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Quantum fluctuations in vacuum can exert a dissipative force on moving objects, which is known
as Casimir friction. Especially, a rotating particle in the vacuum will eventually slow down due to the
dissipative Casimir friction. Here, we identify a dissipationless force by examining a rotating particle
near a bi-isotropic media that generally breaks parity symmetry or/and time-reversal symmetry. The
direction of the dissipationless vacuum force is always parallel with the rotating axis of the particle.
We therefore call this dissipationless vacuum force the axial Casimir force.

I. INTRODUCTION

Originating from quantum fluctuations, the Casimir ef-
fect describes the phenomenon where an attractive force
emerges between two non-contacted, uncharged plates in
vacuum [1]. The Casimir effect tells us that vacuum is
not empty, but full of fluctuations with photons popping
in and out. In fact, there are many other effects that can
manifest the fluctuating nature of vacuum. For example,
quantum fluctuations can exert a torque on bodies that
lack rotational symmetry, called Casimir torque [2, 3]. If
some discrete symmetries are broken in materials, quan-
tum fluctuation can transmit symmetry breaking effect
to nearby atoms and perturbs the atom’s spectra, namely
the quantum atmosphere effect [4]. In recent years, an-
other interesting phenomenon, called Casimir friction,
was discovered. Here, objects moving relative to each
other can feel a dissipative viscous force due to the ex-
change of Doppler-shifted photons [5]. Perhaps counter-
intuitively, a spinning object in vacuum will eventually
slow down due to Casimir friction [6]. In recent years,
theorists have proposed many models that feature the
Casimir friction [7], and some of them are closely related
to experimental phenomena [8, 9].
However, to our best knowledge, all the proposed

Casimir friction phenomena (motion-induced vacuum
forces) are dissipative. A natural question then arises: is
it possible to find a dissipationless motion-induced vac-
uum force? This question is partially motivated by the
recent progress in quantum Hall physics, where dissipa-
tionless Hall viscosity emerges as a new topological sig-
nature [10]. We address this question in this paper by
examining a rotating particle near a bi-isotropic material
(BIM) plate. Existing commonly in nature, BIMs include
materials that break time-reversal symmetry (TRS) or
parity symmetry (PS) or both (PTS) [11]. In recent
years, the widely studied Chern insulators [12] and chiral
metamaterials [13] can be classified as bi-isotropic mate-
rials breaking TRS and PS, respectively.
We show that, in addition to the dissipative Casimir

friction, a dissipationless force can emerge for a rotating

particle near a PS or TS (or both) breaking BIMs. Since
the dissipationless rotation-induced force is always paral-
lel to the particle’s rotation axis and changes sign when
its spinning direction is reversed, we, therefore, call it
the axial Casimir force (ACF). Two cases are of particu-
lar interest: (i) when the rotation axis is parallel to the
BIM plate, the axial Casimir force is lateral (L-ACF);
(ii) when the rotation axis is perpendicular to the BIM
plate, the axial Casimir force is vertical (V-ACF) [Fig. 1].
We calculate ACF both numerically and analytically, and
show that TS breaking is crucial for V-ACF, whereas, by
contrast, PS breaking is important for L-ACF. Let us ob-
serve that very recent experiments have already achieved
a superfast rotation of nanoparticles, making the ACF
within the experimental reach [14].

z

x

x

x

z

z

BIM

(a) (b)

FIG. 1. Schematic of the structure. d is the distance from the
center of the rotating object to the BIM plane. Ω represents
the rotating frequency of the object. n̂ is the unit vector in
the rotating direction. θ is the angle between n̂ and the x
direction. (a) shows the general case, while (b) shows two
special rotating directions, perpendicular to the BIM plane
(top) and parallel with the BIM plane (bottom).

II. MODEL

We consider a spherical, isotropic particle rotating
with frequency Ω located at the position r0 = (0, 0, d)
above a BIM plate at z = 0 plane [Figure 1 (a)]. With-
out loss of generality, we assume that the rotating axis
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lies in the x-z plane and forms a θ angle with x axis. In
this paper, we study the dissipationless ACF along the
rotating axis n̂. Particularly, when θ = 0, the ACF lies in
the x-direction, becoming a L-ACF; when θ = π/2, the
ACF is parallel with z-direction, leading to the V-ACF.

We assume that the particle is small enough so that
it can be safely described by polarization function α(ω),
for instance a small metallic ball. (In other words, the
size of the particle R is much smaller that the distance
d.) The electromagnetic force that exerts on an electric
dipole in the direction n̂ can be evaluated via the for-
mula Fn = pi(t)∂n̂Ei(r0, t) (i ∈ {x, y, z}), where pi(t)
and Ei(r0, t) are, respectively, the instantaneous electric
dipole moment at time t and the electric field at the par-
ticle. (Einstein summation rule is implied through out
this paper.) Note that we have omitted any magnetic
dipole contribution, which is much smaller than the elec-
tric dipole contribution [9]. We will further elaborate this
point later in the paper. Although the average electric
dipole and electric field are zero in vacuum, quantum fluc-
tuation can still induce a instantaneous dipole, therefore
exert a force on the particle. (This is also the mechanism
of Wan der Vaals force.) There are two kinds of fluctua-
tions that contribute to the ACF: (i) fluctuations of the
dipole moment of the particle, and (ii) fluctuations of the
field caused by the electromagnetic response of the BIM
plate. Therefore, the total ACF includes two terms, i.e.,

Fn = 〈pfli (t)∂n̂E
ind
i (r0, t)〉+ 〈pindi (t)∂n̂E

fl
i (r0, t)〉, (1)

where 〈· · · 〉 stands for the average over fluctuations in

vacuum. In this formula p
fl(ind)
i and E

fl(ind)
i are, re-

spectively, the fluctuating (induced) electric dipole mo-
ment and electric field at the particle. (Note that the
cross terms 〈pfl∂n̂Efl〉 and 〈pind∂n̂Eind〉 vanish in vac-
uum because dipole moment and electric field arise from
different sources.) When the particle is not rotating, the
force in z-direction is the usual Casimir-Polder force. As
soon as the particle rotates, ACF will emerge, have an
additional component in z-direction.

Applying Fourier transformation, one can write down
the induced field (dipole moment) in terms of the fluc-
tuation of the dipole moment (electric field) in ω−space,

yielding Eind
i (r, ω) = Gij(r, r0, ω)p

fl
j (ω) and pindi (ω) =

αij(ω)E
fl
j (r0, ω), where Gij and αij represent Green’s

tensor and polarization tensor, respectively. Substitute
the above equations into Eqn. (1), and one can obtain

Fn̂ =

∫ ∞

−∞

dωdω′

4π2
e−i(ω+ω′)t

{

〈pfli pflj ∂n̂Gij(r0, r0, ω
′)〉

+ 〈αij(ω)∂n̂E
fl
i (r0, ω

′)Efl
j (r0, ω)〉

}

, (2)

where one should notice that the derivative only
acts on the first component of Green’s tensor, i.e.,
∂n̂Gij(r0, r0, ω) ≡ ∂n̂Gij(r, r0, ω)|r=r0 . We emphasize
that, in Eqn. (2), pi and αij are the effective electric

dipole moment and electric polarizability in the labora-
tory frame, respectively. However, the electric dipole and
polarizability are defined in the rotating frame of the
particle. Therefore, one needs to identify the transfor-
mation from electric dipole or polarizability (p̃i or α̃ij)
in the rotating frame to those in the laboratory frame
[6, 15]: pi(ω) = Λ+

ij p̃j(ω+) + Λ0
ij p̃j(ω) + Λ−

ij p̃j(ω−) and

αij(ω) = Γ+
ijklα̃kl(ω+)+Γ0

ijklα̃kl(ω)+Γ−
ijkl α̃kl(ω−), where

ω± = ω ± Ω is the Doppler-shifted frequency due to ro-
tation. Here, Λ0, Λ± and Γ0, Γ± represent the transfor-
mation tensor for dipole moment and polarizability. (See
Appendix A.)
By applying fluctuation-dissipation theorem (FDT) to

Eqn. (2), we obtain a compact expression of axial

Casimir force:

Fn(Ω) = Fx(Ω) cos
2 θ + Fz(Ω) sin

2 θ. (3)

In this formula, θ denotes the rotating direction of the
particle [Fig. 1(a)], Fx/z denotes the ACF in x/z direc-
tion with expressions:

Fx/z(Ω) =
~

π

∫ ∞

0

dω Im
{

Σx/z

}

×

[Imα(ω+)N(ω+)− Imα(ω−)N(ω−)] .

(4)

Here, the differential Green’s functions Σx/z are deter-
mined by the surface Green’s tensor Gij of the BIM plate
via Σx = ∂xGyz − ∂xGzy and Σz = ∂zGxy − ∂zGyx;
N(ω±) ≡ n(T1, ω±) − n(T2, ω) is defined by the dif-
ference of Bose-Einstein distribution, where T1 and T2

are temperatures at the rotating particle and the BIM
plate, respectively. Note that, in deriving the above for-
mula, we have used the isotropic assumption of the elec-
tric polarizability of the particle, i.e., α̃ij(ω) = α̃(ω)δij
(i, j ∈ {x, y, z}). Eqns. (3) and (4) are the main results
of this paper. We stress that the ACF is different from
the usual Casimir-Polder force, because ACF exists only
when the particle is rotating with a finite speed. We shall
compare ACF with the usual Casimir-Polder force later
in this paper and in the appendix.

III. CRITERION OF ACF - TRS/PS BREAKING

In this part, we demonstrate that the emergence of an
ACF requires TRS/PS breaking of the underlying BIM
plate. A BIM plate can generally be described by the
constitutive relations D = ǫE + (χ − iκ)

√
ǫ0µ0H and

B = µH+(χ+iκ)
√
ǫ0µ0E, where ǫ (ǫ0) and µ (µ0) are, re-

spectively, the permittivity and permeability of the BIM
plate (vacuum). The essence of BIMs is encoded in the
magnetoelectric parameters χ and κ, which characterize
the non-reciprocity and chirality of the system, respec-
tively. BIM with χ 6= 0 and κ = 0 has been called Tel-
legen medium, where TRS is broken. By contrast, BIM
with χ = 0 and κ 6= 0 has been labeled Pasteur medium,
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TABLE I. Classification of BIMs [11] with axial Casimir force.

non-reciprocity chirality classification axial Casimir force
χ = 0 κ = 0 simple BIM Fn = 0
χ = 0 κ 6= 0 Pasteur Fx 6= 0; Fz = 0
χ 6= 0 κ = 0 Tellegen Fx = 0; Fz 6= 0
χ 6= 0 κ 6= 0 general BIM Fx 6= 0; Fz 6= 0

where PS is violated. Materials with χ = 0 and κ = 0
is usually called simple isotropic medium, whereas, by
contrast, both χ 6= 0 and κ 6= 0 represent more general
BIMs. [See Table I]

With the constitutive relations of BIMs, one can study
the electromagnetic response of BIMs. To obtain the
ACF, one needs the expression of Green’s tensor of BIM
plate. In general, the surface Green’s tensor G can be
expressed in terms of Fresnel coefficients for reflection at
the BIM plate [16], i.e.,

G(r, r′, ω) =
i

2π

∫

d2kρ
eikρ·(r−r

′)+ikz(z+z′)

kz
rµνMµν ,

(5)

where kρ = (kx, ky) and kz =
√

ω2 − k2ρ represent the

wave vectors in x-y plane and z-direction, respectively;
rµν = Eref

µ /Ein
ν (µ, ν ∈ {s, p}) stands for the reflection

coefficient from ν-polarized photons to µ-polarized pho-
tons; the superscript in (ref ) simply denotes incident
(reflection) photons. The explicit expressions of the ma-
trices Mµν are given in Appendix C. In contrast to com-
mon PTS materials, the cross reflection coefficients rsp
and rps are usually nonzero for BIMs due to the fact that
magnetoelectric effect can mix s- and p- polarizations in
general.

Based on the constitutive relations and boundary con-
ditions, one can obtain the cross-reflection coefficients
[11]

rsp(rps) =
2η0ηc0

∆
[±i(c+ − c−) cosβ − (c+ + c−) sinβ] .

(6)

Here, η =
√

µ/ǫ (η0 =
√

µ0/ǫ0) represents the
impedance of the BIM (vacuum); c0 = cos θ0, where θ0
is the incident angle of an EM wave; c± = cos θ± =
√

k2± − k2ρ/k±, where θ± stand for refractive angles and

k± = k(cosβ ± κr); sinβ = χr = χ(
√
ǫ0µ0/

√
ǫµ)

and κr = κ(
√
ǫ0µ0/

√
ǫµ) are the relative magnetoelec-

tric parameters; ∆ = (η20 + η2)c0(c+ + c−) + 2η0η(c
2
0 +

c+c−) cosβ. For lossless media, k± ≥ 0 implies the rela-
tionship χ2

r + κ2
r ≤ 1 [17].

The key element that induces the ACF is the differen-
tial Green’s functions Σx/z, which can be expressed by

the cross-reflection coefficients through

Σx/z(ω) =
ω

2π

∫ ∞

−∞
d2kρ e

2i
√

w2−k2
ρ
dgx/z(rsp ∓ rps).

(7)

Here, gx = k2x/
√

ω2 − k2ρ and gz =
√

ω2 − k2ρ. Substitut-

ing Eqn. (7) into Eqn. (3) and (4), one can immediately
obtain the ACF Fn in an arbitrary direction n̂.

(a) (b)

(c) (d)

FIG. 2. Numerical calculation of ACF vs. angle θ, rotating
frequency Ω and distance d. Figure (a) shows the normalized
ACF |Fn|norm = |Fn/(Fn)max| at different angles. Red, blue,
and black curves correspond to Pasteur BIM (χ = 0, κ = 1),
Tellegen BIM (χ = 1, κ = 0), and general BIM (χ = 0.1,
κ = 0.5), respectively. Other parameters are set as: d = 12R,
T = 0.01R−1

0 , Ω = 10−9R−1

0 , ωp = 0.1R−1

0 , τ−1

0 = 0.01R−1

0 .
Figure (b) gives distance-dependence of ACF. Note that the
force values are normalized by F0 = ~c/R2. The inset of (c)
gives the zoomed-in ACF at θ = π/2. Parameters are set as:
κ = −0.5, χ = 0.1, and other parameters are the same as
those in (a). Figure (c) shows the frequency-dependence of
ACF. Red, blue, black curves correspond to angle θ = 0, θ =
π/2, θ = π/4, respectively. Parameters are set as: d = 12R0,
and other parameters are the same as those in (b). Figure (d)
corresponds to the temperature-dependence of ACF at angles
θ = 0, θ = π/2, and θ = π/4, respectively.

Based on the above formulas, we give the criterion for
the emergence of ACF in the following:
(i) For simple isotropic materials (with PS and TRS),
χ = κ = 0, and one can find Σx = Σz = 0. Consequently,
both Fx and Fz vanish, leading to the vanishing of ACF
in any direction.
(ii) For Pasteur materials (with TRS but without PS),
χ = 0 and κ 6= 0 lead to Σz = 0 and Σx 6= 0. As a result,
Fx 6= 0 and Fz = 0 indicate that the ACF only vanishes
in the z-direction.
(iii) For Tellegen materials (with PS but without TRS),
κ = 0 but χ 6= 0, and one can show Σx = 0 whereas
Σz 6= 0, which results in Fx = 0 and Fz 6= 0. In this case,
the ACF only vanishes in the x-direction.
(iv) For more general cases (without PS and TRS) where
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χ 6= 0 and κ 6= 0, Σx 6= 0 and Σz 6= 0, ACF can persist
in any direction.

Based on the above analysis, ACF is a general phe-
nomenon that exists in many materials, including topo-
logical materials and chiral materials. [See Table I.]

IV. NUMERICAL CALCULATION AND
ANALYTICAL LIMIT

We calculate the ACF numerically by considering a
rotating particle described by Drude model, where the

electric permittivity is modeled by ǫ = ǫb+
ω2

p

ω(ω+iτ−1) . In

the formula, ǫb is background static electric permittivity,
τ is the scattering time of electrons, and ωp is called as
plasmonic frequency. The polarizability can be obtained
from ǫ, and reads as α(ω) = 4πR3

0ǫ0
ǫ−ǫ0
ǫ+2ǫ0

, where R0 is
the radius of the particle, and ǫ0 is the vacuum permit-
tivity. For simplicity, we set η = η0 in the calculation.
The numerical results are summarized in Figure 2. In
Figure 2 (a), the angle-dependent ACF is shown, where
L-ACF Fx exists at κ 6= 0, whereas V-ACF Fz exists at
χ 6= 0. In general case where χ 6= 0 and κ 6= 0, both
Fx and Fz exist. Figure 2 (b) shows the distance de-
pendence of ACF at different angles. One can see that
the decaying behavior of ACF dependents on the angle θ.
At θ = 0, the L-ACF is two-orders smaller than V-ACF
(inset of figure 2(b)). Figure 2 (c) gives the rotating-
frequency dependence of ACF, from which one can see
the ACF increases linearly with Ω. In figure 2 (d), the
temperature-dependence of ACF is shown, where ACF
increase with T non-linearly at low temperature, but lin-
early at high temperature.

We analytically obtain ACF in the low-frequency limit
ωd → 0, which can be fulfilled at low temperatures due
to the differential distribution function N(T, ω). For
Tellegen materials, one has χ = 1 and κ = 0 and
rsp = rps = −1, which leads to Σx = 0 and Im {Σz} =
−ω/2d3. By contrast, for Pasteur materials, χ = 0 and
κ = 1 results in rsp = −rps = −2i

√
1− s2/(2

√
1− s2 +√

4− s2), and leads to Σz = 0 and Im {Σx} = −4ω4/3+
3πω5d/4. Further, if ω ≪ ωp, one can have the
imaginary polarizability Im{α} ≈ −12πω/(ω2

pτ). Un-
der realistic conditions, when the rotating frequency is
much smaller than plasmonic frequency, one can approx-
imately obtain Im{α(ω+)}N(ω+) − Im{α(ω−)}N(ω−) ≈
2Ω Im{α}∂ωN(ω,T)+Ω3 Im{∂ωα}

[

∂2
ωN(ω,T)

]

assuming
T1 = T2 = T . By substituting these approximations into
the ACF expression Eqn. (4), one can readily obtain the

analytical expressions of V-ACF and L-ACF:

Fz = − ~R3
0

ω2
pτd

3

[

4π2T 2Ω+ Ω3
]

(8)

Fx = −16~R3
0

ω2
pτ

[

240ζ(5)T 5Ω + 16ζ(3)T 3Ω3

+
2T

5
Ω5 +

Sign[Ω]

30
Ω6

]

(9)

Note that we set parameters χ → 1 (χ → 0) and κ → 0
(κ → 1) in obtaining analytical result of laterally (ver-
tically) ACF. In figure 3 we compare our analytical re-
sult with numerical results showing consistence at low
temperature. From the analytical expressions, one can
understand why ACF depends on rotating frequency lin-
early and non-linearly on temperature at low tempera-
tures.

(a) (b)

FIG. 3. Comparison between Numerical calculation and ana-
lytical calculation of ACF. Figure (a) and (b) show the L-ACF
and V-ACF, where analytical result (red curve) and numeri-
cal result (blue curve) are consistent at low temperature. The
distance is set d = 5R0, while other parameters are the same
as that in Figure 2.

V. MAGNETIC CONTRIBUTION

Our previous calculation is based on the dipolar ap-
proximation, i.e., the size of the particle is much smaller
than the cut-off wave length of photons 1/ωp and the dis-
tance d. For a large object, the dipolar approximation
is not valid, and one should use the scattering-matrix
method to calculate the Casimir force [18]. Notice that,
the magnetic contribution is neglected in our previous
calculation. The magnetic contribution can be easily
included by replacing the electric polarization α with
the magnetic polarization β. Also, the electric Green’s
tensors Gij should be replaced by the magnetic Green’s
tensors Hij which can be easily obtained from the elec-
tric counterparts by swapping polarization indices, i.e.
Hij = Gij(s ↔ p).

We calculate the magnetic polarizability, and show
that, for small particles, the magnetic contribution is
vanishingly small. The magnetic polarizability for a
spherical particle with radius R is given by β(ω) =
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−R3

[

1
2 − 3

2(ǫ−1)ω2R2 + 3

2
√

(ǫ−1)ωR
cot(

√
ǫ− 1ωR)

]

[9].

With the magnetic polarizability and magnetic Green’s
tensor, one can calculate the magnetic contribution
of the ACF. In figure 4, we numerically calculated
the ratio between the electric contribution and the
magnetic contribution. Our result shows that the
magnetic contribution to the ACF is vanishingly small
if ωPR ≪ 1. In fact, the small magnetic contribution
can be understood analytically. In the small particle
limit (ωp R ≪ 1), the magnetic polarizability becomes
β(ω) → −R3(ωpR)2/30, and the magnetic and the
electric polarization ratio β(ω)/α(ω) ≪ 1. This is quite
different from the large metallic sphere case (ωPR ≫ 1),
where magnetic fluctuations contribute the same order
as the electric counterpart [19, 20].

（a） （b）

FIG. 4. Magnetic contribution to the ACF. Red (blue) curve
represents the force ratio between the electric L-ACF (V-
ACF) and magnetic L-ACF (V-ACF). Figure (a) and (b) show
how the force ratio scales with the distance d and the parti-
cle size R, respectively. Parameters are chosen as κ = 0.5,
χ = 0.1, R = R0 in (a), and d = 6R0 in (b).

VI. DISCUSSION AND COMMENTS

(1) The ACF is parallel with rotating axis, and it does
not exert torque on the rotating particle. Consequently,
the ACF can not induce the heat transfer between the
particle and the BIM plate. Hence, we again illustrate
the dissipationless nature of ACF [6].
(2) Let’s compare the ACF with the usual Casimir-

Polder force. The usual Casimir-Polder force exists only
in z-direction, and depends on rss and rpp. In the Ap-
pendix C, we show that the usual Casimir-Polder force
can be made as small as possible and even vanished in cer-
tain cases. Also, from equation (8), one can see that V-
ACF decays slower that the usual Casimir force (∝ 1/d5).
(3) In this paper, the non-equilibrium effects and spa-

tial dispersion effects are ignored in the calculation,
which could become important in some circumstances
[21]. The non-inertial effect is also neglected in our ap-
proach, which may be interesting for further study [22].
(4) Quantum levitation may be possible by using V-

ACF. For example, a particle with radius R0 = 10 nm

and density ρ0 = 0.1 g cm−3 has gravitational force FG ≈
4× 10−21 N. If it rotates above a BIM plate, the V-ACF
can reach Fn ≈ 10FG for parameters Ω = 10−5R−1

0 ≈
100 GHz, d = 3R0 = 30 nm, ωp = 0.1R−1

0 ≈ 1 eV, τ−1 =
200 meV, T = 0.03R−1

0 ≈ 500 K, χ = 1, and κ = 0. Note
that the very recent experiments have already achieved
a superfast rotation of nanoparticles, making the ACF
within the experimental reach [14].

SUMMARY

We have identified the first dissipationless rotation-
induced force in vacuum, named axial Casimir force.
The axial Casimir force emerges when a particle rotat-
ing above a plate that has either time-reversal symmetry
breaking or parity-symmetry breaking. Various topolog-
ical materials and chiral materials are promising candi-
dates to observe the axial Casimir force. Due to V-ACF,
quantum levitation is also possible for a particle rotating
nearby a BIM plate. Furthermore, the axial Casimir force
has a slower scaling law with distance, and can dominate
over the common Casimir-Polder force in certain cases.
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Appendix A: Derivation of L-ACF

In this section, we calculate the L-ACF in detail.
The L-ACF is contributed from two pieces including the
dipole fluctuation and the field fluctuation. We calculate
them separately.
Dipole fluctuation distribution—We can compute the

first term of Eqn. (2):

Fx,p =

∫ ∞

∞

dωdω′

4π2
e−i(ω+ω′)t〈pi(ω)∂xEi(r0, ω

′)〉

=

∫ ∞

∞

dωdω′

4π2
e−i(ω+ω′)t

×〈pi(ω)∂xGij(r0, r0, ω
′)pj(ω

′)〉, (10)

where the derivative only acts on the first component of
Green function, i.e. ∂xG(r0, r0, ω) = ∂xG(r, r0, ω)|r=r0 .
Now, comes to the important part. Based on the FDT,
one can connect the quantity 〈pipj〉 with atomic polar-
izability αij . Since the particle is rotating, the atomic
polarizability is only well defined in its rotating frame.
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In the expression of Eqn. (10), pi is the electric dipoles
that are defined in the lab frame. In order to express
electric polarizability in terms of electric dipoles p̃i in the
rotating frame, one needs the coordinate transformation
[6]

px(ω) = p̃x(ω)

py(ω) =
1

2
[p̃y(ω+) + ip̃z(ω+) + p̃y(ω−)− ip̃z(ω−)]

pz(ω) =
1

2
[−ip̃y(ω+) + p̃z(ω+) + ip̃y(ω−) + p̃z(ω−)]

(11)

where ω± = ω ±Ω is the Doppler-shifted frequency with
Ω denotes the rotation frequency of the particle. In the
main text, we expressed the coordinate transformation
of electric dipole by the form: pi(ω) = Λ+

ij p̃j(ω+) +

Λ0
ij p̃j(ω)+Λ−

ij p̃j(ω−). Now, one can read out Λ±
ij and Λ0

ij

from above equations. Due to the translational symmetry
in x, y and z direction of the surface, the surface Green
function satisfies ∂xGxx = ∂xGyy = ∂xGzz = 0. One
can find the explicit expression of surface Green’s ten-
sor in Appendix C, where we show that only the terms
∂xGyz, ∂xGzy, ∂xGxz, and ∂xGzx need to be calculated.
(Due to the isotropic assumption of the rotating particle
(αxy = αxz = 0), we do not need to calculate ∂xGxz and
∂xGxy, which alway appear, respectively, with αxy and
αxz at the same time.) The L-ACF induced from dipole
fluctuation is

Fx,p =

∫ ∞

−∞

dω

4π2
[〈py(ω)∂xGyz(r0, r0,−ω)pz(−ω)〉]

+ [〈pz(ω)∂xGzy(r0, r0,−ω)py(−ω)〉] . (12)

Substitute Eqn. (11) into Eqn. (12) , and one can obtain

〈py(ω)∂xGyz(r0, r0,−ω)pz(−ω)〉

=
1

4
∂xG

∗
yz〈[p̃y(ω+) + ip̃z(ω+) + p̃y(ω−)− ip̃z(ω−)]

×
[

−ip̃y(ω
′
+) + p̃z(ω

′
+) + ip̃y(ω

′
−) + p̃z(ω

′
−)

]

〉

=iπ~∂xG
∗
yz

{

Im {α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) +
1

2

)

−Im {α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) +
1

2

)}

, (13)

where ω± = ω ±Ω, ω′
± = −ω ±Ω, and T1 is the particle

temperature.

In the same way, one can obtain

〈pz(ω)∂xGzy(r0, r0,−ω)py(−ω)〉

=−iπ~∂xG
∗
zy

{

Im {α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) +
1

2

)

−Im {α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) +
1

2

)}

. (14)

Several comments in order: (i) Since the electric field

E(t) is real, the Green function Gij(t) = 〈Ei(t)Ej(0)〉
is also real, i.e., G∗

ij(t) = Gij(t). Due to the expression

of Green function in ω-space, Gij(t) =
∫

dω
2π e

−iωtGij(ω)
we can obtain G∗(ω) = G(−ω). The same reason also
suggests α∗(ω) = α(−ω). (ii) When we make the simpli-
fication

∫∞
−∞ 7→

∫∞
0 , it’s not as simple as

∫∞
−∞ = 2

∫∞
0 .

In fact, we should use the equality

∫ 0

−∞
dω ∂xG

∗
yz(ω)Im{α(ω+)}

(

n(ω+) +
1

2

)

=

∫ ∞

0

dω∂xG
∗
yz(−ω)Im{α(−ω−)}

(

n(−ω−) +
1

2

)

=

∫ ∞

0

dω∂xGyz(ω)Im{α(ω−)}
(

n(ω−) +
1

2

)

. (15)

Note that the FDT in the rotating frame leads to the re-
lation 〈p̃i(ω)p̃j(ω′)〉 = 2π~δ(ω+ω′)Im {α̃ij(ω)} coth(βω2 ).
Therefore, the Casimir force Fx,p due to electric dipole
fluctuation is

Fx,p =
i~

4π

∫ ∞

−∞
dω(∂xG

∗
yz − ∂xG

∗
zy)×

{

Im {α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) +
1

2

)

−Im {α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) +
1

2

)}

One can express the above result only in the frequency
region ω ≥ 0 by using Im{α̃(−ω)} = Im{α̃∗(ω)} =
−Im{α̃(ω)} and

(

n(T1,−ω) + 1
2

)

= −
(

n(T1, ω) +
1
2

)

:

Fx,p =
~

2π

∫ ∞

0

dωIm {∂xGyz − ∂xGzy} ×
{

Im {α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) +
1

2

)

−Im {α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) +
1

2

)}

Field fluctuation distribution—One can compute the
second term of Eqn. (2) induced by the electric field
fluctuation.

Fx,E =

∫ ∞

−∞

dωdω′

(2π)2
e−i(ω+ω′)t〈αij(ω)E

fl
j (ω)∂xE

fl
i (ω′)〉,

(16)

where αij denotes the effective polarizability seen in the
lab frame, corresponding to the polarizability α̃ in its
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rotating frame via [6]:

αxx(ω) =α̃xx(ω)

αyy(ω) =
1

4
(α̃yy(ω+) + α̃zz(ω+) + α̃yy(ω−) + α̃zz(ω−))

=αzz(ω)

αyz(ω) =
i

4
(α̃yy(ω+) + α̃zz(ω+)− α̃yy(ω−)− α̃zz(ω−)) ,

=−αzy(ω) (17)

from which one can read out Γ±
ijkl and Γ0

ijkl

in the main text. Substituting α̃yz(ω) and
〈Efl

z (ω)∂xE
fl
y (ω′)〉 = 〈∂xEfl

y (ω′, r0)E
fl
z (ω, r0)〉 =

4πδ(ω + ω′)Im{∂xGyz(r0, r0, ω
′)}

(

n(T2, ω
′) + 1

2

)

( T2 is
the temperature of the surface.) into Eqn. (16), one can
obtain

Fx,E =− ~

2π

∫ ∞

0

dω Im{∂xGyz − ∂xGzy}

×Im{α̃yy(ω+) + α̃zz(ω+)− α̃yy(ω−)− α̃zz(ω−)}

×
[

n(T2, ω) +
1

2

]

. (18)

Combine the force induced by dipole fluctuation and field
fluctuation distribution, and we can obtain the final ex-
pression of ACF:

Fx =
~

2π

∫ ∞

0

dω Im {∂xGyz − ∂xGzy}

[Im {α̃yy(ω+) + α̃zz(ω+)}N(ω+)

−Im {α̃yy(ω−) + α̃zz(ω−)}N(ω−)] , (19)

where N(ω±) = n(T1, ω±)− n(T2, ω). Even at zero tem-
perature T1 = T2 = 0, N(ω±) 6= 0 which indicates that
the ACF is totally contributed from quantum fluctuation.
By assuming the particle is isotropic, i.e., αij = αδij , the
formula in the main text is obtained.

Appendix B: Derivation of ACF in Arbitrary

Direction.

In this section, we show how to calculate the ACF
of a particle rotating along an arbitrary axis n̂ =
(cos θ, 0, sin θ). We calculate the Casimir force in x, y,
z directions, respectively, and project them along the ro-
tating axis. (pθx, p

θ
y, p

θ
z) represents electric dipole of the

particle in the lab frame, which can be obtained via co-
ordinate rotation:

(

pθx
pθz

)

=

(

cos θ − sin θ
sin θ cos θ

)(

px
pz

)

, (20)

where px and pz are the electric dipoles that are obtained
in last section. The polarization at n̂ = (cos θ, 0, sin θ)

corresponds to the polarization at n̂ = (1, 0, 0) via

αθ
xx =cos2 θαxx + sin2 θαzz ; α

θ
yy = 〈pypy〉 = αyy;

αθ
zz =cos2 θαzz + sin2 θαxx; α

θ
xy = − sin θαzy ;

αθ
yx =− sin θαyz;α

θ
xz = sin θ cos θαxx − sin θ cos θαzz

αθ
zx =αθ

xz; α
θ
yz = cos θαyz ; α

θ
zy = cos θαzy, (21)

In the following, we obtain the Casimir force (induced by
rotation) in the x-direction Fx and in the z-direction Fz ,
respectively. Then, the total ACF is

Fn(θ) = Fx(θ) cos θ + Fz(θ) sin θ. (22)

The ACF in the x-direction— Notice that the L-ACF
calculated here is different from that in Appendix A.
Because the rotating axis is not parallel with the plate
anymore, i.e., Fx(θ) 6= Fx, thus one needs to re-calculate
the L-ACF in this case. Again, the L-ACF is induced
from two parts contributions: (i) the electric dipole fluc-
tuation and (ii) the electric field fluctuation, i.e., Fx(θ) =
Fx,p + Fx,E , where

Fx,p =

∫ ∞

−∞

dωdω′

(2π)2
e−i(ω+ω′)t

×〈pθi (ω)∂xGij(r0, r0, ω
′)pθj (ω

′)〉; (23)

Fx,E =

∫ ∞

−∞

dωdω′

(2π)2
e−i(ω+ω′)t〈αθ

ij(ω)E
fl
j (ω)∂xE

fl
i (ω′)〉.

(24)

Substituting the electric dipole into the expression of the
dipole-induced Casimir force, and one can obtain

Fx,p =
~

2π

∫ ∞

0

dω [sin θ cos θfp1 + cos θfp2 − sin θfp3] ,

(25)

where

fp1 =Re {(∂xGxz + ∂xGzx)}

×
{

4 Im{α̃xx(ω)}
(

n(T1, ω) +
1

2

)

−Im {α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) +
1

2

)

−Im {α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) +
1

2

)}

.

(26)

fp2 =Im {(∂xGyz − ∂xGzy)}

×
{

Im {α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) +
1

2

)

−Im {α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) +
1

2

)}

;

(27)
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fp3 =Im {(∂xGyx − ∂xGxy)}

×
{

Im {α̃yy(ω+) + α̃zz(ω+)}
(

n(T1, ω+) +
1

2

)

−Im {α̃yy(ω−) + α̃zz(ω−)}
(

n(T1, ω−) +
1

2

)}

.

(28)

The electric fluctuating field contribution to the lateral
Casimir force is

Fx,E =
~

2π

∫ ∞

0

dω [sin θ cos θfE1 + cos θfE2 − sin θfE3] ,

(29)

where

fE1 =Im {∂xGxz + ∂xGzx}Re {4α̃xx − (α̃yy(ω+) + α̃zz(ω+)

+α̃yy(ω−) + α̃zz(ω−))} ×
(

n(T2, ω) +
1

2

)

fE2 =−Im{∂xGyz − ∂xGzy} Im {α̃yy(ω+) + α̃zz(ω+)

−α̃yy(ω−)− α̃zz(ω−)} ×
(

n(T2, ω) +
1

2

)

fE3 =−Im{∂xGyx − ∂xGxy} Im {α̃yy(ω+) + α̃zz(ω+)

−α̃yy(ω−)− α̃zz(ω−)}
(

n(T2, ω) +
1

2

)

(30)

Therefore, the total L-ACF in x direction is

Fx(θ) =
~

2π

∫ ∞

0

dω [sin θ cos θ (fp1 + fE1)

+ cos θ (fp2 + fE2)− sin θ (fp3 + fE3)] (31)

The ACF in the y-direction Fy— The force in the y-
direction has the same form as that in the x-direction.
The only difference is that all derivatives on Green ten-
sors changes from ∂xGij to ∂yGij . If we let θ = 0, the ex-
pression coincides with the expressions in reference [15].

The ACF in the z-direction Fz— The form of Fz is
different from Fx and Fy due to the non-vanishing diag-
onal terms ∂zGii. We can write the Casimir force in the
form F tot

z (θ) = F d
z (θ)+Fz(θ), where F

d
z (θ) is the Casimir

force due to the diagonal terms ∂zGii, and Fz(θ) is the
rotation-induced Casimir force. Fz(θ) has the similar
form as Fx(θ) and Fy(θ), and one can obtain Fz(θ) by
the substitution ∂x/yGij → ∂zGij . The diagonal Casimir

force F d
z (θ) corresponds to the usually referred Casimir-

Polder force, whereas the off-diagonal Casimir force is
induced by rotation.

The total ACF along the rotating axis is

Fn =Fx(θ) cos θ + Fz(θ) sin θ

≈Fx cos
2 θ + Fz sin

2 θ, (32)

where Fx ≡ Fx(θ = 0) and Fz ≡ Fz(θ = π/2). In
deriving Eqn. (32), we have used the approximation
that Ω/ω ≪ 1. We also use the fact that fp2 + fE2 and

fp3 + fE3 vanish for Fz(θ) and Fx(θ), respectively. (The
reason relies on the Green’s tensor form in Appendix C.)
Note that we derived the formula Eqn. (3) announced
in the main text.

In the following, one can derive the diagonal term
F d
z (θ) by considering the dipole fluctuation and the field

fluctuation, respectively.
The Casimir force in the z-direction induced by dipole

fluctuation is

F d
z,p =

∫ ∞

−∞

dωdω′

(2π)2
e−i(ω+ω′)t

{

〈pθx(ω)∂zGxx(r0, r0, ω
′)pθx(ω

′)〉

+〈pθy∂zGyyp
θ
y〉+ 〈pθz∂zGzzp

θ
z〉
}

(33)

The Casimir force in the z-direction induced by field
fluctuation is

F d
z,E =

∫ ∞

−∞

dωdω′

(2π)2
e−i(ω+ω′)t(4π~δ(ω + ω′))

{

αθ
xxIm{∂zGxx}

+αθ
yyIm{∂zGyy}+ αθ

zzIm{∂zGzz}
}

(

n(T2, ω) +
1

2

)

.

(34)

Unlike the the case rotation-induced Casimir force, the
signs before the integral in the expressions of F d

z,p and

F d
z,E are the same. This is definitely reasonable, mean-

ing that, even without rotation, these two terms still ex-
ist. Add up the dipole contribution and the field con-
tribution, We get the total diagonal Casimir force in the
z-direction:

F d
z ≈2~

π

∫ ∞

0

dω Im {∂z(Gxx +Gyy +Gzz)× α(ω)}

×
[

n(T, ω) +
1

2

]

, (35)

where following assumptions is implied: equal temper-
ature T1 = T2, isotropic polarizability αij = α δij ,
and

[

α(ω+)
(

n(T, ω+) +
1
2

)

+ α(ω−)
(

n(T, ω−) +
1
2

)]

≈
2α(ω)

[

n(T, ω) + 1
2

]

for Ω ≪ kBT . In the limit of T → 0,

the diagonal Casimir force F d
z = ~

π

∫∞
0 dω Tr [αij∂zGij ],

which agrees with the Casimir-Polder formula in Ref.
[23]. According to Appendix C, the differential Green’s
function reads ∂z(Gxx+Gyy+Gzz) = rssk

2+rpp(k
2
ρ−k2z).

For a metallic surface, rss = −rpp, and ∂z(Gxx +
Gyy+Gzz) = − 1

2π

∫

dkxdky e
2ikzz rss(2k

2
z), consequently,

the above formula become consistent with the Casimir-
Polder formula in Refs. [9] and [23].

Appendix C: Surface Green’s Tensor For BIM

Plate.

General expression of surface Green’s tensor—The
surface Green’s tensor can be derived from the knowl-
edge of Fresnel coefficients, i.e., rss and rpp in usual cases,
where rss (rpp) stands for the reflection coefficients from
TE(TM) wave to TE(TM) wave [24]. However, when
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there is a mix between TE wave and TM wave, the sur-
face Green’s tensor also depends on rsp and rps [16],
where rps (rsp) stands for the cross-reflection coefficients
from TE (TM) wave to TM (TE) wave. We then give
the general expression of the surface Green function by
taking rps (rsp) into consideration

G(r, r′, ω)=
i

2π

∫

dkxdky
kz

eikx(x−x′)eiky(y−y′)eikz(z+z′)

× [rssMss + rppMpp + rspMsp + rpsMps] ,(36)

where [16]

Mss =









k2

y

k2
ρ

k2 −kxky

k2
ρ

k2 0

−kxky

k2
ρ

k2
k2

x

k2
ρ

k2 0

0 0 0









, (37)

Mpp =









−k2

x
k2

z

k2
ρ

−kxkyk
2

z

k2
ρ

−kxkz

−kxkyk
2

z

k2
ρ

−k2

y
k2

z

k2
ρ

−kykz

kxkz kykz k2ρ









, (38)

Msp =









kxkykz

k2
ρ

k
k2

y
kz

k2
ρ

k kyk

−k2

x
kz

k2
ρ

k −kxkykz

k2
ρ

k −kxk

0 0 0









, (39)

Mps =









−kxkykz

k2
ρ

k
k2

x
kz

k2
ρ

k 0

−k2

y
kz

k2
ρ

k
kxkykz

k2
ρ

k 0

kyk −kxk 0









. (40)

And the Fresnel reflection coefficients are given by [11]

rss =
1

∆

{

(η2 − η20)c0(c+ + c−) + 2η0η(c
2
0 − c+c−) cosβ

}

;

rpp =
−1

∆

{

(η2 − η20)c0(c+ + c−)− 2η0η(c
2
0 − c+c−) cosβ

}

;

rsp =
2η0ηc0

∆
[i(c+ − c−) cosβ − (c+ + c−) sinβ] ;

rps =
−2η0ηc0

∆
[i(c+ − c−) cosβ + (c+ + c−) sinβ] , (41)

Corresponding definitions e.g., kρ, ∆, etc. are the same
as those in the main text. Let’s check the trivial case for
an ideal metal plate, where χ = κ = 0, and η =

√

µ/ǫ →
0. In this case, rpp = −rss = 1 and rsp = rps = 0.
In another interesting case, by assuming η 7→ η0 and
β 7→ π/2 (perfect Tellegen Materials), rss = rpp = 0
leads to the vanishing of the usual Casimir-Polder Force.

Appendix D: Derivation of analytical limit of

axial Casimir force

In this part, we give the detail derivation of the ACF
for Tellegen and Pasteur materials in the low frequency
limit ωd → 0.
For Tellegen materials, χ → 1 and κ → 0. Thus, the

reflection coefficients can be obtained rsp = rps → −1

leading to Σx = 0 and

Σz = −2ω4

∫ ∞

0

ds(s
√

1− s2 e2i
√
1−s2ωd) (42)

In the limit ωd → 0, one can obtain Im {Σz} ≈ −ω/2d3.

For Pasteur materials, χ → 0 and κ → 1. Thus,
the reflection coefficients can be obtained rsp = −rps →

−2i
√
1−s2

2
√
1−s2+

√
4−s2

leading to Σz = 0 and

Σx =

∫ ∞

0

ds
s3 e2i

√
1−s2ωd

√
1− s2

[

(−2i)ω4
√
1− s2

2
√
1− s2 +

√
4− s2

]

.(43)

In the limit ωd → 0, one can obtain Im {Σx} ≈ −4ω4/3+
3πω5d/4 ≈ −4ω4/3. Under the assumption ω ≪ ωp, the
imaginary part of the polarizability reads Im {α(ω)} ≈
−12πR3

0ω/ω
2
pτ .
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