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We study the dynamical behavior of doped electronic systems subject to a global ramp of the repulsive Hub-

bard interaction. We start with formulating a real-time generalization of the fluctuation-exchange approxima-

tion. Implementing this numerically, we investigate the weak-coupling regime of the Hubbard model both in the

electron-doped and hole-doped regimes. The results show that both local and nonlocal (momentum-dependent)

observables evolve toward a thermal state, although the temperature of the final state depends on the ramp dura-

tion and the band filling. We further reveal a momentum-dependent relaxation rate of the distribution function

in doped systems, and trace back its physical origin to the anisotropic self-energies in the momentum space.

PACS numbers: 71.10.Hf, 71.30.+h, 71.27.+a, 74.72.Gh, 74.72.Ek

I. INTRODUCTION

There are increasing fascinations toward optimizing and

controlling the properties of correlated systems in both exper-

imental and theoretical studies. In particular, driving a system

out of equilibrium by applying time-dependent modulations

is a powerful avenue for realizing new quantum states. When

the time-translational symmetry is broken in nonequilibrium

situations , the initial thermal state can transform into a dif-

ferent state in a nonthermal fashion, since the time-dependent

drive induces excitations of the correlated system. At short

times, different non-thermal transients can emerge depending

on the initial correlation and the preparation protocol. In the

long-time limit, it is intriguing to see whether the system ther-

malizes or whether new correlations are built up that realize

a long-lived nonthermal state. Achieving comprehensive in-

sights requires, as discussed in the literature, incorporating

details of the system that include the interplay of various de-

grees of freedom1–5 lattice structures,6,7 and doping concen-

trations8.

In low-dimensional systems such as layered oxides or het-

erostructures, where strong nonlocal quantum correlation play

a significant role, the doping level is a key control parame-

ter, which leads to different regimes with different scattering

mechanisms dominating.9,10 This should leave fingerprints on

the measured observables. In particular, the time-resolved op-

tical conductivity after an excitation often shows a single or

double exponential decay11.

Measurements of Fermi-surface properties such as the

momentum-dependent distribution function with the angle-

resolved photoemission spectroscopy (ARPES) displays dis-

tinct temporal relaxation responses at different points on the

Fermi surface.4,5,12–14 Understanding the details of these is a

formidable challenge due to the interplay between various de-

grees of freedom in a small energy range10,15.

Nevertheless, it is imperative to understand the relaxation

dynamics of doped systems, where the electron-electron in-

teraction governs the physics. From a theoretical perspective,

even when we focus on the simple one-band Hubbard model

with an on-site repulsive interaction, investigation of the prob-

lem is quite challenging due to the nonequilibrium nature of

the problem.

Incorporating spatially nonlocal correlations in two di-

mensions is computationally demanding as in nonequilib-

rium dynamical cluster approximation (DCA)16, diagram-

matic approaches17,18, and variational Monte Carlo method19,

while the well-developed one-dimensional20,21 and infinite-

dimensional22 nonequilibrium algorithms cannot directly treat

two-dimensional systems. A large number of investigations

have been devoted to understanding the long-time dynamics

of fermionic systems, at half filling, after a global ramp of

the interaction parameter.16,17,23–25 In these attempts, the long-

time thermalization occurs for nearly all the weak electron-

electron coupling regimes, which sometimes supersedes in-

termediate pre-thermalization plateaus.17,23,25 Away from the

half-filling, on the other hand, investigations of doped sys-

tems in infinite dimensions reveal that the observed sharp

dynamical transition from an exponential relaxation in the

weak-coupling regime to an oscillating behavior in the strong-

coupling regime is smoothened into a crossover between these

two regimes.25 In two dimensions, studies for half-filled sys-

tems reveal a momentum-dependent relaxation of the single-

particle momentum distribution after a sudden quench of the

electron-electron interaction.16,17 However, we are still left

with important questions as to (i) how these dynamical be-

haviors vary in doped systems, (ii) what would be the effect

of finite ramp durations (as opposed to sudden quenches), and

(iii) to what extent the relaxation dynamics depends on the

momentum in the Brillouin zone.

In the present work we precisely address these questions in

both the electron-doped and hole-doped systems. We employ

an interaction ramp protocol on a two-dimensional system
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with repulsive electron-electron interaction. We formulate the

real-time generalization of the fluctuation-exchange approx-

imation (FLEX)26–29. It is known that this algorithm, with

vertex corrections ignored, cannot address the intermediate

and strong-coupling regimes where the Mott insulator starts to

emerge.30 Also, underdoped systems exhibit, at low tempera-

tures, pseudogap physics which requires an extension of the

FLEX.31 We thus limit ourselves to the weak-coupling regime

and at temperatures where pseudogap does not emerge. We

shall show that there exist a rapid local thermalization of the

system, where the ramp duration determines the temperature.

More importantly, using the nonequilibrium FLEX, we can

analyze the momentum-dependent evolution of both single-

and two-particle observables. Namely, we shall show that

there exists a doping-dependent nodal-antinodal dichotomy in

the relaxation rate of the single-particle momentum distribu-

tions.

This paper is organized as follows. We define the model

Hamiltonian and present the proposed numerical algorithm in

Sec. II. In Sec. III we present numerical results and discuss

the underlying physics. Section IV is devoted to conclusions

of this work.

II. MODEL AND METHOD

A. Model Hamiltonian

The repulsive one-band Hubbard model on the square lat-

tice is defined as

H =−
∑

ij,σ

(
v|i−j|c

†
iσcjσ + h.c.

)

+
∑

i

U(t)

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

∑

i,σ

niσ, (1)

where c†iσ creates an electron with spin σ at site i, niσ =

c†iσciσ , and opposite spins experience a local repulsive inter-

action U , which is here assumed to be time-dependent. The

band filling is set by the chemical potential µ. v|i−j| stands

for the hopping amplitude from site i to a neighboring site j,

which is taken here up to the third-neighbors. We then have a

band dispersion on the square lattice as

εk =− 2v1
[
cos(kx) + cos(ky)

]
− 4v2 cos(kx) cos(ky)

− 2v3
[
cos(2kx) + cos(2ky)

]
, (2)

where k = (kx, ky) is the two-dimensional momentum,

and hopping parameters are here set to v2 = −0.2v1, and

v3 = 0.16v1, relevant for the the copper-oxygen planes of

high-temperature superconductors32,33, see solid green line in

Fig. 7 (lower panel). We report our results in the energy (time)

unit of v1 (1/v1).

To explore the thermalization of doped quantum systems,

we take the Hubbard model where the Hubbard interaction is

switched on with a ramp (see Fig.1),

U(t) =

{
Uf

[
1− cos( πt

2tr
)
]

for t ≤ tr,

Uf for t > tr,
(3)

with tr the ramp duration, and Uf the final Hubbard inter-

action. This protocol can directly be realized in cold-atom

setups34, or can indirectly be realized in solids excited by a

short few-cycle laser pulse35 in terms of the effective electron-

electron interaction. The FLEX is reliable in the weak-

coupling regime, so that we set the final Hubbard interaction

to Uf ≤ 3 for which Uf is much smaller than the band width

(= 7.7 for the present choice of the hopping parameters). The

initial temperature T = 1/β = 1/20 is chosen so that the

system is away from superconducting and antiferromagnetic

phases.

B. Numerical method

We perform the numerical investigations of our model in

finite-temeprature paramagnetic phases where no long-range

order is present, and use, for nonequilibrium situations, the

Schwinger-Keldysh36,37 generalization of the FLEX26–28. In-

corporated Feynman graphs in this diagrammatic formalism

are determined from a functional derivative of the Luttinger-

Ward functional,38 and thus the approach is a conserving ap-

proximation.26,39 It has been well established that in the weak-

coupling regime the results are qualitatively in good agree-

ment with numerically exact quantum Monte-Carlo results.40

One technical detail is that the self-energy diagrams have been

collected here with an assumption that the expectation value

of the pair correlation is negligible and thus the anomalous

contributions can be omitted. This particular choice implies

that our formalism is applicable to studying normal phases as

well as the behavior of the system just at an instability to su-

perconductivity.

In the FLEX, the electron scattering incorporates the mag-

netic, density, and also singlet-pairing channels. Correspond-

ingly, we consider the spin susceptibility (χs), charge suscep-

tibility (χc), and, here in particular, the particle-particle sus-

ceptibility (χpp). The latter is important, since it enables us

to examine the effects of pair fluctuations represented by the

particle-particle susceptibility, defined in terms of the pair op-

erator, ∆k(t) ≡ ck↑(t)c−k↓(t), as

χpp
k (t, t′) = −i〈TC∆k(t)∆

†
−k(t

′)〉, (4)

where TC is the time-ordering operator on the Keldysh contour

C.

The spin, charge, and particle-particle susceptibilities obey

algebraic equations which are obtained in FLEX by summing

geometric series of ladder and bubble diagrams as

χr
q(t, t

′) = U(t)χ0r
q (t, t′)U(t′)+sr

[
χ0r
q ∗U ∗χr

q

]
(t, t′), (5)

where r ∈ {s, c, pp} denotes the channel with sr has ss =
spp = −1, sc = 1. The crystal momentum q resides, in
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Figure 1. Ramp up of the Hubbard interaction given in Eq. (3).

numerical calculations, on a Nk × Nk momentum grid with∑
q = N2

k . In nonequilibrium situations, every susceptibility

has two time arguments due to the broken time-translational

invariance, so we require two time arguments t, t′, defined on

the Schwinger-Keldysh contour C, and “∗” stands for the con-

volution integral on C. χ0r is the polarization function com-

puted by

χ
0c/s
qσσ′(t, t

′) =
i

N2
k

∑

k

Gk+qσ(t, t
′)Gkσ′ (t′, t), (6)

χ0pp
q,σσ(t, t

′) =
i

N2
k

∑

k

Gk+qσ(t, t
′)G−kσ(t, t

′), (7)

where σ ≡ −σ, and G is the interacting Green’s function,

Gkσ(t, t
′) = −i〈TC [ckσ(t)c

†
kσ(t

′)]〉. (8)

We note that in the paramagnetic phase we have Gkσ =
Gk−σ . The employed diagrammatic expansions for comput-

ing four-point correlation functions in Eq. 5 comprise all the

topologies of diagrams up to the third-order interaction ex-

pansions, while for higher orders they ignore a large number

of diagrams that include vertex corrections41, such that the re-

mained set of diagrams is reducible in the particle-particle or

particle-hole channels.

An important consequence of this choice arises in the

generic two-particle correlation function,

Oσ1σ2σ3σ4

k1k2k3k1+k2−k3
(t1, t2, t3, t4) =

−i〈oσ1k1
(t1)oσ2k2

(t2)o
†
σ3k3

(t3)o
†
σ4k1+k2−k3

(t4)〉,

(9)

where oσik(o
†
σik

) is a one-particle annihilation (creation) op-

erator with spin σi and momentum k. There, the present

choice reduces, in the presence of the energy and momen-

tum conservation, the number of independent momenta to

two cases, where (k1,k2,k3) ∈ {(k,k + q,k), (−k,k +
q,−k)}, associated with bubble and ladder diagrams, see

Eqs. 6 and 7. The independent time indices are reduced to

two as (t1, t2, t3, t4) = (t, t′, t, t′). In the paramagnetic phase,

only two different spin combinations arise as (σ1σ2σ3σ4) ∈
{(σ, σ, σ, σ), (σ, σ, σ, σ)}.

Equal spins which occur in the particle-hole channel con-

tribute to the charge and the transverse (z-component) spin
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Figure 2. Kinetic energy (top panels) and interaction energy (bottom)

as a function of time for various ramp durations tr = 0.025−10.0 at

fillings n =0.7 (a) or 1.4 (b). Arrows indicate the expected thermal

values at t = 20 for each value of tr.

fluctuations. Two other components of the spin susceptibil-

ities, i.e., the longitudinal (x and y) components, as well as

the reduced four-point correlation function in the particle-

particle channel, have a relevant spin configuration of the form

(σ, σ, σ, σ). In the paramagnetic phase, the three components

of the spin susceptibility should be equal, resulting in a factor

of 3 in Eq. 13. Hence, for brevity purpose, we omit the spin in-

dices in Eq. 6. Besides, the electron-electron interaction is in-

stantaneous in time and local in space (for the on-site Hubbard

model), which imposes that at each vertex of the two-body op-

erator in the bubble and ladder diagrams, the time arguments

and site indices should be, respectively, the same. As a result,

only two time arguments remain independent, and we should

sum over one of the two momenta, which leaves us only two

different site indices for four-point correlation functions.

The single-particle propagator satisfies the Dyson equation,
(
i∂t + µ− ΣH

σ − εk
)
Gkσ(t, t

′) = δC(t, t
′),

Gkσ(t, t
′) = Gkσ(t, t

′) +
[
Gkσ ∗ ΣFLEX

kσ ∗Gkσ

]
(t, t′),

(10)

where G is the noninteracting Green’s function. The local den-

sity of electrons is given as

nσ(t) =
1

N2
k

∑

k

Im[G<
kσ ](t, t),

where G< is the lesser component of the Green’s function

with t < t′ in Eq. 8. The Hartree self-energy is then given by

ΣH
σ (t) =

1

2
U(t)nσ(t). (11)

Within FLEX the electronic self-energy is given as

ΣFLEX
kσ (t, t′) =−

i

N2
k

∑

q

Γph
q (t, t′)Gk−qσ(t, t

′)

−
i

N2
k

∑

q

Γpp
q (t, t′)Gq−kσ(t

′, t), (12)
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where σ = −σ, the particle-hole (ph) and particle-particle

(pp) vertex functions are evaluated by sums of bubble and lad-

der diagrams as

Γph
q (t, t′) =

1

2
χc
q(t, t

′) +
3

2
χs
q(t, t

′)− U(t)χ0s
q (t, t′)U(t′),

Γpp
q (t, t′) = χpp

q (t, t′) + U(t)χ0pp
q (t, t′)U(t′). (13)

In the following, we report our results computed on a lattice

with 64 × 64 momentum-space discretization. Due to mem-

ory limitation for saving two-time Green’s functions, we cease

simulating the system after tmax = 20.

C. Observables

Observables which we are interested in the nonequilibrium

dynamics are:

a. Kinetic energy of the system, which is calculated as

Ekin =
1

N2
k

∑

kσ

Im
[
εkσG

<
kσ

]
(t, t). (14)

b. Interaction energy, which is evaluated as

Eint =
1

N2
k

∑

kσ

Im
[
ΣFLEX

kσ ∗Gkσ

]<
(t, t), (15)

where “∗” again denotes the convolution.

c. Total energy, which is

Etot = Ekin + Eint. (16)

The effective temperature of relaxed systems is defined as the

equilibrium thermal state whose total energy is the same as

the driven system at a given time.

d. Momentum-dependent distribution function, which is

given by

nk = −
1

2

∑

σ

Im
[
Gkσ

]<
(t, t). (17)

e. Jump of the distribution function. The jump of the

momentum-dependent distribution function is evaluated as

∆nkf
= nkf−δ − nkf+δ, (18)

where the non-interacting Fermi momenta {kf} satisfy εkf
−

µ = 0. As our system is initially prepared in the non-

interacting regime (U(t = 0) = 0), this choice of the

Fermi momenta corresponds to the Fermi sea as the initial

state. Because we are exploring momentum-dependent re-

laxations, we pay particular attention to this quantity at two

directions in the Brilloun zone; along the “nodal direction”

Γ(0, 0) −M(π, π) with δ along (1,1) direction with Nk dis-

cretized points over 2π. As for the “antinodal region” we can

look at the X(π, 0)−M(π, π) direction [with δ along (0,1)]

which the Fermi surface intersects (while Γ - X does not for

the hole-doped case).

f. Photo-emission spectrum (PES), which can be probed

by a Gaussian pulse S(t) = exp(−t2/2α2) with the time res-

olution α(= 3 here to smear the Fourier artifacts for short-

time simulations), is given by the spectral function,42

A<
k (ω, t) ≡ (19)

−
i

4π

∑

σ

∫
dt1dt2S(t1)S(t2)e

iω(t1−t2)G<
kσ(t+ t1, t+ t2).

To minimize the overlaps between the initial ramp protocol

and PES, we only use the probe pulse inside the window of

[−2α, 2α] and consequently the time arguments in Eq. 19 run

in this range.

To present a time-dependent momentum-resolved PES

Ak(ω, t), we substitute the lesser Green’s function with the

retarded Green’s function (Gret
k ). Calculating the density of

state Aloc(ω, t) is then very straightforward as we employ the

local retarded Green’s function,

Gret
locσ(t, t

′) =
1

N2
k

∑

k

Gret
kσ(t, t

′), (20)

instead of the G<
kσ in Eq. 19. The obtained spectrum A is

broader than the physical spectral function as it is convoluted

with the Gaussian function. One should note that, although

evaluating the spectral function is straightforward, obtaining

a high-resolution spectrum out of our short-time simulations

is accompanied by Fourier artifacts. We thus smear these ar-

tifacts by convoluting the real-time Green’s function with a

fairly broad Gaussian filter.

The renormalized dispersion relation (ε̃k) at time t is ob-

tained from the position of the quasiparticle peak (ωqp) in

Ak(ωqp, t)− U(t)n(t)/2, where the factor U(t)n(t)/2 is the

Hartree term, see Eq. 10.

g. Interacting and noninteracting Fermi surfaces. The

bare (noninteracting) Fermi momenta at U(t = 0) = 0 are

obtained by solving εk − µ = 0. In the presence of electron-

electron interaction (U(t) > 0) momenta on the Fermi surface

are defined by ε̃k − µ = 0.

h. Spin, charge, and particle-particle correlation func-

tions. The equal-time spin (s), charge (c), and particle-

particle (pp) correlation functions are given by

χr
k
(t) = |Im

[
χr

k

<(t, t)
]
|, (21)

where χr
k

< denotes the lesser component of the Keldysh sus-

ceptibility with the channel index r ∈ {s, c, pp}.

III. RESULTS AND DISCUSSIONS

A. Local observables

Let us first look at the kinetic and potential energies of the

hole-doped (n = 0.7) and electron-doped (n = 1.4) systems

under various ramp durations, tr = 0.025, 0.75, 1.5, 3.0 and

10.0, in Fig. 2. Note here that the nonzero next-neighbor hop-

ping in Eq. 1 breaks the particle-hole symmetry. Thus, instead

of n and 2 − n, we prefer to study hole- and electron-doped
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Figure 3. The PES for ramp durations tr = 1.5, 3.0, and 10.0 for

Uf = 3, β = 20. Vertically aligned panels belong to the same

fillings, namely n = 0.7 (a), and 1.4 (b). The color coding refers

to time. Vertical dashed lines indicate the respective position of the

quasiparticle peak at ω = 0.75 for n = 0.7 and ω = 0.65 for

n = 1.4 after the final stage of ramping (t > tr).

cases with the chemical potential µh = −µe, which respec-

tively corresponds to n = 0.7 and n = 1.4, where the systems

are in the over-doped regimes with the pseudogap absebt, and

we are sufficiently far from the Mott insulator. Switching on

of the Hubbard interaction naturally has a vast effect on the

interaction energy for t < tr as seen in lower panels of Fig. 2.

The kinetic energy also exhibits a large transient response for

t < tr, see upper panels of Figs. 2. We can see that the overall

change in the kinetic energy strongly depends on whether we

sit on the hole-doped or electron-doped side. This is not un-

expected for two reasons: (i) our system has the particle-hole

asymmetry with different densities of states at the Fermi en-

ergy between hole-doped and electron-doped regimes, and (ii)

an obvious effect in an electron-doped system of smaller num-

bers of empty sites aside from the thermally generated holons

(and doublons), which forces the electrons to hop to doubly-

occupied sites. In the hole-doped case, hopping to empty sites

is easier, and we have a stronger change in the kinetic energy,

see upper panel of Fig. 2(a).

For t > tr, a kink in the ramp functional form in Eq. 3

results in the appearance of a bump in short-time evolutions

of both the kinetic and interaction energies, which are more

pronounced in the electron-doped regime due to the excess

number of doubly occupied sites. For longer ramp durations

the system has a long time to redistribute its electronic config-

uration during t < tr so that the transient bump is less evident.

To further corroborate local thermalization of the system,

we present the time-evolution of the PES spectrum of systems

under various ramp durations, tr = 0.75, 1.5, and 10.0, in the

hole-doped (n = 0.7) and electron-doped (n = 1.4) regimes

in Fig. 3. For short ramps, the result confirms a rapid relax-

ation of spectrum in all doping regimes, as time-dependent

spectrum, plotted with different colors, are hardly distinguish-

able for t > 6. For a long ramp (tr = 10), the evolution of
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Figure 4. For hole-doped (n = 0.7) (a) and electron-doped (n =
1.4) (b) regimes, the upper panels plot the ratio A<(t, ω)/A(t, ω)
at t = 13.5 for ramp durations tr = 0.025 (yellow solid lines) and

1.5 (cyan solid lines). Dashed lines are fits with the Fermi distri-

bution with the indicated effective inverse temperature, βeff . Lower

panels plot the βeff against time for tr = 0.025 (red), 0.25 (green),

0.75 (blue), and 1.5 (purple), again for the hole-doped (left panel)

and electron-doped (right) cases.

PES is considerable during the preparation period (tr), and the

evolution quickly terminates shortly after tr. We can also note

that, at long times when the probe envelope, centered around

t > tr, overlaps with the initial ramp protocol, the evolution

of PES is not an intrinsic relaxation. At the time at which local

observables become stationary, i.e., t = 13.5 here, the spectral

density also becomes time-independent, where the position of

the quasiparticle peak, independent of the ramp duration, ex-

hibits doping-dependent values as ω = 0.75 for n = 0.7 and

ω = 0.65 for n = 1.4, see dashed lines in Fig. 3.

We can further assess the thermal nature of the spectrum

by looking at the ratio A<(t, ω)/A(t, ω) in the upper panels

of Figs. 4, since the fluctuation-dissipation theorem dictates

that this ratio should be, in a thermal state, equal to the Fermi-

Dirac distribution function as

A<(t, ω)

A(t, ω)
=

1

1 + exp
[
βeff(t)

(
ω − µeff

)] . (22)

By fitting the spectrum with Eq. (22), we evaluate the in-

verse, βeff(t), of the time-dependent effective temperature.

Consistent with the adiabatic theorem, doped systems with

longer ramp durations are effectively colder, see lower pan-

els of Fig. 4. Comparing the effective temperatures of the sys-

tem with the same preparation protocol shows that hole-doped

systems become hotter than electron-doped systems. To be

precise, the effective temperatures in Fig. 4, derived from

a Gaussian-broadened spectrum, are slightly over-estimated,

but the trend should be robust. This analysis remains valid

irrespective of whether the Fermi-liquid picture is present or

violated.
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Figure 5. For a hole-doped filling n = 0.7 the momentum-dependent

distribution function at initial (t = 0; top panel) and final (t = 20;

bottom) times are plotted for Uf = 3 and β = 30 and tr = 0.25.
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Figure 6. For an electron-doped filling n = 1.4 the momentum-

dependent distribution function at initial (t = 0; top panel) and fi-

nal (t = 20; bottom) times for Uf = 3 and β = 30 and tr = 0.25.

B. Momentum-dependent observables

Let us now move on to the momentum-dependent distribu-

tion functions at initial and final times in a hole-doped (n =
0.7) system in Fig. 5, and an electron-doped (n = 1.4) system

in Fig.6, with tr = 0.25. A sharp jump of nk at the Fermi

wavenumber at initial times, associated with the Fermi-Dirac

distribution at β = 20, is significantly smeared at t = 20 in

both systems. This is consistent with a general intuition that

occupation of excited states will elevate the effective temper-

ature after pumping.

If we now turn to the upper panels of Fig. 7, which plots

momentum-resolved PES of both hole-doped (n = 0.7) (a)

and electron-doped (n = 1.4) (b) regimes, we can see that

the widths of the momentum-dependent spectrum at the Fermi

momenta (red along XM and green ΓM in the top panels)

are wider for the hole-doped case, which indicates more heat-

ing than in the electron-doped system. We further observe a

doping-dependent evolution in nk, where the redistribution of

occupation in the hole-doped system is so drastic that the oc-

cupied region even deforms from an open Fermi sea into a

closed one, which may be called a “nonequilibrium Lifshitz

transition”, see Fig. 5. We can then look at the renormalized

dispersion relations in Fig. 7 (c) for the hole-doped (n = 0.7)

and electron-doped (n = 1.4) systems, extracted from the

spectra displayed in upper panels of Fig. 7. The band renor-

malization is not dramatic as we expect for the weak-coupling

physics. The deformation of the Fermi surface in the electron-

doped regime (dashed blue arrows at t = 0 and solid blue ar-

rows at t = 13.5) is less considerable than in the hole-doped

regime (dashed red arrows at t = 0 and solid red arrows at

t = 13.5). This endorses the nonequilibrium Lifshitz transi-

tion for nk in Fig. 5.

To further characterize the dynamical behavior of nk and

its doping dependence, Fig. 8 plots the jump, ∆nk, of the

momentum-dependent occupation around the bare noninter-

acting Fermi energy at two Fermi momenta along ΓM and

XM directions, respectively, in hole-doped and electron-

doped regimes, where the Fermi momenta refer to the initial

noninteracting Fermi surface for U(t = 0) = 0.

After tr, a transient correlation built-up timescale ∼ 1/v1
is observed, see vertical lines in Fig. 8.17,43 This short-time

response is followed by an exponential relaxation dynamics

in all the cases. The initial preparation protocol and the dop-

ing concentrations govern these momentum-dependent evo-

lutions: For the longer ramp durations, the system finds the

opportunity to adjust the injected energy and occupies less ex-

cited states. Namely, the system effectively experiences less

heating and consequently the correlation-based relaxation, in

contrast to thermal relaxation for small tr, rules the dynamics

for long ramps. This over-heating picture is indeed consis-

tent with extensively discussed half-filled results for infinite

dimensional23,25,43,44 and two-dimensional16,17 systems.

A salient feature is that the relaxation dynamics is dis-

tinct, in agreement with Fig. 8, between the Fermi momenta

along the XM and along the ΓM directions, as previously

found with nonequilibrium DCA.16 To quantify this behavior

of ∆nk at finite dopings, we fit our results to an exponen-

tial function of the form f(t) ∼ c0 + c1 exp(−t/τ), where

c0 and c1 are constants, and τ is the relaxation time. Fig-

ure 9 summarizes the result for 1/τ against the band filling

along the XM and ΓM directions, respectively, for various

values of the ramp duration, tr (color-coded). We can see that

τ significantly depends on the three factors: doping, the posi-

tion of the Fermi momentum and the ramp duration. Namely,

the result first shows that the scattering rate (1/τ ) decreases
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Figure 7. Top panels: The PES Ak(t, ω) at t = 13.5 in the hole-

doped (n = 0.7) (a) and electron-doped (n = 1.4) (b) regimes for

tr = 0.25. The vertical axis is the momentum, with small offsets

for the spectra for clarity. Red (green) line represents the PES at ini-

tial Fermi momenta along XM (ΓM ). Middle panels: The retarded

Green’s functions Gret
k (t, t−s) at t = 13.5 for hole-doped (n = 0.7;

left panel) and electron-doped (n = 1.4; right) cases. Color lines

correspond to the spectra with the same colors in upper panels, re-

spectively. (c) The dispersion relation for the noninteracting inital

band given in Eq. (2) (solid green line), the renormalized band for

the hole-doped (n = 0.7) (red open squares) and for the electron-

doped (n = 1.4) (blue open circles) systems. Dashed (solid) arrows

attached to each dispersion relation indicate the Fermi momenta at

t = 0 (t = 13.5). Horizontal dashed lines represent the chemi-

cal potentials for the hole-doped (n = 0.7) (red) and the electron-

doped (n = 1.4) (blue) systems.

with the increased density of electrons from hole-doped to

electron-doped regimes. Secondly, consistent with the pre-

vious undoped DCA result,16 the relaxation time is smaller at

the hot spot along XM . These two features hint at an effect

of a momentum-dependent self-energy in the correlated sys-

tem. Thirdly, for long preparation protocols where heating is

mitigated, the non-thermal state has longer lifetimes.

We can also see in Fig. 10(a) that a stronger electron-

electron interaction enhances the scattering rate 1/τ and thus

expedite the relaxation. We also note that the undoped results

relaxed at higher temperatures, where Mott insulating phase

does not find a room to emerge, and consequently the results

are reliable.

We have found that the width of the quasiparticle peaks

around the Fermi surface is generically smaller in the electron-

doped systems than in the hole-doped ones. This width is, in

the thermal states in the Fermi liquid theory, proportional to

 0
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 0  5  10  15  20

(d)
 tr=0.025

∆n
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Figure 8. The jump, ∆nk, of the momentum-dependent distribu-

tion function for ramp durations tr = 10 (a), 1.5 (b), 0.25 (c),

and 0.025 (d) at initial Fermi momenta along ΓM (solid line) or

XM (dashed line) for the hole-doped (n = 0.7) (blue) and electron-

doped (n = 1.4) (green) systems. A vertical red line indicates the

transient built-up duration, tr + 1/J1, for each panel.

the imaginary part of the retarded self-energy, so that the result

implies smaller incoherent contributions to the scattering rate

in the electron-doped systems. This observation then suggests

that thermal relaxations are more dominant in the hole-doped

systems where the effective local temperature is larger.

To reinforce this argument, let us directly look at

Σret
k (t, ωqp) both in the hole-doped (n = 0.7) and electron-

doped (n = 1.4) regimes, where ωqp denotes the quasiparti-

cle energy, which is determined from a near Lorentzian spec-

trum presented in upper panels of Fig. 7. As we can see

from red and green lines there, ωqp = 0.55 for the hole-

doped case (n = 0.7), and ωqp = 2.35 for the electron-doped

one (n = 1.4) for tr = 0.25. In Fig. 9, lower panels plot

|ImΣret
k (t, ωqp)| at t = 13.5 at which the local relaxation for

tr = 0.25 is almost attained. We have also checked that for

tr = 10, the ωqp is slightly smaller than that for tr = 0.25.

In the anisotropic self-energies for the quasiparticle with

the energy ωqp in Fig.9, where squares (circles) mark the

Fermi points along ΓM (XM ), the hole-doped case exposes

elevated interacting regions preferentially around X point

((π, 0)) in the Brillouin zone. In the electron-doped case,

the elevated interacting regions lie along the Fermi surface.

Moreover, in colder systems for larger tr, the overall value

of the self-energy is smaller, which implies that the quasi-

particle has a longer lifetime, in agreement with a slower

decay rate of ∆nk for longer ramps, see Fig. 8. This be-

havior is also evident in the temporal evolution of the two-

time retarded Green’s function, see middle panels of Fig. 7,

where the associated electron-doped Green’s function exhibits

a long-lived oscillation with a slower decay rate. Let us exam-

ine whether the decay rate of quasiparticles characterizing the
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Figure 9. (a) The decay rate, 1/τ , of ∆nk against the band filling, at

Fermi wavenumbers at t = 0 along ΓM (squares) and XM (circles)

in the Brilloun zone. The results are obtained for various values of

the ramp duration, tr =3.0, 1.5, 0.25, and 0.025 (color-coded). (b)

Color plots of the self-energy |ImΣret
k (t, ωqp)| at t = 13.5, with

ωqp = 0.55 for the hole-doped (n = 0.7) system (left panels), and

at ωqp = 2.35 for the electron-doped (n = 1.4) system (right).

The results are for Uf = 3, β = 20, and tr = 0.25 (upper panles)

or tr = 10.0 (lower). Squares (circles) mark the Fermi momenta

at t = 0 along ΓM (XM ) direction in the Brillouin zone. Note

different color codes between different panels.

Green’s function describes the inverse relaxation time, τ−1,

introduced above. The Fermi-liquid theory predicts that, for

a thermal state, the retarded Green’s function should have the

form18,

Gret
k (t) ∝ −Im

[
e−iωqpte−γkt

]
, (23)

where γk denotes the relaxation rate. We have checked that

this asymptotic form matches fairly well with the retarded

Green’s function, plotted in middle panels of Fig. 7, for s >
tr + 1/J1. Figure 10 (d) displays γkf

, while Fig. 10 (c) dis-

plays τ−1
kf

, in both of which solid (open) symbols represent the

results for Fermi momenta (kf ) alongΓM (XM ) directions in

the Brillouin zone. We can see that γk and τ−1
k exhibit similar

tendencies against the filling. The slight difference between

γk and τ−1
k may be attributed to the remaining non-thermal

behavior of the Green’s function at t = 13.5 as well as to an

 0
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Figure 10. (a) The dependence of the relaxation rate on the Hub-

bard interaction U at fillings n = 0.7 (blue symbols) and n =
1.4 (red) along ΓM (squares) and XM (circles) for tr = 0.025.

Lines are a guide for the eye. The imaginary part of the self-

energy Im|Σk|(t, ω) (b), the relaxation rate of ∆nk (c), and the

relaxation rate of the Green’s function (d), at t = 13.5 and ω =
ωqp(k) against the filling for Fermi momenta along ΓM (solid sym-

bols) and XM (open) for tr = 0.25.

error in fitting the short-time data.

In the weak-coupling limit, the Fermi liquid-theory also

dictates that, for a thermalized system, the imaginary part of

the retarded self-energy at the quasiparticle energy ωqp corre-

sponds to the inverse quasiparticle lifetime as45–47

τ−1
qp (k) = −2ImΣret

k (t, ωqp(k)), (24)

where the momentum-dependent quasiparticle energy ωqp(k)
at time t indicates the position of the peak in Ak(t, ω). To as-

sess whether this relation can also describe the relaxation rate

of ∆nk, we compare 2ImΣret
k and τ−1

qp (k) in Fig. 10 (b,c)

at Fermi momenta along ΓM and XM directions, associated

with ωqp(k) = 0.55 (along ΓM ) and 0.65 (along XM ) in

hole-doped (n = 0.7) regime, or ωqp(k) = 2.35 (along ΓM )

and 2.45 (along XM ) in electron-doped (n = 1.4) regime for

tr = 0.25. Both ImΣ (b) and 1/τ (c) decrease with the filling.

As the self-energy is obtained from the broadened real-time

results, a quantitative comparison between the self-energy and

the relaxation dynamics is not feasible. Nevertheless, we do

notice that ImΣ and 1/τ deviate more from each other in the

hole-doped system. This suggests that the Landau quasipar-

ticle picture may not fully describe the relaxation dynamics

in the hole-doped system as the relaxation rate at Fermi sur-

face exceeds the associated ωqp, making the quasiparticle not

well-defined.48,49

Finally to corroborate the thermalization of the doped sys- tems, we present the spin (χs), charge (χc), and particle-
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Figure 11. Time evolution (with time color-coded) of the equal-time spin (top panels), charge (middle), and particle-particle (bottom) suscep-

tibilities along high-symmetry lines in the Brillouin zone in hole-doped (n = 0.7) (a) and electron-doped (n = 1.4) (b) regimes for Uf = 3,

β = 30 and tr = 1.5. Each black dashed line, which almost overlap with the red curve, represent the associated thermal value for each panel.

particle (χpp) correlation functions in Fig. 11. We find that

these two-particle quantities exhibit significant momentum-

dependent evolutions, which saturates toward a thermal value,

see black points in Fig. 11. Also, the result in the hole-doped

regime exhibits different relaxation timescales, in particular,

between spins and charges, c.f. upper and middle panels in

Fig. 11 (a). The effective inverse temperature of the hot elec-

tron state upon thermalization for tr = 1.5 is βeff = 3.53
in the hole-doped system (n = 0.7), and βeff = 5.13 in the

electron-doped system (n = 1.4).

IV. CONCLUSION

We have studied the nonequilibrium dynamics of doped

correlated systems under a global ramp of the repulsive Hub-

bard interaction. From the thermalization of both electron-

doped and hole-doped systems in the weak-coupling regime,

we have shown that the effective temperature of carriers driven

out of equilibrium is smaller for longer ramps and larger fill-

ings. We have discussed that for long ramps the energy den-

sity pumped to the system is smaller, hence the system does

not occupy highly excited states. For the doping-dependency

of the effective temperature, we have explained that in the

electron-doped regime the energy cost for hopping of elec-

trons to different sites is greater, which consequently reduces

the probability of forming mobile carriers. More importantly,

we have identified momentum-dependent relaxations of the

distribution function that occurs in a doping-dependent man-

ner.

We have then revealed that, for the hole-doped system, the

nonequilibriuim relaxation dynamics is distinct between the

“hot- and cold spots” (in the language of equilibrium physics)

on the Fermi surface, while the momentum-dependence be-

comes less pronounced in the electron-doped systems. We

have examined how this would fit with the quasiparticle pic-

ture in the Fermi-liquid theory. The present results show that,

for the hole-doped system, where thermal relaxation governs

the dynamics, quasiparticle is not neccessarily well-defined,

whereas in the electron-doped system which has lower ef-

fective temperature, the Fermi-liquid picture is more well-

defined. We have finally presented the temporal evolution of

equal-time two-body spin, charge and particle-particle corre-

lation functions. We have shown that for small ramps the sys-

tem is thermalized, which we have corroborated by compar-

ing the final two-body observables with their thermal counter-

parts.

Further exploration of the relaxation dynamics of doped

systems will require studying the system at lower initial tem-

peratures to allow the ordered phases to appear in thermal-

ization. It is also interesting to investigate this problem in a

spin-polarized cases where the spin imbalance will enhance

growth of magnetic correlations. Studying multi-band sys-

tems with anisotropic coupling parameters is another intrigu-

ing problem, which will shed more light on the formation of
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spatially modulated orders, which we leave for further studies.
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