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We study a capacitor made of three monolayers of transition metal dichalcogenide (TMD)
separated by hexagonal Boron Nitride (hBN). We assume that the structure is symmetric with
respect to the central layer plane. The symmetry includes the contacts: if the central layer is
contacted by the negative electrode, both external layers are contacted by the positive one. As a
result a strong enough voltage V induces electron-hole dipoles (indirect excitons) pointing towards
one of the external layers. Antiparallel dipoles attract each other at large distances. Thus, the
dipoles alternate in the central plane forming a 2D antiferroelectric with negative binding energy
per dipole. The charging of a three-layer device is a first order transition, and we show that if V1 is
the critical voltage required to create a single electron-hole pair and charge this capacitor by e, the
macroscopic charge Qc = eSnc (S is the device area) enters the three-layer capacitor at a smaller
critical voltage Vc < V1. In other words, the differential capacitance C(V ) is infinite at V = Vc. We
also show that in a contact-less three-layer device, where the chemically different central layer has
lower conduction and valence bands, optical excitation creates indirect excitons which attract each
other, and therefore form antiferroelectric exciton droplets. Thus, the indirect exciton luminescence
is red shifted compared to a two-layer device.

In a standard parallel-plate capacitor, the capacitance
C is equal to the “geometric capacitance” Cg = εS/4πd
(in Gaussian units), where ε is the dielectric constant
of the medium separating the two plates, S is the area
of each plate, and d is the distance between them. The
expression C = Cg is correct when both electrodes are
made from a “perfect” metal, which by definition screens
the electric field with a vanishing screening radius. This
condition fails if both sides of the capacitor are made
of a layer of an intrinsic semiconductor and the applied
voltage generates in them an equal small density n of
a two-dimensional electron (2DEG) and hole (2DHG)
gas. For example, one can think about two separately
contacted monolayers of intrinsic MoSe2 separated by
a few hexagonal boron nitride (hBN) layers with total
width d. If in both the 2DEG and the 2DHG na2 � 1,
where a = ε~2/me2 is the carrier Bohr radius and
m is its effective mass, electrons and holes created in
opposite MoSe2 layers can be treated as classical point
like particles. It was shown1 that if in addition nd2 � 1,
the capacitor charge Q = enS grows with V as Q(V ) ∝
(V − V1)2/3, where

eV1 = Eg − Eex, (1)

is the critical voltage required to create a single isolated
electron-hole pair in an intrinsic semiconductor, Eg is
the bandgap of the semiconductor, and Eex is the
binding energy of the electron-hole pair. The differential
capacitance C(n) ≡ dQ/dV becomes much larger than
Cg and grows as 0.37Cg/(nd

2)1/2 with decreasing n. As

a function of V the capacitance C(V ) ∝ (V − V1)−1/3.
This anomalous capacitance growth near V1 is due

to the fact that each electron in the 2DEG is bound
to a hole in the 2DHG of the other layer, forming an
indirect exciton with a dipole moment ed. At nd2 �
1, parallel dipoles are separated from each other by a

FIG. 1. a) Cross section of a capacitor made of three MoSe2
monolayers of width w shown in gray. Each spacer of width
d0 has the same number of hBN layers, which are labeled.
The outer top and bottom layers are covered by hBN as well.
The capacitor charges via the creation of alternating up and
down pointing electron-hole dipoles (indirect excitons) shown
by arrows. The electrons in the central plane form a square
lattice with a lattice constant n−1/2. b) Top view of the
square lattice of alternating dipoles. White (black) circles
correspond to dipoles whose orientation points up (down).
Each orientation forms its own square sublattice.

large distance. Therefore, their repulsion is weak and
provides a weak resistance to further capacitor charging
leading to a diverging capacitance as V → V1 from
above. A similar anomalously large capacitance was
predicted when one layer is replaced by a metallic plane.1

A capacitance 40% larger than the geometrical value,
which may be a result of this phenomena, was reported in
YBCO/LAO/STO nanostructures.2 A similar effect was
predicted in graphene-metal capacitors placed in a strong
perpendicular magnetic field which localizes carriers.3 A
capacitance that is 20% larger than the geometrical one
was observed in this case.4

The strong capacitance anomaly in the two-layer
device is due to the discreteness of charge and their strong
correlations at small densities n. In this paper we explore
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similar correlation physics in three-layer devices with a
symmetry plane. For example, we may think about three
monolayers of intrinsic MoSe2 each of width w, separated
by the same number of hBN layers of total width d0
on each side, so that the structure is symmetric with
respect to the central layer midplane. The symmetry
is not only geometrical, but also includes the voltage
contacts: if the central layer is contacted by the negative
electrode, both external layers are contacted by the
positive electrode. Correspondingly, an equal number
of voltage induced indirect excitons, each with a dipole
moment ed = e(d0 + w), are directed from the central
plane to the top and to the bottom (see Fig. 1a). At large
distances along the plane, two antiparallel dipoles attract
each other, while at distances smaller than d they repel
each other. It is natural to assume that as a result the
dipoles form a two-dimensional antiferroelectric square
lattice. This lattice is similar to NaCl, where Na-like
and Cl-like sites are occupied by up and down pointing
dipoles, i.e. all nearest neighbor dipoles are antiparallel
(see Fig. 1b) . Electrons of the central plane form a
square lattice with the lattice constant n−1/2.

We show below that at low temperatures when the
applied voltage V grows, the attraction between indirect
excitons in the three-layer device causes a first order
phase transition (see Fig. 2). While at small V there are
no dipoles and the capacitor remains uncharged, at some
critical value V = Vc < V1 the whole lattice of alternating
dipoles emerges. This means that a macroscopic charge
Qc = eSnc, where nc = 0.13d−2 and S is the device area,
enters this capacitor. Thus, the differential capacitance
C has a δ-peak at V = Vc. At V > Vc, as n continues
to grow the capacitance slowly approaches its normal
geometric value 2Cg. The giant δ-peak of the capacitance
at V = Vc can be thought of as an enhanced version of
the anomaly C(V ) ∝ (V −V1)−1/3 near V = V1 predicted
for a two-layer capacitor.1 A similar δ-peak capacitance
was predicted in a 3D nanocrystal film gated by an ionic
liquid in which the ions penetrate between nanocrystals.5

For a quantitative description of the three-layer
capacitor we assume the density is such that na2 � 1 so
that we may treat all charges classically. The differential
capacitance of such a device can be determined from the
total electrostatic energy E of the system as

C−1 =
1

(eS)2
d2E

dn2
. (2)

The energy E of this system of classical charges can be
written as

E = enSV1 + nSU, (3)

where V1 is the voltage necessary to create a single
isolated electron-hole pair and is given by Eq. (1), while
U is the interaction energy per electron-hole pair in the
system. We can further separate the interaction energy
as U = Ue + Uh, where Ue is the contribution to U from
the electrons interacting with all other charges, while

FIG. 2. The dimensionless density nd2 as a function of
dimensionless voltage (V − V1)/(e/εd) for the three-layer
device shown in Fig. 1. The dashed curve shows the curve
n(V ) obtained from Eq. (10), while the solid red curve shows
the equilibrium n(V ) curve obtained using Maxwell’s rule. We
see that in equilibrium, the density jumps to a value nc at the
critical voltage Vc. Thus the capacitor charge experiences a
first order phase transition with growing V .

Uh is the contribution to U from the holes interacting
with all other charges. It should be clarified that in
Ue and Uh we neglect the interaction between electrons
and holes of the same pair. Assuming the electrons and
holes can be treated classically, the binding energy Eex
in Eq. (1) is given by e2/(εd). Here and below we use the
Coulomb potential with an effective dielectric constant
ε ' 5 which is close to the dielectric constant of hBN.
This effective medium potential was used in previous
studies of electron-hole interactions in bilayer TMD
heterostructures separated by several layers of hBN,6 and
is in contrast with the Rytova-Keldysh potential used for
a single TMD layer in air. Its use for our system can
be justified because the distance between neighboring

dipoles n
−1/2
c is much larger than the distance 2w at

which the electric field lines spread over the entire
structure. Here the factor 2 comes from the ratio of
the dielectric constant of MoSe2 and hBN, and w is the
thickness of a monolayer of MoSe2.

Each hole in an external plane pairs with an electron in
the central plane in such a way that the orientation of the
dipoles alternates between nearest neighbor sites of the
electrons in the central plane square lattice, as shown in
Fig. 1(b). Let us consider the electron-hole pair located
at the central white site in Fig. 1(b). For the electron at
the origin, we can write

Ue =
1

2

∑
α6=0

(
e2

εrα
− e2

ε
√
r2α + d2

)
, (4)

where α is an index labeling the electron lattice sites,
α = 0 is defined as the origin, and rα is the distance
between site α and the origin. The factor 1/2 accounts
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for the double counting when computing the interaction
energy U . For the hole that is also located at the origin,
we can use the fact that the electron and hole form a
dipole with a particular orientation (in this case upwards)
to separate Uh as Uh = Uh1 + Uh2. Here

Uh1 =
1

2

∑◦

α6=0

(
e2

εrα
− e2

ε
√
r2α + d2

)
, (5)

is the contribution from the interaction of the hole with
dipoles with the same orientation as the origin dipole
(white sites), while

Uh2 =
1

2

∑•

α6=0

(
e2

ε
√
r2α + 4d2

− e2

ε
√
r2α + d2

)
, (6)

is the contribution from the interaction of the hole with
dipoles of the opposite orientation(black sites). The
symbols next to the summation indicate that the sums
are restricted to the corresponding sublattice shown in
Fig. 1(b). Upon inspection, it is clear that Eqs. (4) and
(5) are similar so that we can write U as

U =
e2n1/2

2ε

(
g(nd2) +

1√
2
g(nd2/2) + h(nd2)

)
, (7)

where

g(x) = 4

∞∑
i=1

∞∑
j=0

(
1√

i2 + j2
− 1√

i2 + j2 + x

)
, (8)

and

h(x) = 4

∞∑
i=1

∞∑•

j=0

(
1√

i2 + j2 + 4x
− 1√

i2 + j2 + x

)
,

(9)
and we have rewritten the site index α using the integers
i and j of the electron lattice coordinates in units of
n−1/2. For the summation over the black sublattice in
Eq. (9), we restrict ourselves to values of i and j such
that i + j is odd. Both summations are convergent for
any x. The results of this summation are shown by the
red curve in Fig. 3 as a plot of U/e2/(εd) vs nd2. We
see that the interaction energy is negative for a finite
range of densities due to the attraction between nearest
neighbor dipoles with opposite orientation. At ncd

2 =
0.13 it reaches a minimum value of U = −0.018e2/εd.
In order to better understand this, we compare this
result to the energy obtained from only the nearest
neighbor sites of each sublattice, shown by the labeled
UNN curve (blue curve) in Fig. 3. We see that for
small nd2 the energy is almost completely determined by
these nearest neighbors, with significant deviation only
appearing beyond the minimum of U .

Once the energy E is found, we can find the voltage as

V = V1 +
1

e

d(nU)

dn
. (10)

FIG. 3. Dimensionless interaction energy U/e2/(εd) vs the
density nd2. The red curve is obtained from Eq. (7), while the
blue curve labeled UNN is an approximation which only takes
into account the nearest neighbor sites of each sublattice.

Our main result is shown in Fig. 2 as a plot of the
density nd2 as a function of the voltage (V −V1)/(e/εd).
The dashed curve is obtained from Eq. (10). Most
noticeable is that there is a range in which there are
three densities for each voltage: a lower branch along
n = 0, a middle branch, and an upper branch. Within
the middle branch, the capacitance defined by Eq. (2) is
negative and this region is thermodynamically unstable
and is inaccessible. Thus in experiment, we do not expect
the density to change continuously along the dashed
curve, but instead along the curve shown in red where
the density jumps to a value

nc = 0.13d−2, (11)

at a critical voltage

Vc = V1 − 0.018
e

εd
. (12)

Here Vc is determined by Maxwell area rule7∫ nc

0

n(V )dV = 0, (13)

where the integral is taken along the dashed curve in
Fig. 2. At V = Vc the two regions lying between the
vertical red line and the dashed curve have equal area.
This rule is well known for the van der Waals liquid-gas
pressure-volume isotherm.8 It is worth noting that nc
obtained from Maxwell’s area rule is the same nc at which
U reaches its minimum value. As the density abruptly
jumps, there is a δ-peak in the capacitance at V = Vc.
For V ≥ Vc we can write the capacitance as

C(V ) = eSncδ(V − Vc) + Cu(V ), (14)

where the non-singular capacitance Cu(V ) is obtained by
differentiating the upper branch of the n(V ) curve shown
in Fig. 2 with respect to V and is shown in Fig. 4. As V
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FIG. 4. The dimensionless capacitance Cu(V )/(2Cg) as
a function of the dimensionless voltage (V − Vc)/(e/εd)
corresponding to the upper branch of the red (solid) curve
shown in Fig. 2. The inset shows Cu(V )/(2Cg) over a 19 times
larger range of (V − Vc)/(e/εd).

approaches Vc from above, Cu(V ) grows as (V − Vc +
0.01e/εd)−1/2, and attains a very large maximum value
Cu(Vc) ' 30Cg, where Cg is the geometrical capacitance
of the capacitor formed by either the central and upper
planes or the central and lower planes. At larger voltages
V � e/εd it approaches 2Cg corresponding to the
geometric value of the three-layer system as shown in
the inset of Fig. 4.

So far we have been dealing with very low temperatures
and have ignored disorder. Temperature and disorder
smear the δ-function as well as the low voltage peak
of the non-singular large voltage tail of Cu(V ). When
the width of the δ-function reaches V1 − Vc, the two
peaks in the capacitance merge to form a single peak.
Because this happens at Cu ' 30Cg, a very large
peak of the capacitance (much larger than in the case
of two layers) survives in the presence of disorder or
higher temperatures. It is easy to imagine that the
measured capacitance peak is 5-10 times larger than the
geometrical value. The reason for the early merging
of the δ-function with the non-singular peak is that
the optimal distance between electrons in the central

plane ∼ n
−1/2
c ' 3d is relatively large and makes both

the optimal energy and the voltage scale (V1 − Vc) of
the dipole configuration in Fig. 2 relatively small. We
can estimate the scale of temperature at which thermal
fluctuations destroy the effect from the minimum in the
interaction energy U = −0.018e2/εd shown in Fig. 3. For
ε = 5 and d ' 1 nm for a three layer thick hBN spacer, we
find at T ' 60 K thermal fluctuations begin to dominate.

We have also ignored quantum effects. Typically the
localization length ξ of electrons in the central plane
can be comparable with d, so that quantum effects
may modify the energy of the three-layer system at
large enough n even at zero temperature and disorder.6

However, even in such a case, at small n the energy

FIG. 5. Schematic drawing of a TMD monolayer gated on
both sides by an ionic liquid. A positive electrode immersed
in the ionic liquid forces a concentration n of excessive
positive ions to the surface of the TMD monolayer, while
simultaneously attracting an equal concentration of excessive
negative ions to the electrode surface (background ions of
the net neutral ionic liquid are not shown). Each excessive
positive ion binds an electron in the TMD, forming a dipole
with arm length (D + w)/2. Similar to Fig. 1, the oppositely
oriented dipoles attract each other and the electrons arrange
in a square lattice of lattice constant n−1/2.

FIG. 6. a) Band alignment in MoSe2/WSe2 bilayer. b)
Schematic of a trilayer WSe2/MoSe2/WSe2 device for optical
studies of spatially interacting indirect excitons. When the
device is illuminated at low temperatures, the type II band
alignment of neighboring WSe2/MoSe2 monolayers (see inset)
allows the formation of indirect excitons consisting of an
electron in MoSe2 and a hole in WSe2. Excitons of opposite
polarity attract each other and form a crystal with alternating
dipoles with concentration nc shown in Fig. 1.

of the electron-hole dipoles (excitons) is dominated by
their dipole-dipole attraction and charging occurs by
the first order transition. Quantum mechanics can
still somewhat reduce nc and (V1 − Vc). Quantum
Monte-Carlo simulations similar to those in Refs. [9–11]
are necessary to address these changes quantitatively.

Devices similar to those shown in Figs. 1 and 5 can
be also made from graphene monolayers, however in this
case the classical model leading to attraction between
indirect excitons becomes useful only in strong magnetic
fields such that nl2B = n~c/eB � 1, where lB is the
magnetic length. In devices with d � lB this condition
may substantially reduce nc.

Three-layer devices made of MoSe2 can face difficulties
in making separate contacts to all three layers.
Therefore, a similar device made of a single MoSe2
monolayer gated from both sides by an ionic liquid can
be more attractive. In this case the dipoles are formed
by electrons of the MoSe2 monolayer bound to excessive
positive ions, which stick to the monolayer in alternating
positions above and below it (see Fig. 5). At small
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electron densities such a device is quantitatively similar
to the three layer device described with a dipole moment
e(D + w)/2, where D is the ionic diameter.

Above we talked about the capacitance of three-layer
devices. Three-layer devices can be also used for
optical studies of spatially indirect interacting excitons.
It has been shown12,13 that in bilayer MoSe2/WSe2
structures, the type II band alignment of the MoSe2
and WSe2 monolayers allows the formation of indirect
excitons, in which an electron in MoSe2 binds to a hole
in WSe2 (see Fig.6a). Because of the weak overlap
of the electron and hole wavefunctions, these excitons
decay slowly enough to form the ground state which
minimizes their repulsion. In the photoluminescence
experiments on the MoSe2/WSe2 device of Ref. [12], it
was observed that the indirect exciton luminescence line
blueshifts as the intensity of the laser increases due
to the dipole-dipole repulsion of the indirect excitons.
In a trilayer device,14,15 such as WSe2/MoSe2/WSe2
(and similar devices with symmetric hBN spacers), we
instead predict an attractive interaction between indirect

excitons formed from opposite WSe2 layers (see Fig. 6b).
At low illumination intensities these excitons condense
into droplets of density nc which do not interact with
each other. These droplets are different from the exciton
droplets in 3D semiconductors proposed by Keldysh and
Kozlov.16 Those droplets are formed by the van der
Waals attraction between excitons and occurs when the
excitons are at distances of order a. Our droplets are
the result of the electrostatic dipole-dipole interaction
and the excitons are separated by the larger than a

distance n
−1/2
c set by our classical theory. In such a

device, the luminescence peak should be redshifted.17

The luminescence line of excitons in these droplets should
not change with the laser intensity until the intensity
becomes so large that the droplets fill the entire sample.
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S.-H. Bae, V. O. Özçelik, R. Grassi, J. Chae, S.-W. Huang,
et al., npj 2D Mater. Appl. 2, 30 (2018).

16 L. V. Keldysh and A. N. Kozlov, Sov. Phys. JETP 27, 521
(1968).

17 We can extrapolate the classical energy of a crystal
of alternating dipoles to estimate the redshift as
0.02e2/(εd) ∼ 6 meV, where we have used ε ' 7 and d = 7
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