a small incoherent scattering background present before bombardment began.

The experimental behavior observed can be compared to theory. Analytic calculation28 shows that the TTCF
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predicted by linear theory is:

Clinear−theory(q, T,∆t) = 1 + β(q)
exp[2R(q)|∆t|]− exp[R(q)(T + |∆t|)]

1− exp[R(q)(T + |∆t|)]
(10)

where β(q) is a contrast factor. This assumes that the initial surface state is smooth, which is a good approximation in
the present situation. The solid theory lines in Fig. 8 show that, at early times, the lineshapes of the cuts through the
TTCF agree well with the theory predictions of Eq. 10. The theory curves use the measured value of R(q) made from
fits of the averaged intensity evolution as described above and reflect the effect of an increasing effective contrast due
to the increasing fraction of the total scattering that is coming from the surface versus an incoherent background. In
particular, the intensity I(t) in the TTCF Eq. 1 is assumed to be the sum of a time-independent background I0 equal
to the initial scattering observed from a smooth surface and the growing sample intensity Isample(t) as calculated
from the linear theory fits above. The only additional input for the theory curves in the figure is a single value of the
final contrast observable when the background is much smaller than the sample surface scattering. This is taken to
be β = 0.165. Figure 8 shows clearly how the TTCF’s evolve from the novel linear theory form predicted by Eq. 10
to a more common compressed exponential lineshape, which is discussed in the next section.

V. LATE-TIME DYNAMICS

In the late-time regime, the TTCF stops evolving on the time scale of the experiment (by ∼ 2000 s in the data of
Fig. 4) and we consider the stationary intensity auto-correlation function:

g2(q,∆t) =

〈
I(q, t′)I(q, t′ + ∆t)

〉〈
I(q)

〉2 (11)

The angular brackets indicate a time averaging over t′ and equivalent q values. For both 45° and 65° ion bombardment
angles, the g2(q, t) function is well fit with a compressed exponential Kohlrausch-Williams-Watts (KWW) form29:

g2(q,∆t) = 1 + β(q) e−2( ∆t
τ(q)

)n(q)

(12)

where τ(q) is the correlation time and n(q) is an exponent greater than or equal to one. The top of Fig. 9a displays
the fit values of n(q); the inset shows that a compressed exponential fit better agrees with the data than does a simple
exponential form. At low wavenumbers, the KWW exponents are approximately 1.5-1.6. These are comparable
to exponents we have found in the nonlinear Kardar-Parisi-Zhang (KPZ) model at low wavenumbers28 and similar
exponents are often reported in a wide range of physical processes30−35. These values are also similar to those reported
for ion beam nanopatterning of GaSb12. Here, however, we see in addition that the KWW exponent systematically
decreases to one at high wavenumbers, suggestive of a transition to linear dynamics on short length scales.

The fit correlation times τ(q) are shown in in the lower part of Fig 9a. There is a low-wavenumber regime with
τ(q) decreasing approximately as q−1 and a high wavenumber regime in which τ(q) decreases approximately as q−4.

In order to better understand the observed late-stage dynamics behavior, we have performed simulations using the
2+1 dimensional anisotropic Kuramoto-Sivashinsky (aKS) equation36:

∂h(r, t)
∂t

= Ahy + νx hxx + νy hyy + λx h
2
x + λy h

2
y + γy h

3
y − κ∇4h+ η(r, t) (13)

where η(r, t) is a Gaussian white noise and the various coefficients presumably depend on the ion species, energy,
and angle of incidence and target material. If they are dominated by sputter yield effects, the nonlinear coefficients
can in principle be calculated from knowledge of Y (θ).37,38 However, they depend on derivatives up to d3Y

dθ3 and,
as discussed above, the sputter yield curve for 2 keV Ar+ on SiO2 is not so precisely known. Calculations suggest
that widely varying values can be obtained from different assumptions about the behavior of Y (θ). Instead of using
calculated nonlinear coefficient values, we have therefore decided to follow the recent simulation study of the aKS
equation by Harrison et al.38 and choose values that yield reasonable behavior. Thus, for simplicity, the simulations
were performed with parameters A = 0.2, νy = −0.5, νx = 0.5, λx = 2, λy = 2, κ = 2 and γy = 0 or γy = 2, as
discussed below. The lattice size was 1024 × 1024. Numerical integrations were performed using the one-step Euler
scheme for the temporal discretization with an integration step dt = 0.01. The spatial derivatives were calculated
by the standard central finite difference discretization method (FDM) on a square lattice with periodic boundary
conditions. The surface is taken to be initially flat with uniform random noise on the interval [−0.1, 0.1].
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In order to compare experiment and simulation, we equate the simulation ratio of
√

κ
|νy| = 2 lattice units with the

experimental values
√

B
|Sy| , we find each lattice unit in the simulations to be approximately 2 nm for both irradiation

angles 45° and 65°. By equating |νy| and |Sy| for 65°, each simulation time step is approximately 45 seconds. The
intensity I(q) has been calculated using the Born/distorted-wave Born Approximation39 equation:

a b

FIG. 9: Compressed exponents n(q) and correlation times τ(q) during late-stage steady-state dynamics. a) Fit
values for experiments with irradiation angle 45°. The inset displays simple and compressed exponential fits to the

g2(q, t) function for q = 0.24 nm−1. b) Fit values from simulations of the aKS equation.

a b

8

FIG. 10: Comparison of experimental and simulated aKS intensity evolution for bombardment at 65°. a)
Comparison with no cubic term in the simulation. The peak shift arrow in the inset displays the evolution in time as
the peak of the intensity profile moves to lower values. b) Comparison using a cubic term γy = 2. in the simulation.
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I(qx, qy, qz) ∝
∣∣∣∣ 1

qz

∫∫
dx dy e−iqzh(x,y) e−i(qxx+qyy)

∣∣∣∣2 (14)

where qz is the z-component of the wave-vector change outside the material in case of Born Approximation or the
z-component of the wave-vector change inside the material in case of distorted-wave Born Approximation. In the case
of small qzh(x, y), the intensity I(q) becomes proportional to the height-height structure factor S(q). For simplicity,
we have taken qz = 1 in the units of the simulated lattice.

To compare the experimental and simulated kinetics, Fig, 10a exhibits both the speckle-averaged intensity I(q) for
the aKS simulation using γy = 0 with the speckle-averaged experimental data for irradiation angle 65°. As can be
seen, the experimental results for the early time peak position in the intensity/structure factor matches very well with
the aKS equation with the lowest order non-linear term (λx h2

x and λy h2
y); however, the late time experimental data

shows a larger coarsening effect that does not match with the simulations. In order to keep pace with the peak shift
in the structure factor, third order non-linear terms (γy h3

y) had to be added to the simulations. Figure 10b shows
the I(q) plot for the simulations with γy = 2 and the same other parameters as before. Although the inclusion of the
cubic non-linear term with γy = 2 suppresses the value of the intensity peak at early times and also eliminates the
secondary peak of the structure factor, the position of the peak matches very well with the experimental data at all
irradiation times. This large coarsening effect due to the cubic non-linearities has been studied by Harrison, Pearson
and Bradley37,38; as they discuss, the term (γy h3

y) in the aKS equation can originate from an improved approximation
for the slope dependence of the sputter yield.

For the late-time dynamics, the intensity autocorrelation function, Eq. 11, has been computed from non-averaged
speckle intensities and fit with the KWW form. The top of Fig. 9b shows that the simulations reproduce similar
behavior of the KWW exponent as seen in the experiment, namely a value of 1.5-2.2 at low wavenumbers (with the sim-
ulated values being somewhat greater than the experimental values) and decreasing toward one at high wavenumbers.
Similar behavior is observed in the KPZ model28, in which the curvature term is stabilizing, rather than destabilizing
as here. In both KPZ and the aKS simulations, the high wavenumber behavior of the dynamics can be expected to
be dominated by linear terms in the Langevin equations, which would give a KWW exponent of one, as is approached
in both simulation and experiment.

The behavior of the aKS simulation correlation times τ(q) goes from a q−1 decrease at low wavenumbers to a much
faster q−4 decrease at high wavenumbers (bottom of Fig. 9b). This is consistent with nonlinearities dominating
the dynamics at low wavenumbers and the linear ∇4h term (physically associated with ion-induced surface viscous
flow) dominating the high-wavenumber dynamics. The power-law behaviors of the simulated τ(q) are in very good
agreement with the experimentally observed behavior, suggesting that on SiO2 there is also a transition to dynamics
dominated by a q−4 relaxation mechanism, presumably still ion-induced viscous flow even at this late stage of the
ripple evolution.

VI. RIPPLE VELOCITY ANALYSIS

Following their self-organized growth, ripples can move across the surface40. Depending upon the system, this has
been attributed to the slope-dependence of the ion sputter yield or to stress effects. Except for the case of FIB/SEM
studies using the specialized case of Ga+ incident ions41−45, the only existing measurement of ripple velocity has used
fabricated marker grooves with ex-situ SEM to examine motion of ripples during 10 keV Xe+ irradiation of Si46. Here
we show that surface-sensitive XPCS can be used to examine ripple velocity in situ without fabricated markers using
a method that should be broadly applicable even at very small wavelengths.

For uniform motion of waves or a uniform flow pattern, homodyne x-ray scattering cannot detect the motion except
perhaps due to small edge effects. However, if there is an inhomogeneous flow pattern, interference oscillations can
arise in the temporal correlation functions.47−49 We use this possibility to estimate the surface ripple velocity. When
using a focused ion beam which is inhomogeneous along the length of the x-ray footprint on the sample, an oscillatory
behavior is observed in the two-time and corresponding g2(t) correlation functions. As an example, Fig. 11 shows a
TTCF and resulting g2(t) function after the formation of ripples with the focused ion source. Oscillations are present
in the correlation functions which are not present during broad beam bombardment. We now proceed to analyze
these to determine ripple velocity.

In the presence of a spatially varying velocity field v(r), the field-field correlation function is49:

gripple1 (q, t) =
1∫

I(r′)dr′

∫
I(r) eiq.v(r)t dr (15)
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where I(r) is the spatially dependent x-ray intensity. For analysis, we restrict attention to q = q0 ŷ, where q0 is the
wavenumber of the dominant ripples. In the geometry of the experiment here, the key issue is the spread of the x-ray
beam footprint along the x-direction because of the grazing-incidence geometry and thus we examine specifically
v(x). We model the incident x-ray beam as a Gaussian with projected standard deviation in the x-direction of
σx−ray = w/sinαi ∼= 2.2 mm. The local ripple velocity v(x) will be in the positive or negative y-direction (i.e. parallel
or antiparallel to the projected ion beam on the surface) and will be proportional to the local ion flux F (x):

v(x) = ŷ v0
F (x)

F (x0)
(16)

where v0 is the maximum velocity, occurring at the center of the ion beam x0. The shape of the ion flux for a given
focusing can be measured through the erosion rate at different points on the sample and will be treated here as
approximately Gaussian. With these approximations, and allowing the ion beam center to be potentially offset from
the x-ray beam center by a distance x0, the field-field correlation function is:

gripple1 (q, t) =
1√

2π σx−ray

∫
e

−x2

2 σ2
x−ray exp

[
iq0 v0 t e

−(x−x0)2

2σ2
ion

]
dx (17)

This function is evaluated numerically. In addition to evolution of the nonuniform ripple pattern, there will be
evolution of other surface features during bombardment. If the two are uncorrelated, the total field-field correlation
function is:

gtotal1 (t) = gnon−ripple1 (t) + gripple1 (t) (18)

As shown above, the component of the correlation not associated with ripple propagation gnon−ripple1 (t) can be modeled
with a compressed exponential decay. From the equations above, the homodyne g2(t) can then be calculated from the
Siegert relation g2(q, t) = 1 + |g1(q, t)|2. We use a reasonable value of σion = 2 mm for the given focus condition and
x0 = 0. The final results are not highly sensitive to the exact values of these parameters. Figure 11b shows the result
of a fit to the experimentally observed g2(t), from which we obtain a maximum ripple velocity of v0 ≈ 0.28 nm/s.
Note that the homodyne correlation functions are sensitive to the variation in ripple velocity, not the ripple velocity
itself. However, in this case the velocity is proportional to the ion flux and we can well model and measure that flux,
so that an estimate of velocity itself is obtained. Calculations using slightly different parameters for the X-ray and
ion beam sizes and offset suggest that the resulting uncertainty on v0 is of the order of 20%.

If ripple motion is driven by sputter erosion, then the velocity of ripples is1,40:

v(θ) = −F
n

[cosθ
dY (θ)

dθ
− Y (θ)sinθ] (19)

a b

FIG. 11: Oscillations in the XPCS correlation functions due to ripple motion during ion bombardment with an
inhomogeneous ion beam. a) Late-time TTCF at q = 0.11 nm−1. b) Resulting g2(∆t) function with fit curve based

on ripple velocity model described in text.
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a b

FIG. 12: “Waterfall” plots showing how speckles move with time during ripple motion across the surface. a)
Observed speckle motion during 45°bombardment at q = 0.11 nm−1 when using a focused ion beam. b) Speckle

motion from simulation using the aKS equation with a linear triangular velocity gradient function.

where F is the ion flux and n is the atomic number density. Using sputter yield values entirely from SRIM, this gives a
theoretical ripple velocity essentially equal to the value of 0.28 nm/s found experimentally from analysis of the TTCF
in the manuscript. However, as noted above, for 2 keV Ar+ bombardment of SiO2, there is some uncertainty about the
sputter yield and its variation with angle. Use of the Yamamura et al. sputter yield angular dependence calculated
with known angular parameters for Si gives near cancellation of the two terms in Eq. 19, resulting in a theoretical
prediction that is an order of magnitude smaller. Recently, Kumar et al.19 have used sputter yield values from the
SDTrimSP package, which is closely related to SRIM, to estimate a ripple velocity of v ≈ 0.1 nm/(1015 ions/cm2)
for 45° bombardment with 500 eV Ar+ ions. Without worrying for a moment about the difference in ion energies,
for the ion flux of 3 × 1014 used for 45° bombardment here, this gives a ripple velocity of approximately 0.033 nm/s,
which is much smaller than the measured value in this work. However the factor of four increase in ion energy for the
experiments here could potentially account for the difference. Clearly better measurements of the sputter yield are
necessary to assess the level of quantitative agreement that theory makes with the experimental measurement.

In addition to creating oscillations in the correlation functions, inhomogeneous velocities also cause movement of
speckles themselves. For a uniform gradient of velocity in a flow pattern:

v(r) = v0(r) + Γ· r (20)

with Γ being the velocity gradient tensor, Fuller et al. showed that the speckles move in reciprocal space as47:

dq

dt
= −ΓT·q (21)

For the case of ripples moving in the ±ŷ direction with a velocity gradient in the x-direction, this leads to speckle
motion in the qx direction with velocity dqx

dt = ±Γq0, where q0 is the ripple wavenumber.
In the GISAXS geometry, speckle motion in the qx-direction would appear primarily as the vertical movement of

speckles on the detector. For the experiments reported here, the inhomogeneous ripple velocity is not a uniform
gradient; instead, the x-ray footprint straddles the position of peak ion beam intensity so that the ripple velocity
has regions in which it is increasing with increasing x-position and regions in which it is decreasing. Based on this
analysis, when bombarding the surface with a highly focused ion beam, we therefore expect speckle motion to be
observed in the vertical direction on the detector, moving both up and down,. This is indeed observed as shown in
the “waterfall" plot of Fig. 12a. Using the slope of speckle motion in Fig. 12a, the value of Γ can be estimated from
dqx
dt = ∆qx

∆(pixelY ) × slope. This leads us to a velocity gradient of ∆v = Γ · ∆r ≈ 0.36 nm/s between two positions
∆r = 2mm apart. This is reasonable compared to the peak velocity derived above and the spread in ion intensity on
focusing.

There are two potential complications to this analysis. First, with an inhomogeneous ion beam, there will also
be speckle motion due to the gradient in erosion rate ∆ = δverosion/δx; this would lead to a speckle velocity qz∆.
However no consistent variation in speckle velocity with qz is observed, so we assume that this effect is not sufficiently



14

large to affect the results. A second potential complication in this analysis of speckle motion is that, since there is some
coarsening of the ripples during bombardment, the inhomogeneous ion beam will lead to a variation in both ripple
speed and ripple wavelength. However simulations show that spatial variation of the A coefficient in the aKS equation,
which drives ripple motion, is necessary and sufficient to cause speckle motion such as observed in the experiment.
Figure 12b shows the speckle motion from simulation on a 4096 × 512 lattice using the aKS equation with a triangle-
shaped dependence of A on position x, increasing linearly for half of the lattice and decreasing lineary for the other
half. This shape is motivated by the x-ray footprint straddling the peak of the ion flux. Thus the simulations results
provide strong evidence that it is inhomogeneous ripple motion causing the experimentally observed speckle motion
rather than inhomogeneous ripple wavelength.

VII. CONCLUSION AND PERSPECTIVE

Surface-sensitive coherent x-ray scattering has provided here a detailed new view of the evolving relationship
between kinetics and dynamics on a surface undergoing self-organized nanopatterning. At length scales comparable
to the initial ripple wavelength, the early stage correlations show that not only the average ripple growth, but also
the underlying dynamics, can be understood within the framework of linear stability theory. Due to the simple
exponential growth of fluctuations occuring in this regime, the surface exhibits a novel correlation behavior with
memory stretching back to the beginning of bombardment. Fitting the wavenumber-dependent amplification factor
requires the full wavenumber dependence of the Orchard viscous relaxation term. Moreover, the fit parameters coming
from the Orchard term are in good agreement with SRIM simulation and published estimates. For 45 ° bombardment,
the magnitude of the amplification factor is consistent with erosive effects dominating the surface evolution at low
wavenumbers, while at 65 ° bombardment, it appears that some other mechanism, perhaps stress, is needed.

Interestingly, for length scales comparable to the ripples, the characteristic time for the growth of fluctuations is
τ(q) = 1/2R(q) = 100 s. It’s seen in Fig. 8 that the time ∆t over which strong surface correlations persist does not
grow significantly beyond this value. Instead the dynamics transitions away from linear theory behavior at about this
time. Thus the characteristic time defined by the amplification factor is also closely related to the transition away from
linear stability theory dynamics. In the late stages of patterning, the underlying surface dynamics as measured by
the TTCF reaches a steady state. The saturation of the correlation time observed here makes an interesting contrast
with the case of normal-incidence ion beam nanopatterning of dots on GaSb, for which Bikondoa et al.12 observed a
continuous increase in correlation time throughout their experiment. Since simple models of nanopatterning exhibit
only a low-wavenumber instability producing poorly ordered surfaces, the case of GaSb may be more complex than
that of SiO2.

In the late stages, the long length-scale dynamics is driven by nonlinearities, producing a compressed exponential
decay of the g2(t) autocorrelation function. In this regime, surface fluctuations persist with a decay time decreasing
as q−1. However on short length-scales the dynamics appears to remain linear, and is consistent with ion-enhanced
viscous surface relaxation, as observed in the early stages. Simulations of the aKS equation reproduce this behavior
well.

The nanoscale dynamical information about surface memory and ripple motion provided here by coherent x-ray
scattering provides the possibility of a paradigm shift away from thinking only in terms of average kinetics. Increasing
coherent x-ray flux from new and upgraded sources will significantly enhance further applications of surface-sensitive
coherent scattering to investigate ion beam nanopatterning. The coherent flux available for the present experiments
limited the early-stage dynamics investigations to length scales comparable to the ripple wavelength and in the late
stage did not allow the full observation of the presumed transition to linear behavior with increasing wavenumber.
However, our recent real-time "non-coherent" x-ray studies of ion beam nanopatterning of Si have pointed out the
importance of examining higher wavenumber (i.e. shortor length-scale) behavior to distinguish between competing
theories of surface mechanisms driving patterning21. Such studies of dynamics on length scales 2-3 times shorter
should soon be possible. Interestingly, at the relatively long length scales studied here, the coherent contrast β does
not decrease significantly when the ion beam is turned on, showing that there is no ”missing" dynamics happening on
faster time scales. Nonetheless, picosecond-scale dynamics must exist on the length scale of the ion collision cascade
itself – approximately 1 nm. These would be quite revealing to examine if sufficient flux becomes available from
free-electron laser sources.
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