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Motivated by recent transport measurements in high-Tc cuprate superconductors in a magnetic
field, we study the thermal Hall conductivity in materials with topological order, focusing on the
contribution from neutral spinons. Specifically, different Schwinger boson mean-field ansätze for the
Heisenberg antiferromagnet on the square lattice are analyzed. We allow for both Dzyaloshinskii-
Moriya interactions, and additional terms associated with scalar spin chiralities that break time-
reversal and reflection symmetries, but preserve their product. It is shown that these scalar spin
chiralities, which can either arise spontaneously or are induced by the orbital coupling of the mag-
netic field, can lead to spinon bands with nontrivial Chern numbers and significantly enhanced
thermal Hall conductivity. Associated states with zero-temperature magnetic order, which is ther-
mally fluctuating at any T > 0, also show a similarly enhanced thermal Hall conductivity.

I. INTRODUCTION

The Wiedemann-Franz (WF) law is a paradigmatic
property of a metal that relates its electrical conduc-
tivity tensor σ̂ to its thermal conductivity tensor κ̂ at
temperature T as κ̂/T = L0σ̂, where L0 = π2k2

B/(3e
2)

is the Lorenz number [1]. Recent studies of the
metallic state of high-Tc cuprate superconductors, such
as La1.6−xNd0.4SrxCuO4 (Nd-LSCO), obtained by sup-
pressing superconductivity using magnetic fields, indi-
cate a very interesting trend in the thermal Hall coef-
ficient [2] as a function of doping. On the overdoped
side, with a hole doping of p > p∗—where p∗ corresponds
to the doping value where the pseudogap temperature
vanishes—the thermal Hall conductivity κxy obeys the
WF law for low T . However, for hole-doping p < p∗, cor-
responding to the pseudogap phase, the thermal Hall con-
ductivity changes sign and becomes negative, while σxy
remains positive. Further, the magnitude of κxy/(Tσxy)
at low temperatures significantly exceeds L0, thus signal-
ing a comprehensive breakdown of the WF law.

A possible explanation of this observation is the pres-
ence of charge-neutral spin-carrying excitations in the
pseudogap phase. By virtue of being electrically neutral,
they do not couple to the external electromagnetic field
and, by association, do not contribute to σxy; however,
they give rise to a thermal Hall current leading to the vio-
lation of the WF law in Hall conductivities. The large κxy
observed at dopings with and without Néel order suggests
that magnons are not responsible for this phenomenon.
Further, Grissonnanche et al. [2] argue that the observed
magnitude of κxy at low temperatures is too large to be
explained by spin-scattered phonons. This prompts the
rather intriguing possibility of emergent neutral excita-
tions that are responsible for this unusual behavior.

In this paper, we investigate the thermal Hall conduc-
tivity (see Fig. 1) of phases where the electron fraction-

alizes into an electrically charged gapless fermionic char-
gon and a gapped charge-neutral spin-carrying spinon [3].
Such a phase of matter has topological order [4], and has
been previously discussed in the context of the pseudogap
metal [5–10]. Indeed, model calculations of the longitu-
dinal conductivities and the electrical Hall conductivity
in these fractionalized phases [5] are consistent with ex-
perimental observations in the metallic phases of several
cuprates. However, Ref. 2 shows that the large negative
κxy persists even in the insulating phase as the doping
p → 0. This is the extreme limit of breakdown of the
WF law, as σxy = 0. Motivated by this observation, we
restrict our focus to Mott insulators with gapped char-
gons and topological order, analogous to the phases dis-
cussed in Refs. 6 and 9, and compute the contribution to
the thermal Hall effect from deconfined, charge-neutral,
spinons.

Our first set of results is related to the thermal
Hall conductivity in square-lattice spin-liquid states with
nonzero scalar spin chiralities, χijk = Si·(Sj×Sk), where

Si is the spin operator on site i = (ix, iy) ∈ Z2 of the
square lattice, but without any spin-orbit coupling; these
results are presented in Section III. Note that, by virtue
of being odd under time reversal and spin rotation in-

FIG. 1. Schematic depiction of the thermal Hall effect in an
insulator with topological order, where the heat current is
carried by fractionalized S = 1/2 spinons.
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variant, χijk can couple to bond-current operators and,
hence, these states are in general associated with nonzero
loop currents. A recent paper [9] classified four likely
patterns (labeled A,B,C,D) of time-reversal and mirror-
plane symmetry breaking in spin liquids with nonzero
χijk and associated loop currents. Among these, only
pattern D has a nonzero κxy and hence, will be the cen-
ter of our attention. We will find that spin liquids of
pattern D, which breaks square-lattice and time-reversal
symmetries down to 4

mm
′m′, do indeed lead to values

of κxy/T of order k2
B/~ at temperatures above the spin

gap; below the spin gap, κxy/T vanishes exponentially
as T → 0 (see Eq. (41)). The reduction of the symmetry
to 4

mm
′m′ could either be spontaneous, or simply due

to the presence of an applied magnetic field. We note
that, in the latter case, no hysteresis in the thermal Hall
conductance is expected. As we review in Appendix A,
the orbital coupling of the field in a Hubbard-like model
induces a coupling between the magnetic field and the
uniform scalar spin chirality.

We also probe the thermal Hall conductivity of the
associated magnetically ordered states which break spin
rotation symmetry at T = 0. In two spatial dimensions,
spin rotation invariance is restored at any nonzero tem-
perature by thermal fluctuations, and this allows us to
treat such states with the same formalism as that used
for spin liquids. For such thermally disordered descen-
dants of magnetically ordered states we also find values
of κxy/T of order k2

B/~, but κxy/T vanishes as a power
of T as T → 0 (see Eq. (43)).

Although these results appear to be an attractive
model of the observations on the cuprates, it is impor-
tant to keep a caveat in mind. In the limit where full
square lattice and time-reversal symmetries are restored,
our Schwinger boson states can undergo phase transitions
to a variety of possible magnetically ordered states, and
the observed Néel state is only one among a continuum of
possibilities; see Appendix C 2. At least at the mean-field
level, there is no selection mechanism for the Néel state
when the time-reversal symmetry breaking to 4

mm
′m′ is

turned off. Nevertheless, a weakly distorted Néel state is
indeed one of the possible states leading to a large κxy/T .

The second set of conclusions in this paper pertain to
the influence of the spin-orbit coupling, which induces
Dzyaloshinskii-Moriya (DM) terms in the spin Hamilto-
nian. We study the DM term in spin liquids connected
to the Néel state, and find that it induces a significantly
smaller value of κxy/T , as described in Section IV.

Our starting point is a Mott insulator where the low-
energy degrees of freedom are the S = 1/2 spins of the
Cu atoms located on a square lattice, with a Hamiltonian
of the form

Hspin =
1

2

∑
i,j

(
Jij Si · Sj +Dm

ij · Si × Sj
)

−
∑
i

BZ · Si +Hχ.
(1)

The Heisenberg couplings Jij are taken to be positive,
Jij > 0, and spatially local. The orientation of the ex-
ternal magnetic field is assumed to be perpendicular to
the lattice plane (see Fig. 1). For the Zeeman field, we
have BZ = Bz ẑ, where we have absorbed the Bohr mag-
neton µB in the definition of Bz. The associated orbital
coupling is described by Hχ which involves third (and
higher-order) powers in Si (see Appendix A). We also in-
clude a spin-orbit induced Dzyaloshinskii-Moriya (DM)
term, which is allowed when certain spatial symmetries
are broken. The precise orientations of the DM coupling
vectors Dm

ij will be described below.

To treat Hspin, we adopt a Schwinger-boson mean-
field approach, which is capable of describing both spin-
liquid phases and ordered antiferromagnets [11, 12]. This
approach, as detailed later, provides us with a mean-
field ansatz, and the projective action of lattice or time-
reversal symmetries on the ansatz describes the particu-
lar spin-liquid state under consideration [13, 14]. Among
the different ansätze we consider, only one, for which all
in-plane reflection symmetries are broken (pattern D in
Ref. 9), leads to spinon bands with nonzero Chern num-
bers.

In previous literature, the thermal Hall effect has been
widely investigated on the kagomé [15–18], pyrochlore
[19], and honeycomb [20–24] lattices for insulating phases
with and without long-range magnetic order and in the
presence of additional electric field gradients [25]. How-
ever, it is strongly constrained by no-go theorems on the
square lattice owing to the geometry thereof; the fluc-
tuation of the scalar spin chirality averaged over nearby
elementary plaquettes in the square lattice vanishes for a
generic phase [26, 27]. For our model, the discrete broken
symmetries are carefully chosen such that the associated
loop current pattern corresponds to a net addition of spin
chirality on neighboring triangular plaquettes [9]. This
enables our model to overcome the symmetry barriers
associated with the square lattice. This can be achieved
since we consider a Schwinger-boson mean-field ansatz
(illustrated schematically in Fig. 3) that is not smoothly
connected to that of the usual Néel state (which has topo-
logically trivial bands). Rather, our ansatz can be viewed
as a perturbation to the symmetric bosonic π-flux spin-
liquid [14]. As we show in the paper, these perturbations
can indeed induce nonzero Chern numbers and lead to a
much larger κxy compared to other phases with topolog-
ically trivial spinon bands. At the same time, as already
noted above, the associated magnetically ordered phase
can still be (a small deformation of) the Néel state.

We begin in Section II by setting up the Schwinger-
boson mean-field formalism and its computation of the
thermal Hall conductivity. Section III evaluates the
thermal Hall effect in spin liquids with nontrivial mag-
netic point groups but full SU(2) spin-rotation invari-
ance (SRI). The DM term is not included in these anal-
yses, but is considered separately in Section IV (without
the additional time-reversal-symmetry-breaking terms of
Sec. III). Finally, Sec. V summarizes the results and four
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appendices, A through E, detail our calculations.

II. FORMALISM

In order to compute the thermal Hall conductivity, one
needs to first know the nature of the low-energy excita-
tions above the quantum ground state of Hspin. An ap-
proximate method to treat this problem is provided by
Schwinger-boson mean-field theory (SBMFT) in which
the Hamiltonian is written in terms of Schwinger bosons
[11, 12], whereupon an appropriate mean-field decoupling
renders it quadratic. We briefly review this formalism in
the context of the thermal Hall effect below.

A. Schwinger-boson mean-field theory

The spin operator can be represented at each site i =
(ix, iy) ∈ Z2 of the square lattice (we set a = 1 for the
lattice constant) using a pair of bosons (bi↑, bi↓) as

Si =
1

2

∑
σ,σ′

b†iσ σσσ′ biσ′ , (2)

where σ = (σ1, σ2, σ3)T is a vector of Pauli matrices.
These operators satisfy the standard bosonic commuta-

tion relations [biσ, b
†
jσ′ ] = δijδσσ′ . This construction en-

larges the on-site Hilbert space; to remain within the
physical space, Eq. (2) has to be supplemented with the
local holonomic constraint

n̂i =
∑
σ

b†iσbiσ = 2S, (3)

which enforces that S2
i = S (S + 1).

In this fashion, the reformulated Hamiltonian Hspin

contains only quadratic, quartic, and sextic terms in the
bosonic operators. Now, we perform a mean-field decou-
pling of Hspin into quadratic operators. We neglect here
the DM interactions, which will be analyzed in Sec. IV
and Appendix D, and the orbital coupling Hχ, which will
be discussed in Appendix A; for now, we concentrate on
terms that preserve SRI. The only such operators are the
spin singlets

Âi,j =
1

2

∑
σ,σ′

biσ(iσ2)σσ′bjσ′ ; Âj,i = −Âi,j , (4)

B̂i,j =
1

2

∑
σ

biσ b
†
jσ; B̂j,i = B̂†i,j , (5)

and their adjoints. Here and in the following, we use i
to denote the imaginary unit. The expectation values,
{Ai,j ,Bi,j}, of the operators in Eqs. (4) and (5) collec-
tively define the parameters of the mean-field ansatz.

First, let us examine the antiferromagnetic Heisenberg

exchange term [28] in a simple spin Hamiltonian.

H(1) =
∑
i>j

JijSi · Sj ; Jij > 0. (6)

Using the identity

Si ·Sj = : B̂†i,jB̂i,j : −Â†i,jÂi,j = B̂†i,jB̂i,j−Â
†
i,jÂi,j−

1

4
n̂i,

(7)
with : : denoting normal ordering, Eq. (6) can be reduced
to a mean-field quadratic bosonic Hamiltonian preserving
SU(2) spin-rotation invariance. This is achieved by ne-

glecting bond operator fluctuations and replacing 〈Âi,j〉
and 〈B̂i,j〉 by complex bond parameters Ai,j and Bi,j ,
respectively:

H
(1)
mf =

∑
i>j,σ

[
Jij
2

(
B∗i,jbiσ b

†
jσ −A

∗
i,jσ biσ bj−σ + h.c.

)
+ Jij

(
|Ai,j |2 − |Bi,j |2

) ]
+ λ

∑
i

(
b†iσbiσ − 2S

)
. (8)

At the mean-field level, the local constraint (3) is en-
forced only on average—namely, 〈n̂i〉 = κ via the La-
grange multiplier λ. One could, in principle, search for
an optimal Ai,j and Bi,j by self-consistently solving for
the stationary points of the mean-field free energy; how-
ever, for the purpose of the present work, we simply treat
them as free (complex) parameters. The only constraints
thereon come from the upper bounds [29] on the moduli
|A| ≤ S + 1/2, |B| ≤ S, which must be obeyed for any
self-consistent ansatz in SBMFT.

In the presence of a nonzero transverse magnetic field,
spin-rotation invariance is broken by the additional Zee-
man term in the Hamiltonian:

H(2) = −Bz
∑
i

Szi = −Bz
2

∑
i σ,σ′

b†iσ(σ3)σσ′biσ′ = H
(2)
mf .

(9)
This term is already quadratic and thus requires no fur-
ther decoupling.

Since we will discuss spin liquid phases with certain
discrete broken symmetries, to be precise, let us clar-
ify when a given ansatz breaks a symmetry. The phys-
ical spin operator is invariant under a local U(1) gauge
transformation bj → eiϕ(j)bj . Under such a gauge trans-
formation, the mean-field ansatz transforms as

Ai,j → ei(ϕ(i)+ϕ(j))Ai,j , Bi,j → ei(ϕ(i)−ϕ(j))Bi,j . (10)

Therefore, a symmetry g is preserved as long as there is
a gauge transformation, bj → Gg(j)bj , Gg(j) = eiϕg(j),
that leaves the ansatz invariant when combined with
the action of the symmetry operation. Contrarily, if no
such gauge transformation exists, or equivalently, there is
some gauge-invariant operator that transforms nontriv-
ially under g and has a finite (nonzero) expectation value
in the phase under consideration, then the symmetry g
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is broken.

B. Diagonalization of bosonic quadratic
Hamiltonians

The mean-field Schwinger boson Hamiltonian can be
diagonalized by the Bogoliubov-Valatin canonical trans-
formation [30, 31]. For illustrative purposes, consider a
general quadratic bosonic Hamiltonian

H =
1

2
Ψ†M Ψ; Ψ† =

(
b†1, . . . , b

†
N , b1, . . . , bN

)
.

(11)
Generically, the index n = 1, . . . , N on bn and b†n could
label momentum, spin, or some other degrees of freedom.
To find the eigenmodes corresponding toM , we introduce
new annihilation (creation) operators γm (γ†m) such that

Ψ = T Γ; Γ† ≡
(
γ†1, . . . , γ

†
N , γ1, . . . , γN

)
. (12)

The standard bosonic commutation relations for both the
Ψ and Γ fields are conveniently encapsulated in the ma-
trix equation[

Ψi,Ψ
†
j

]
=
[
Γi,Γ

†
j

]
= (ρ3)ij ; ρ3 ≡

(
1N×N 0

0 −1N×N

)
.

(13)
We choose T such that the Hamiltonian (11) becomes

H =
1

2
Γ† T†M T Γ; T†M T =


ω1 0 · · · 0
0 ω2 . . . 0
...

...
. . .

...
0 0 · · · ω2N

 ,

(14)
for ωi ∈ R. Meanwhile, to safeguard the bosonic statis-
tics of the system, the transformation matrix must fulfill
the necessary condition

T ρ3 T
† = ρ3, (15)

or, in other words, T is paraunitary [32]. The elements of
the transformation T can be obtained from the eigenvec-
tors of the dynamic matrix K = ρ3M , which defines the
Heisenberg equation of motion for Ψ. All the eigenvalues
of the dynamic matrix (when diagonalizable) are real and
appear in pairs. Then, T, conventionally referred to as
the derivative matrix, consists of all the eigenvectors of
K

T = [V (ω1), . . . , V (ωN ), V (−ω1), . . . , V (−ωN )] ,
(16)

with the eigenvectors V ordered as

V †(ωi) ρ3 V (ωi) = 1, V † (−ωi) ρ3 V (−ωi) = −1 (17)

for each set (V (ωi), V (−ωi)). Thus, each eigenvalue of
K is counted up to its multiplicity and the N dynamic

mode pairs are separated and arranged sequentially as
columns in T such that its left (right) half is filled with
eigenvectors of positive (negative) unit norms [33]. Con-
sequently,

T−1K T = diag (ω1, . . . , ωN , −ω1, . . . , −ωN ) , (18)

T†M T = diag (ω1, . . . , ωN , ω1, . . . , ωN ) , (19)

i.e. both M and K are simultaneously diagonalized. Bor-
rowing fermionic terminology for Eq. (14), we refer to the
bands with indices n = 1, . . . , N (n = N +1, , . . . , 2N) as
the particle (hole) bands.

C. Berry curvature and thermal Hall conductivity

The prescription outlined above can be straightfor-
wardly applied to the Hamiltonians in the sections
hereafter, the only difference being that the matrices
H(k)—associated with the mean-field Hamiltonian H =∑

k(Ψ†kH(k) Ψk)/2—and Tk therein are momentum-

dependent. Suppose εnk > 0 is the nth band energy
after such a diagonalization procedure; accordingly,

H =
∑
k

N∑
n=1

εnk

(
γ†nkγnk +

1

2

)
. (20)

Then, within SBMFT, the thermal Hall conductivity in
the clean limit is given by [34]

κxy = −k
2
B T

~V
∑
k

N∑
n=1

{
c2 [nB (εnk)]− π2

3

}
Ωnk, (21)

where the sum on n runs only over the particle bands.
Here, nB(ε) is the Bose distribution function, and

c2(x) ≡
∫ x

0

d t

(
ln

1 + t

t

)2

(22)

= (1 + x)

(
ln

1 + x

x

)2

− (lnx)2 − 2 Li2(−x),

which is monotonically increasing with x: it has a mini-
mum value of 0 at x = 0 and, in the opposite limit, tends
to π2/3 as x→∞. Ωnk in Eq. (21) is the Berry curvature
in momentum space [35], which, for bosonic systems, is
given by

Ωnk ≡ i εµν

[
ρ3

∂ T†k
∂ kµ

ρ3

∂ Tk

∂ kν

]
nn

; n = 1, . . . , N. (23)

The integral of the Berry curvature over the Brillouin
zone (BZ) is the first Chern integer [36, 37]

Cn =
1

2π

∫
bz

dk Ωnk ∈ Z. (24)
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In addition to being integer-valued, Cn further obeys the
constraint

N∑
n=1

Cn =

2N∑
n=N+1

Cn = 0, (25)

i.e. the sum of the Chern numbers over all particle and
hole bands is individually zero [35]. Since the expression
in Eq. (21) for κxy entails the summation over all par-
ticle bands and the momentum sum (or integral in the
thermodynamic limit) is taken over a closed surface (the
first Brillouin zone), Eq. (25) dictates that

−k
2
B T

~V
∑
k

N∑
n=1

{
−π

2

3

}
Ωnk = 0.

For this reason, we can neglect the additional −π2/3
piece in the momentum sum in Eq. (21) in the follow-
ing.

It is worth noting that the derivation of the formula
(21), with the Berry curvature defined as in Eq. (23), as-
sumes that H(k) has been chosen to satisfy the particle-
hole symmetry

H(k) = ρ1 (H(−k))
T
ρ1; ρ1 ≡

(
0 1N×N

1N×N 0

)
.

(26)
As it will be useful below, we point out that, as a con-
sequence, the Berry curvatures of the particle and hole
bands are related as [38]

Ωn+N,−k = −Ωnk; 1 ≤ n ≤ N. (27)

Before proceeding with the analysis of different spin-
liquid states, a few general statements on the behavior
of κxy are in order. First, if the temperature is much

larger than the maximum energy of the mth particle band
so that nB (εmk) � 1, the contribution of this band to
Eq. (21) is related to its Chern number Cm as

[
κxy
]
m
≈ π2 k2

B T

3 ~

∫
bz

dk

4π2
Ωmk =

π k2
B T

6 ~
Cm. (28)

Conversely, if T lies far below the minimum of the mth

band, then nB (εmk) ≈ 0 and its contribution to Eq. (21)
is exponentially small in the spinon gap divided by tem-
perature (see also Eq. (37) below).

As Ωnk is weighted by c2 [nB (εnk)] in Eq. (21), there
is a nonvanishing thermal Hall conductivity at finite tem-
peratures even if all bands have zero Chern numbers. The
overall magnitude of κxy, however, hinges on whether
Cn = 0 or Cn 6= 0. For a trivial band, the momentum-
space average of the Berry curvature is itself zero and we
generically expect that

[
κxy
]
m|Cm=0

�
[
κxy
]
m|Cm 6=0

.

As a result, the total κxy is expected to be much smaller
for a system with Cn = 0 ∀n than for one with nonzero
Chern numbers. This is evident upon comparing Figs. 5

and 8, which correspond to conductivities arising from
C 6= 0 and C = 0 bands, respectively; for a similar
set of parameters, the former are a thousandfold larger.
We note that, in principle, it is possible that the Berry-
curvature has significant energy dependence and, hence,
κxy is large even for Cn = 0; however, such a situation
was not realized for any of the ansätze we considered in
this work.

III. SPIN LIQUID ANSÄTZE WITH
TIME-REVERSAL SYMMETRY BREAKING

Having established the necessity of Chern numbers for
a sizable thermal Hall conductivity, we study spin liquid
models that can yield such topologically nontrivial band
structures within SBMFT. Inspired by the recent work
of Ref. 9 in the context of possible broken symmetries
in cuprates, we examine states with nontrivial magnetic
point groups. By breaking time-reversal symmetry while
preserving SRI, the ansätze we discuss are naturally as-
sociated with nonzero scalar spin chiralities.

The simplest class of symmetry-breaking spin liquids of
Ref. 9 are described by ansätze that, while preserving all
translational symmetries of the square lattice, have mag-
netic point group m′mm; this means that two-fold ro-
tation perpendicular to the plane, C2, and time-reversal
symmetry, Θ, are broken, but the product ΘC2 is pre-
served. Depending on whether the reflection symmetry
along a Cu-O bond or along a diagonal Cu-Cu bond is
present, these states are referred to as patterns A and B
in Ref. 9; they also appeared in studies of Z2 spin liquids
using bosonic [6, 8] and fermionic [39] spinons. How-
ever, as will be shown below, both these ansätze lead to
spinon bands which are topologically trivial, prompting
the consideration of other patterns to procure nonzero
Chern numbers.

To this end, we analyze a translationally invariant spin
liquid phase, referred to as pattern D in Ref. 9, that
has magnetic point group 4

mm
′m′; this means that time-

reversal symmetry and the point group C4v have been
broken down to the symmetry group generated by four-
fold rotation perpendicular to the plane, C4, and ΘRx
(the product of time-reversal Θ and reflection symmetry
Rx at the xz plane). Unlike the earlier cases, all mir-
ror symmetries are broken by this ansatz and the sum
of all scalar spin chiralities within the unit cell does not
add up to zero. As evidenced in this section, we find that
nonzero Chern integers can indeed be realized. Note that
the magnetic symmetries of the state we consider are the
same as those of an orbital magnetic field. Consequently,
if the ansatz emerges spontaneously, we find an anoma-
lous contribution to κxy, i.e. a thermal Hall response in
the absence of an external magnetic field. This, how-
ever, also means that the symmetry-breaking terms of
the ansatz can be induced by the orbital coupling Hχ. In
the latter case, there is no anomalous contribution.
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A. One-orbital model with trivial bands

Throughout this section, we direct our attention to
the one-orbital model of the cuprate superconductors,
which only involves the Cu-d orbitals forming a square
lattice as shown in Fig. 3. The general form of the mean-
field Hamiltonian, only involving spin-rotation invariant
terms, reads as

Hmf =
J

2

∑
i,j, σ

(
Bi,j b†iσbjσ −A

∗
i,j σ biσbj−σ + h.c.

)
+ λ

∑
iσ

(
b†iσbiσ − S

)
. (29)

One can write down a suitable ansatz consistent with all
the m′mm symmetries to describe pattern A as

Ai,i+x̂ = Ai,i+ŷ = A1, Bi,i+x̂ = Bi,i+ŷ = iB1,

Ai,i+x̂+ŷ = Ai,i−x̂+ŷ = A2, (30a)

and all others terms set to zero, where x̂ = (1, 0) and
ŷ = (0, 1) have been introduced. Similarly, for pattern
B,

Ai,i+x̂ = Ai,i+ŷ = A1, Bi,i+x̂ = Bi,i+ŷ = iB1,

Ai,i+x̂+ŷ = A2. (30b)

(a) (b)

FIG. 2. Schwinger boson band structure (in units of JA1)
for the ansatz of (a) Eq. (30a) (pattern A), and (b) Eq. (30b)
(pattern B), with A2 = 0.75, B1 = 0.5, Bz = 0, and λ = 3.
For clarity, the eigenvalues of the dynamic matrix are shown;
the energies of the actual bosonic bands are just the abso-
lute values of the same and are strictly positive. The differ-
ent lines for each of the two colors refer to distinct values
of ky = −π,−π + π/6, . . . , π. The dispersion minima are at
±(π/2, π/2) for A2 = 0, but shift to ±(K,K), with K incom-
mensurate, when A2 6= 0. The states can thus be smoothly
connected to the antiferromagnet by tuning A2.

By tuning |B1| and |A2| to sufficiently small values,
the ansätze in Eq. (30) can be brought arbitrarily close
to that of the conventional two-sublattice Néel state and
its quantum-disordered partner (for which only A1 is
nonzero in Eq. (30)). Accordingly, the concomitant mag-
netically ordered state is a smooth deformation of the
Néel state and happens to be a conical spiral [6, 40].

Since the spectrum for |B1|, |A2| 6= 0, illustrated in

FIG. 3. Schwinger-boson mean-field ansatz for the one-orbital
model defined by Eqs. (31) and (33). The Cu atoms in the
CuO2 plane are depicted here as dark blue circles. The ar-
rows indicate the sign conventions: along the (next-)nearest-
neighbor bond from site i to site j, the bond operators have
the expectation values 〈Âi,j〉 = A1(2), 〈B̂i,j〉 = iB1(2); due

to Âj,i = −Âi,j and B̂j,i = B̂†i,j , the bonds are directed and
associated with blue (red) arrows in the figure.

Fig. 2, retains its gap upon continuously tuning B1 and
A2 to zero, the Chern numbers must be Cn = 0 (exactly
like those of the Néel state), wherefore these ansätze are
not expected to be a good starting point for obtaining a
sizeable thermal Hall response.

B. Chern numbers and thermal Hall conductivity

The considerations above seem to suggest looking in-
stead at ansätze that are not adiabatically connected to
that of the conventional antiferromagnet with only A1

nonzero. Motivated by the recent study [9] of spin-liquid
states with orbital loop currents, we next consider an
ansatz with magnetic point group 4

mm
′m′. A minimal

choice, yielding this point group while preserving trans-
lations, Tx, Ty, is

Ai,i+x̂ = A1, Ai,i+ŷ = (−1)ix+iyA1, (31a)

Bi,i+ηµ = i sµ(−1)ix+iyB2, (31b)

with second-nearest-neighbor vectors ηµ = x̂ + (−1)µŷ.
The relative signs of sµ ∈ {+1,−1} can be read off Fig. 3,
and are chosen so as to attain the correct magnetic point
group. Obviously, the ansatz is not explicitly invariant
under the symmetry generators Tx, Ty, C4, and ΘRx.
However, since the symmetries act projectively, it is in-
variant under the respective symmetry operations when
they are applied in conjunction with the following gauge
transformations:

GTµ(j) = (−1)jy , ; µ = x, y, (32a)

GΘRµ(j) = i(−1)jx+jy , (32b)

GC2
(j) = (−1)jx , (32c)

GC4
(j) =


cos
(π

2
(jx + jy)

)
; j ∈ α,

sin
(π

2
(jx + jy)

)
; j ∈ β.

(32d)
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At the same time, one can indeed construct explicit
gauge-invariant fluxes which are odd under Θ or Rµ [9],
and our ansatz does break these symmetries.

It turns out that the ansatz of Eq. (31a–b) alone proves
to be insufficient to yield bands with nonzero Chern num-
bers, so we add on top the additional operator expecta-
tion values:

Bi,i+x̂ = iB1, Bi,i+ŷ = i(−1)ix+iyB1, (33a)

Ai,i+ηµ = sµ(−1)ix+iyA2. (33b)

It is straightforward to check that Eqs. (31) and (33),
in totality, preserve both translation and 4

mm
′m′ by ap-

plying the gauge transformations in Eq. (32). From this
point onward, the term “one-orbital model” always im-
plicitly refers to this combined ansatz for pattern D. For
completeness, the three-orbital model of the cuprates,
also taking into account the oxygen p orbitals, is dis-
cussed in Appendix E; the conclusions are similar in
spirit.

The generalization in (33) results in topologically non-
trivial bosonic bands and, hence, a considerable thermal
Hall response as we show below. As long as the inter-
band gaps remain open, the Chern integers are invariant
under smooth variations of the mean-field parameters
{Aµ,Bµ} in the Hamiltonian. Consequently, this state
is not smoothly connected to the SBMFT of the con-
ventional square-lattice antiferromagnet, for which the
Chern numbers of all the bands are identically zero.

A useful characterization of spin-liquid phases can be
obtained by gauge invariant fluxes. Of particular impor-
tance for our study is the flux φ = A1,2A∗2,3A3,4A∗4,1,
where 1, 2, 3, and 4 label the four sites of any elementary
square plaquette in counterclockwise order. The limit-
ing case A2 = B1 = B2 = 0 of the ansatz in Fig. 3
corresponds to the π-flux states of Yang and Wang [14],
which have full square-lattice and time-reversal symme-
tries; turning on nonzero values ofA2, B1, and B2 reduces
the symmetry to 4

mm
′m′, and leads to spinon bands with

nonzero Chern numbers. On the other hand, the CP1

model [41], a low-energy effective field theory of quan-
tum antiferromagnets on a square lattice, describes the
more familiar zero-flux Schwinger boson state [14]. It was
shown in Ref. 9 that there is no quadratic perturbation
to the CP1 theory which breaks the symmetry down to
4
mm

′m′, and we discuss the needed perturbations further
in Appendix B. Our results here are consistent with these
earlier results: we need to perturb a π-flux state to have
nonzero Chern numbers of spinon bands in SBMFT; such
nontrivial bands cannot be obtained as a perturbation of
the zero-flux state. Further, the CP1 theory can natu-
rally describe low-energy excitations close to Q = (0, 0)
and (π, π); in contrast the spin-liquid phase we consider
has low energy excitations at (0, π) and (π, 0) as well.

Yang and Wang [14] also analyzed the magnetic or-
dered states that appeared upon condensing bosonic
spinons from the π-flux state. They found a variety of
possibilities with ordered moments at wavevectors (0, π),

(π, 0), and (π, π)—this included cases where the domi-
nant moment was at the (π, π) wavevector of the Néel
state. Nonzero values of A2, B1, and B2 distort these
states to also allow for a (possibly small) ferromagnetic
moment at (0, 0), leading to a four-sublattice magnetic
order of the form (see Appendix C 2 for details)

〈S(j)〉 = n(0,0) + (−1)jx n(π,0) + (−1)jy n(0,π) (34)

+ (−1)jx+jy n(π,π).

Note that this ferromagnetic moment arises without a
Zeeman term in the Hamiltonian, and is a consequence of
either spontaneous breaking of the symmetry to 4

mm
′m′,

or one induced by the orbital coupling to the external
field (see Appendix A).

One might wonder whether adding the orbital coupling
of the magnetic field, Hχ, described in leading order in
t/U by terms involving the triple products Si · (Sj ×Sk)
[42], can be used to describe the symmetry reduction
to the magnetic point group 4

mm
′m′ within SBMFT.

We consider the decoupling of this triple product term
in Appendix A. Although we do not include this self-
consistently in our analysis, we verify that spin-liquid
states with symmetry broken to 4

mm
′m′ do indeed lead

to a nonzero expectation value for the triple products in
the Hamiltonian, in the quadratic approximation.

1. Spectrum and symmetries

In spite of the final thermal Hall conductivity itself
being a gauge-invariant quantity, any intermediate cal-
culations require the explicit choice of a gauge. Owing
to the alternating factor of (−1)ix+iy , the ansatz (31) is
translationally invariant only modulo a gauge transfor-
mation or, in other words, it is invariant under two-site
lattice translations when working in a fixed gauge. We
therefore choose a two-sublattice unit cell with sublat-
tice indices defined by the parity of ix + iy. In each
unit cell, we denote the Schwinger boson operators by
α (even parity) and β (odd parity). The basis vectors
for this new bipartite lattice are ηµ, and the reciprocal
lattice vectors are Gµ = π ηµ, so the BZ can be chosen
to be the conventional antiferromagnetic Brillouin zone,
{(kx, ky) | kx, ky ∈ [−π, π); |kx|+ |ky| ≤ π}.

As sketched in Appendix C, the mean-field Hamilto-
nian can be represented in terms of the eight-component

spinor Ψ†k = (α†k↑ β
†
k↑ α

†
k↓ β

†
k↓ α−k↑ β−k↑ α−k↓ β−k↓) with

Hmf =
∑

k(Ψ†kH(k) Ψk)/2. The associated band struc-
tures upon diagonalization are plotted in Fig. 4. At each
momentum k, the dynamic matrix K has eight eigenval-
ues, four positive and four negative; we label the former
(latter) by n = 1, . . . , 4 (n = 5, . . . , 8) in ascending (de-
scending) order. The energies of the actual bosonic bands
are simply the absolute values of these and are necessarily
positive.

Additionally, the Hamiltonian H(k) harbors another
symmetry that is somewhat less apparent. Although the
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FIG. 4. (a) Dispersion of the Schwinger-boson particle bands εnk, n = 1, . . . , 4, shown in blue, orange, green, and red,
respectively, along the line kx = 0, for the one-orbital model with A2 = 0, B1 = 0, B2 = 0.25, λ = 2, and Bz = 0.5, measured
in units of JA1. The bands touch along lines in the BZ, as underscored by the density plot of ε2k − ε1k in (b), and thus
lack well-defined Chern numbers. (c) The intersection of the bands persists even with A2 = 0.75 on top of the parameters
in (a,b). (d) The addition of a nonzero B1 (taken to be 0.5 here) is required to prevent the touching of two particle bands,
necessitating the addition of Eq. (33) to the minimal ansatz. With B1 6= 0, the bands acquire a nontrivial Chern number. (e)
The dispersion of the lowest-energy band in (d) exhibits minima at k = (±π/2, 0), indicating anisotropic antiferromagnetic
order in the corresponding confined phase. (f) Berry curvature for the particle band displayed in (e); it is seen that Ω1k = 0
at the global minima of the dispersion. The first Chern integers are Cn = −1 (+1) for the n = 1, 2 (n = 3, 4) bands. The
curvatures are ill-defined at Bz = 0, for which all the particle bands are pairwise degenerate.

particle bands are generically distinct, they become pair-
wise degenerate when there is no Zeeman field, Bz = 0.
We emphasize that this degeneracy is not the same as the
trivial redundancy described in Eq. (19), which arises due
to the pairwise occurrence of the eigenvalues of the dy-
namic matrix. Despite the seeming lack of an a priori
reason, the degeneracy of these eigenvalues stems from
an effective antiunitary symmetry, which we scrutinize
more carefully later in Appendix C 1.

From the paraunitary matrix Tk, one can calculate
the Berry curvatures of the bands. However, the Berry
connection—defined as

Aj,µ(k) ≡ i Tr
[
Γj ρ3 T

†
k ρ3

(
∂kµTk

)]
, (35)

where Γj is a diagonal matrix with (Γj)ab = δjaδjb—
cannot be smoothly specified over the entire BZ and the
phases of the eigenvectors that constitute Tk must be
chosen accordingly. The resolution lies in decomposing

the BZ into two overlapping regions H1 and H2 with
H1 ∪H2 = BZ, and H1 ∩H2 = ∂H1 = −∂H2 [35]. These
regions are chosen such that [Tk]mν ,j is never zero within
the region Hν , where ν = 1, 2, and mν = 1, . . . , 8. The
phase of the jth eigenvector can then be uniquely de-
fined by choosing a gauge in region H1 (H2) such that
[Tk]m1,j ([Tk]m2,j) is always real and positive. The two
gauge choices, which are related by a U(1) transforma-
tion, are patched together to cover the entire BZ. This
construction enables us to unambiguously calculate the
Chern number [43, 44] as

Cj =
1

2π

∮
∂H1

dk ·
(
A

(1)
j −A

(2)
j

)
, (36)

where (A
(ν)
j )µ is the gauge field [Eq. (35)] of band j in the

patch ν. Inspecting the eigenstructure of Tk, we find a
suitable partition to be H1 = {k : ky ≤ 0, |kx|+|ky| ≤ π}
and H2 = BZ\H1. The resultant Berry curvatures for
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the particle bands are illustrated in Fig. 4(f). The final
thermal Hall conductivity, which involves contributions
from all four bands, is plotted in Fig. 5.

2. Parameter dependence of κxy

In this subsection, we discuss the parameter depen-
dence of the thermal Hall conductivity in Fig. 5 in detail
and compare with asymptotic analytical considerations.

First, note that while κxy is always positive in the plots
of Fig. 5, its sign is actually determined by that of the
parameters Aµ and Bµ of the ansatz; under the simulta-
neous reversal of Aµ → −Aµ and Bµ → −Bµ, the Hall
conductivity also changes sign as κxy → −κxy. This is re-
quired by symmetry as the global sign reversal of Aµ and
Bµ is equivalent (modulo gauge transformation G(j) = i)
to performing a time-reversal transformation.

Next, we turn to the temperature and field depen-
dence. κxy/T tends to zero at high temperatures—where
all bands are equally occupied—as well as very low tem-
peratures, below the spinon gap, when all bands are
nearly empty: intuitively, c2(nB) is the same constant
for any band for both high and low T ; factoring it out,
we are left with the sum of the Chern numbers of all the
particle bands and these add up to zero. To determine
how κxy/T decays for low and high T , we use the asymp-
totic expansions for the c2 function defined in Eq. (22):

c2(x)→


π2

3
− 1

x
+

1

2x2
+O

(
1

x3

)
; for x→∞,(

2− ln(x) + ln2(x)
)
x+O(x2 ln(x)); for x→ 0.

(37)

For simplicity, consider the contribution to κxy for a sin-
gle pair of particle bands that have equal Berry curva-
tures (ergo, Chern numbers)—the existence of such a pair
is guaranteed by the effective antiunitary symmetry in
the one-orbital model discussed above. Without loss of
generality, let these be labeled by n = 1, 2; the discus-
sion here can be easily extended to include the n = 3, 4
bands for the specific case of the one-orbital model. At
zero external magnetic field, the bands in the pair are
degenerate energetically, i.e. ε1k = ε2k ≡ Ek, and have
the same curvatures Ω1k = Ω2k. A finite uniform Zee-
man field splits their energies to Ek ± Bz/2. The Zee-
man term is proportional to the identity in the dynami-
cal matrix K of Eq. (C5). Therefore, it leaves the spinon
wavefunctions, which are determined by the dynamic ma-
trix K rather than the Hamiltonian, unchanged. Hence,
the Berry curvature remains unaffected, whereby we still
have Ω1k = Ω2k.

At temperatures much larger than the band maximum,
it is reasonable to approximate the Bose dstribution func-
tion by nB(E) ∼ kBT/E for kBT � E. Using Eq. (21),

the thermal Hall conductivity then follows as

κxy
T

= − k
2
B

~V
∑
k

∑
n=1,2

{
c2 [nB (εnk)]− π2

3

}
Ωnk,

≈ k2
B

~V
∑
k

(
Ω1k

nB(ε1k)
+

Ω2k

nB(ε2k)

)
+O

(
1

n2
B(εnk)

)
=

k2
B

~V
∑
k

Ω1k

(
Ek −Bz/2

kBT
+
Ek +Bz/2

kBT

)
=

(
2

T

)
kB
~V

∑
k

Ω1kEk ≈
kB ζ C1

π ~T
, (38)

where C1 is the Chern number of the n = 1 band, and
ζ is a measure of the average band energy without the
magnetic field. We stress that Eq. (38) is a consequence
of the effective antiunitary symmetry explicated in Ap-
pendix C 1, and, in particular, of Eq. (C10), which en-
sures the equality of the Berry curvatures for the two
bands. Therefore, to first order, κxy is independent of Bz
at high temperatures, in consistence with Fig. 5(b). In
particular, there is an anomalous thermal Hall response,
i.e., κxy 6= 0 for Bz = 0. This is expected based on the
symmetries of the ansatz that are identical to those of
the orbital magnetic field.

Going beyond leading order in the 1/T expansion in-
corporates a subleading term

κxy
T

=
kB ζ C+

π ~T

(
1− 3B2

z + 4 ζ2

72 k2
B T

2

)
+O

(
1

T 4

)
. (39)

This term is of the opposite sign but it is parametri-
cally small, and being of O(B2

z/T
3), negligible at high T .

Hence, the decrease of κxy with Bz is hardly observable in
Fig. 5(b). Note, however, that in reality, the parameters
of the ansatz itself might be magnetic field dependent—
this is not accounted for in the present calculation, and
might yield a rather different dependence of κxy on the
magnetic field.

Eq. (39) also specifies that κxy/T goes to zero as 1/T

at large temperatures (with 1/T 3 corrections), which is
indeed confirmed by Fig. 5(c) for T & 0.5.

On the contrary, at T much smaller than the spinon
gap ∆, the bosonic band occupancies are almost zero,
and we can approximate nB(E) ≈ e−E/kBT for all bands.
For the leading contribution, we need only consider the
dominant term in the small x expansion of c2(x) from
Eq. (37), which goes as x ln2(x). The net result in the
T � ∆ limit is

κxy
T

= − k
2
B

~V
∑
k

∑
n=1,2

c2 [nB (εnk)] Ωnk

≈ − k
2
B

~V
∑
k

(
ε2

1ke−ε1k/kBT + ε2
2keε2k/kBT

) Ω1k

(kBT )2

≈ C1

2π ~T 2
e−∆/kBT

(
∆2 + e−Bz/kBT (∆ +Bz)

2
)
.

(40)
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FIG. 5. Thermal Hall conductivity in the one-orbital model with the parameters A2 = 0.75, B1 = 0.5, B2 = 0.25, and λ = 2,
as a function of Zeeman field at (a) low, and (b) high temperatures. In the second case, there is almost no dependence on
Bz. We emphasize that we only show the dependence of κxy/T on the Zeeman field at constant orbital coupling. The latter
enters indirectly through the parameters, A1,2, B1,2, of the ansatz. (c) The variation of κxy/T with temperature at a constant
Bz = 0.25 for which the spinon gap (inset) is ∆ = 0.582. The parameter A2 can be used to tune the strength of the response.
κxy/T decays as (∆/T )2 exp(−∆/T ) and 1/T (with 1/T 3 corrections) at low and high temperatures, respectively. (d) The same
as in (c) but with the gap now varied as ∆(T ) = T exp(−m/T );m = 0.2π, so that it is exponentially small with temperature.
As in the figures above, all energies are measured in units of JA1.

In moderate magnetic fields Bz > T , κxy/T decays expo-

nentially as (∆/T )2 exp(−∆/kBT ) at low temperatures,
in agreement with the regime of T . 0.5 in Fig. 5(c).
Concurrently, Eq. (40) tells us about the dependence of
κxy on the external magnetic field. Recognizing that the
spinon gap ∆ at a finite field Bz is related to the zero-field
gap ∆0 as ∆ = ∆0 −Bz/2, we find that

κxy
T
≈ C1

2π ~T 2
e−∆0/kBT

(∑
n=±

e−nBz/2kBT (∆0 + nBz/2)2

)

≈ C1

π ~T 2
cosh

(
Bz

2kBT

)
e−∆0/kBT (41)

for small Bz � ∆0, thereby justifying the nonlinear be-
havior observed in Fig. 5(a).

Another interesting limit is the intermediate temper-
ature range when ∆ < max ε1,k . T . min ε2,k. From

the aforementioned calculations, we notice that the ther-
mal Hall conductivity is the largest in this two-band pic-
ture when the magnetic field splits the particle and hole
bands—both of which have nonzero Chern numbers—
such that the temperature T is greater than the lower-
band maximum, but smaller than the upper-band mini-
mum.

With our formalism, we can also study phases with
magnetic order at T = 0, but with restored SRI due
to thermal fluctuations at nonzero temperature. To this
end, we vary the gap such that it is exponentially small
with temperature —in practice, this is achieved by tun-
ing the Lagrange multiplier λ. Instead of performing a
self-consistent calculation, we assume a functional form
∆(T ) = T exp(−m/T ), m = 2πρs (with spin stiffness
ρs), in analogy with the 2D antiferromagnetic Heisen-
berg model [45–47]. The variation of κxy/T with this
choice of ∆(T ) is conveyed by Fig. 5(d). Despite always
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being in the regime ∆ < T , κxy/T does not diverge as
T → 0, but instead tends to zero. To understand this, we
focus on the contribution from the lowest band and mo-
menta close to the dispersion minima ±k0. Near ±k0,
the momentum dependence of the energy is quadratic,
while that of the Berry curvature is empirically observed
to be quartic. Accordingly, assuming ∆ = 0,

κxy
T
≈ − k

2
B

~V
∑
k

Ω1k

nB(ε1k)
(42)

≈ −k
2
B

~

∫
|k−k0|<Λ

d2k

(2π)2
Ω0(k− k0)4 c2

(
1

e(k−k0)2/2m∗T − 1

)

− k2
B

~

∫
|k+k0|<Λ

d2k

(2π)2
Ω0(k + k0)4 c2

(
1

e(k+k0)2/2m∗T − 1

)
.

As T → 0, we may rescale k±k0 = y
√

2m∗T and extend
the upper limit of y integration to infinity, to obtain

κxy
T

= −2k2
B(2m∗T )3Ω0

~

∫ ∞
0

y5dy

2π
c2

(
1

ey2 − 1

)
= −2k2

B(2m∗T )3Ω0

~
(5.78117 . . .) (43)

So we find that κxy/T ∼ T 3 as T → 0 with ∆� T .

IV. ANTIFERROMAGNET WITH
DZYALOSHINSKII-MORIYA INTERACTIONS

So far, our discussion has been confined exclusively to
spin-rotation-invariant spin liquids. In this section, we
will extend the analysis to include spin-orbit coupling,
i.e. spin-rotations are not independent symmetry oper-
ations any more, but are coupled with real-space sym-
metry transformations. In terms of the underlying spin
model, this corresponds to including DM interactions
[48–50] as described by the term proportional to Dm

ij in
Eq. (1),

H(3) =
∑
〈i,j〉

Dm
ij · (Si × Sj) . (44)

The thermal transport properties of a spin Hamilto-
nian with DM coupling was studied on the kagomé lat-
tice in Ref. 51 for the magnetically ordered phase using
both Holstein-Primakoff bosons and Schwinger bosons—
in particular, the latter approach featured a large ther-
mal Hall coefficient at Bz, T ∼ J . On the square lat-
tice, however, it is strongly constrained by no-go theo-
rems [26, 27]. In a recent spin-wave analysis, Ref. 52
demonstrated that a thermal Hall effect can be realized
in an inversion-symmetry-broken square-lattice antifer-
romagnet with DM couplings. Here, we move away from
the magnon description, which necessarily requires long-
range magnetic order, and probe the influence of the DM

FIG. 6. Illustration of the DM coupling vectors [53, 54]
for (a) orthorhombic La2CuO4 and (b) YBCO, where the
black dots represent the Cu atoms of the CuO2 planes and
D1 = (d1, d2, 0)T , D2 = (−d2,−d1, 0)T , D3 = (d3, 0, 0)T ,
D4 = (0, d3, 0)T with real constants dj (not determined by
symmetry). Given that Dm

ij = −Dm
ji, the DM coupling vec-

tor Dm
ij corresponds to a directed bond, which is indicated

by the arrows in the figure. The different DM textures are
due to the different symmetries: in YBCO, the Cu atoms
are not centers of inversion, which allows a spatially constant
DM coupling vector; in La2CuO4, it must alternate in sign
since the Cu atoms are inversion centers, which is permitted
because of the broken translational symmetry.

interactions relevant to the cuprate superconductors in a
spin-liquid phase using Schwinger bosons. We will show
that some of these DM vectors can lead to a nonzero
Berry curvature, Ωnk 6= 0, and, in turn, a nonzero ther-
mal Hall coefficient, albeit with much smaller magnitude
than in the ansatz of Sec. III B. This is related to the
fact that the Chern number vanishes for each band in
the models with DM interactions that we study here.

We will focus here on the Zeeman coupling of the
magnetic field and neglect orbital effects. In this case,
only a certain class of DM coupling vectors can lead to
κxy 6= 0 due to symmetry constraints. For instance, con-
sider global spin rotations by angle |ϕ| along axis ϕ/|ϕ|.
Under these transformations, it holds that Jij → Jij ,
BZ → RϕBZ , and Dm

ij → RϕD
m
ij , where Rϕ is the

vector representation of the spin rotation. As for any
spin-rotation-invariant observable, the thermal Hall con-
ductivity κxy satisfies

κxy[Jij ,D
m
ij ,BZ ] = κxy[Jij , RϕD

m
ij , RϕBZ ]. (45)

Being odd under time-reversal, it further obeys

κxy[Jij ,D
m
ij ,BZ ] = −κxy[Jij ,D

m
ij ,−BZ ]. (46)

Consequently, if the DM coupling vectors are colinear, i.e.

Dm
ij ∝ d̂, and d̂ ·BZ = 0, the combination of Eqs. (45)

and (46), with ϕ = πd̂, implies κxy = 0. To wit, this
is the case for Dm

ij = D0x̂, or for the potentially more
relevant (spatially alternating) DM coupling vector of the
tetragonal phase of La2CuO4 [54].

It is also easily seen that κxy vanishes for the DM
coupling vector in the orthorhombic phase of La2CuO4

(Fig. 6(a)): the spatial reflection symmetry Ry with ac-
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tion (x, y)→ (−x, y), not combined with any rotation in
spin space, remains a symmetry of the system also in the
presence of Zeeman field along ẑ. Being odd under Ry,
κxy has to vanish.

This is different for the DM coupling vector expected to
arise in the tetragonal phase of YBa2Cu3O6+x (YBCO)
[54], shown in Fig. 6(b), which analytically corresponds
to

Dm
ij = D‖ d̂ij , d̂ij = dij (cos θij x̂+ sin θij ŷ) , (47)

where d̂ij is a unit vector, dij = −dji = ±1 for j = i± êµ
(µ = x, y), and θij = 0 (π/2) on all x (y) bonds.
Note that this form of Dm

ij respects the translational
and fourfold-rotational (C4) symmetries of the underly-
ing square lattice (when accompanied by an appropriate
rotation in spin space). It is not collinear and does break
time-reversal symmetry (the argument in Eqs. (45)–(46)
does not apply); furthermore, it also breaks all in-plane
reflection symmetries in combination with a Zeeman field
and will indeed give rise to a nonzero thermal Hall re-
sponse as we will show next.

To proceed with the Schwinger-Boson description of
the DM interactions, we define the additional operators

Ĉ†i,j =
1

2

∑
µ ν

b†iµ

(
i d̂ij · σ

)
µν
bjν =

i

2
dij e−iσ θij b†iσbj−σ,

D̂i,j =
1

2

∑
µ ν

biµ

(
σ2 d̂ij · σ

)
µν
bjν = − i

2
σ dij eiσ θij biσbjσ,

whereupon the DM term can be decomposed as [55]

d̂ij · (Si × Sj) =
1

2

(
:B̂†i,j Ĉi,j + Ĉ†i,jB̂i,j :

+Â†i,jD̂i,j + D̂†i,jÂi,j
)
. (48)

Assuming only SU(2) spin-rotation-invariant operators
acquire nontrivial expectation values in the mean-field

decoupling (e.g., B̂†i,j Ĉi,j → 〈B̂†i,j〉 Ĉi,j + const.), the
SBMFT analysis is carried out in Appendix D to obtain
the dispersion of the bosonic bands for a zero-flux ansatz
appropriate to a conventional Néel state [14], Ai,i+µ = A,
Bi,i+µ = B ∀ i, µ = x̂, ŷ, taking the DM coupling vector
defined in Eq. (47) and Fig. 6(b). Note that considering
only SU(2)-invariant operators does not mean that the
resulting mean-field Hamiltonian preserves SRI since the
DM term in Eq. (48) couples the operators, Âi,j and B̂i,j ,
that are spin rotation invariant, to Ĉi,j and D̂i,j , which
are not.

Unlike previously, there is no effective antiunitary sym-
metry and therefore, the bands are nondegenerate even
in zero fields. Nonetheless, in the absence of a magnetic
field, the two particle (and hole) bands intersect at a
finite number of points as can be seen in Fig. 7(a), so
the Berry curvatures are well-defined only for Bz 6= 0.
These are plotted for the Schwinger-boson particle bands

- 6
- 4
- 2

0
2
4
6

(a)

- 6
- 4
- 2

0
2
4
6

(b)

(c) (d)

(e) (f)

FIG. 7. (a–b): Dispersion of the Schwinger-boson bands
for the mean-field approximation to Hspin (1), with JxA =
JyA = 1, B = 0.5i, and D‖ = 0.10, in (a) zero and (b)
large (Bz = 2) magnetic fields. Shown are the eigenval-
ues of the dynamic matrix—the bosonic bands have ener-
gies given by the absolute values of the same, which are
always positive. In a finite magnetic field, the individual
particle and hole bands become progressively well separated.
Exactly as in Fig. 2, the lines refer to different values of
ky = −π,−π + π/6, . . . , π. (c–d): Same as above but now
plotted in the kx–ky plane for the (c) n = 1 (blue; particle)
and (d) n = 3 (yellow; hole) bands, at Bz = 0—the two bands
are nonidentical. At each point in k-space, min (ε1k, ε3k) cor-
responds to the lowest energy eigenmode and the band min-
ima are at {(π/2, π/2), (−π/2,−π/2)}. Condensation of these
Schwinger bosons generally leads to long-range antiferromag-
netic order. (e–f) Berry curvatures of the particle bands with
the same parameters as before, and a magnetic field Bz = 0.5.

in Figs. 7(e) and 7(f); the curvatures of the hole bands are
related by Eq. (27). Despite a nonvanishing Berry cur-
vature, each bands is actually topologically trivial with
zero Chern number.

The ensuing thermal Hall conductivities, which can be
calculated directly using the formalism of Sec. II C, are
found to be more than two orders of magnitude smaller



13

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Printed by Wolfram Mathematica Student Edition

0 0.5 1 1.5 2 2.5 3
0

1

2

3

Printed by Wolfram Mathematica Student Edition

FIG. 8. The thermal Hall conductivity in an antiferromag-
netic Heisenberg spin model with Dzyaloshinskii-Moriya in-
teractions, as a function of magnetic field for different con-
stant temperatures (top) and as a function of temperature
at a constant magnetic field Bz = 0.5 (bottom). Although
not clearly visible in the numerical data, κxy has to vanish
exactly at zero field (no anomalous contributions) as dictated
by symmetry. The couplings considered are JxA = JyA = 1
(solid lines in both plots) and JxA = 1.05, JyA = 0.95 (red
dots), with all other parameters the same as in Fig. 7. When
Jx 6= Jy, C4 rotational symmetry is broken. The Schwinger-
boson bands do not acquire nontrivial Chern numbers in the
model considered, and κxy is thus much smaller than for the
spin-liquid ansätze in Sec. III.

than for the earlier spin-liquid ansätze that result in
nonzero Chern numbers. Although the Hall coefficients
are nonzero, as displayed in Fig. 8, this is a purely ther-
mal effect in the sense that the main contribution to
κxy comes from asymmetric weighting of the Berry cur-
vature by the thermal distribution function nB (εnk) in
Eq. (21) because the integral of Ωnk over the Brillouin
zone alone is identically zero. We also remark that there
is no anomalous contribution as time-reversal symme-
try is preserved at zero Zeeman field, guaranteeing that
κxy = 0.

Since the CuO2 square plaquettes in YBCO are slightly
distorted and form a rectangular lattice [56, 57], we
have also studied the impact of anisotropic Heisenberg
exchanges Jx and Jy along the x̂ and ŷ directions,
respectively—this breaks the C4 rotation symmetry down

to C2. As demonstrated by Fig. 8, even a moderately
large anisotropy has no significant impact on κxy.

V. CONCLUSION

Our primary collection of results concerns the ther-
mal Hall effect of spin liquids on the square lattice us-
ing SBMFT in the absence of spin-orbit coupling. We
have discussed different spin-rotation and translation-
invariant ansätze that break time-reversal and certain
point group symmetries; these phases exhibit nonzero
scalar spin chiralities. Among the ansätze considered,
only one, with magnetic point group 4

mm
′m′ and defined

in Fig. 3, yields spinon bands with nonzero Chern num-
bers. As seen in Fig. 5, where the Zeeman field, Bz,
and temperature, T , dependence of the resulting ther-
mal Hall conductivity κxy are shown, the nonzero Chern
numbers lead to a sizable κxy, of order one in units of

k2
B/~. We derived asymptotic expressions for the depen-

dence of κxy on T and Bz, and established that κxy/T
vanishes as ∼ exp(−∆0/T ) at low T for a spin liquid with
a nonzero energy gap ∆0.

Our formalism also enables us to consider states in
which spin-rotation symmetry is broken and there is mag-
netic order as T → 0. Any broken spin rotation sym-
metry is restored at infinitesimal temperatures in two
spatial dimensions, and within SBMFT, this can be cap-
tured by a spin liquid with a gap, ∆, which vanishes as
∆ ∼ exp(−m/T ). In this case, we found that κxy/T ac-
quired similarly large values (Fig. 5), and vanished only
as a power of T as T → 0.

The spin-liquid states with 4
mm

′m′ symmetry descend
from the time-reversal-preserving π-flux SBMFT states
of Yang and Wang [14]. As such, they do not have a spe-
cial connection to the Néel state in the limit of a vanish-
ing spin gap. However, our spin liquids do include cases
in which they condense to small distortions of the Néel
state, although there is no natural selection mechanism
for such states, at least in mean-field theory. With such a
selection mechanism, our results yield an attractive pro-
posal to explain recent observations in the cuprates [2].

The breaking of square-lattice and time-reversal sym-
metries to 4

mm
′m′ in our states could either be spon-

taneous, or simply induced by the orbital coupling of
the applied magnetic field (see Appendix A). Only for
the case when the symmetries are spontaneously broken,
there is an anomalous contribution to the thermal Hall
effect, i.e. κxy 6= 0 even when Bz = 0.

Finally, we also discussed whether the DM interactions
relevant to the cuprates can give rise to a thermal Hall
effect within a SBMFT treatment of the spin model in
Eq. (1). We identify one DM coupling vector, defined
in Eq. (47) and in Fig. 6(b), which not only is expected
to be realized in YBCO [54] but also produces a nonzero
κxy. However, as evinced by Fig. 8, the thermal Hall con-
ductivity is much weaker than that of the ansatz in Fig. 3
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with 4
mm

′m′ symmetry, due to the absence of bands with
nontrivial Chern numbers.
Notes added: (i) In a recent paper with others [58], we
have discussed the thermal Hall response of antiferromag-
nets using fermionic spinons. (ii) Han et al. [59] have
described the thermal Hall response of the cuprates us-
ing a quantum spin Hall state, that could be favored by
spin-orbit interactions.
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Appendix A: Coupling to an orbital magnetic field

Besides the Zeeman coupling (9), which we focused
on in the main text, there is also an orbital coupling of
the magnetic field. Being odd under time reversal and
spin-rotation invariant, its leading contribution in a t/U
expansion of the underlying Hubbard model involves the
triple product of neighboring spins and is of order t3/U2.
Explicitly, it reads as [42]

Hχ = −Υ
∑
4

sin(Φ)Si · (Sj × Sk), Υ =
24t2t′

U2
, (A1)

where the sum involves the triangular plaquettes 4
formed by nearest- (with hopping t) and next-nearest-
neighbor bonds (hopping t′), and Φ is the flux of an ap-
plied magnetic field through a single triangular plaquette.
We see from Eq. (A1) that this orbital coupling induces
uniform scalar spin chiralities and, as mentioned earlier,
breaks the symmetry of the system to 4

m m′m′.

In this appendix, we prove that the different terms in
Eq. (A1) cancel out exactly on the square lattice after
performing a Schwinger-boson mean-field decoupling, as
long as there exists a gauge where the ansatz is explicitly
translation invariant. This is, for instance, certainly the
case for the conventional ansatz of the antiferromagnetic
state (with only Ai,i+x̂ = Ai,i+ŷ = A1), but not for the
one with 4

m m′m′ symmetry defined in Sec. III B. As we
outline below, Hχ in Eq. (A1) will lead to a nonzero

2 4

3

65

1

FIG. 9. Convention for the spin chirality term Si · (Sj × Sk)
in the Hamiltonian. For each triangular plaquette, the sites i,
j, and k are the vertices of the corresponding dashed triangle,
taken succesively in a clockwise fashion. The net interaction
Hχ involves the sum over all C4 rotated copies of such trian-
gles.

contribution at the mean-field level when decoupled with
the parameters in Eqs. (31) and (33).

As a means of decoupling Hχ within SBMFT, we use
the identity [29],

4 : B̂i,j B̂j,k B̂k,i : =
1

2
(n̂i Sj · Sk + n̂j Sk · Si + n̂k Si · Sj)

+
n̂in̂j n̂k

8
− iSi · (Sj × Sk) , (A2)

from which, it follows that

Si ·(Sj × Sk) = 2i
(
B̂i,j B̂j,k B̂k,i − B̂†k,i B̂

†
j,k B̂

†
i,j

)
. (A3)

In a mean-field approximation,

B̂i,j B̂j,k B̂k,i ' 〈B̂i,j〉 〈B̂j,k〉 B̂k,i + 〈B̂i,j〉 B̂j,k 〈B̂ki,〉
(A4)

+ B̂i,j 〈B̂j,k〉 〈B̂k,i〉 − 2〈B̂i,j〉 〈B̂j,k〉 〈B̂k,i〉.

Based off this simplification, we can now evaluate the
quadratic terms for each individual bond. As an example,
consider a bond linking sites i and i + x̂; following the
labeling scheme of Fig. 9, let this be numbered 1–3. The
only spin chirality terms in the Hamiltonian that involve
this bond are

S1 · [(S2 × S3) + (S4 × S3) + (S3 × S6) + (S3 × S5)]

(A5)

≈
[
B̂1,3

(
B∗2 + |B|2

)
+ B̂†1,3

(
B2 + |B|2

)]
− h.c.+ . . . ,

where we have isolated the terms proportional to B̂1,3 or
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B̂3,1, and those from all other bonds are grouped together
in the ellipsis. However, the term enclosed in the brackets
is already Hermitian so the total contribution from the
1–3 (and more generally, any horizontal or vertical) edge
is always zero. An analogous statement holds for any
bond in the diagonal direction as well. In this regard,
let us survey the 1–4 link, which connects sites i and
i + x̂ + ŷ. The relevant spin interactions in which this
bond participates are S3 · (S1 × S4), and S2 · (S4 × S1),
and collecting the quadratic terms for Eq. (A4), we finally
have

B̂1,4B∗2 + B̂†1,4B2 − h.c. = 0. (A6)

Since this cancellation occurs on any bond on the square
lattice, Hχ in Eq. (A1) does not contribute to the Hamil-
tonian to quadratic order and the orbital coupling to
the magnetic flux necessarily vanishes in the mean-field
framework.

If, instead, we use the parameters of the ansatz with
symmetry 4

m m′m′ in Eqs. (31) and (33), there is no can-
cellation using SBMFT. In fact, as expected from a sym-
metry point of view, the resultant mean-field contribu-
tion of Hχ can be absorbed by rescaling of the ansatz
per se as

B1 −→ B1 − 4Υ sin ΦB1B2, (A7)

B2 −→ B2 − 2Υ sin ΦB2
1. (A8)

This conveys that the parameters B1 and B2 can also
be induced or enlarged by the orbital coupling to the
external magnetic field.

Appendix B: Perturbations in the CP1 theory

Quantum fluctuations about the conventional square
lattice Néel state are conveniently described in the
Schwinger boson theory using a continuum formulation
based on the CP1 model [60]. Here we discuss, follow-
ing Ref. 9, the additional perturbations that are intro-
duced into this theory from the 3-spin interaction in
Eq. (A1), which is induced by the orbital effect of the
applied magnetic field, and which breaks the symmetry
down to 4

mm
′m′.

The CP1 model is expressed in terms of a bosonic
spinor zσ which is coupled to a U(1) gauge field aµ
(µ = τ, x, y) with Lagrangian

LCP =
1

g
|(∂µ − iaµ)zσ|2 (B1)

Perturbations with symmetry of Hχ are most conve-
niently expressed in terms of the gauge field aµ. In a
relativistic formulation, the leading perturbation is the
term [9, 61] εµνλfµν∂ρfρλ. But more generally, without
relativistic invariance, there are two independent terms
which are expressed in terms of the internal electric and
magnetic fields derived from aµ (these are unrelated to
the applied external electromagnetic field)

ei = ∂τai − ∂iaτ , b = ∂xay − ∂yax . (B2)

Analysis of symmetries leads to the perturbation

Lχ = iλ1 (ex∂τey − ey∂τex) + iλ2 b ∂iei (B3)

with couplings λ1,2 which are expected to be proportional
to Υ sin(Φ) in Eq. (A1).

In terms of the underlying spin-wave fluctuations, the
gauge field aµ involves terms with one gradient, and so
Lχ has five spatio-temporal gradients [9]. As such, its
effects can be expected to be quite weak.

Appendix C: Mean field Hamiltonian for the one-orbital model

The mean-field Hamiltonian for the one-orbital model presented in Sec. III is described by Eq. (29). We first expand
out the different terms therein with the ansatz of Eqs. (31) and (33). Labeling the two kinds of sites for a fixed gauge
choice by α and β, this can be written as

Hmf =
J

2

∑
(u,v)∈α, σ

(
iB1 α

†
(u,v)σ β(u,v)+x̂ σ + iB1 α

†
(u,v)σ β(u,v)+ŷ σ + iB2 α

†
(u,v)σ α(u,v)+η1 σ

− iB2 α
†
(u,v)σ α(u,v)+η2 σ

−A1 σ α(u,v)σ β(u,v)+x̂−σ −A1 σ α(u,v)σ β(u,v)+ŷ−σ −A2 σ α(u,v)σ α(u,v)+η1−σ +A2 σ α(u,v)σ α(u,v)+η2−σ

)
+ h.c.

+
J

2

∑
(u,v)∈ β, σ

(
iB1 β

†
(u,v)σ α(u,v)+x̂ σ − iB1 β

†
(u,v)σ α(u,v)+ŷ σ − iB2 β

†
(u,v)σ β(u,v)+η1 σ

+ iB2 β
†
(u,v)σ β(u,v)+η2 σ
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−A1 σ β(u,v)σ α(u,v)+x̂−σ +A1 σ β(u,v)σ α(u,v)+ŷ−σ +A2 σ β(u,v)σ β(u,v)+η1−σ −A2 σ β(u,v)σ β(u,v)+η2−σ

)
+ h.c.

+ λ
∑

(u,v), σ

(
α†(u,v)σ α(u,v)σ + β†(u,v)σ β(u,v)σ − 2S

)
, (C1)

with (u, v) running exclusively over all α (β) sites in the first (second) summation above. Fourier transforming to
momentum space, with the convention biσ =

∑
k bkσ exp(ik · ri)/

√
N , we find

Hmf =

[
J

2

∑
kσ

(
iB1E+α

†
kσ βkσ + 2B2eikxSyα†kσ αkσ −A1 σ (E+)∗ αkσ β−k−σ − 2iA2 σ e−i kxSy αkσ α−k−σ

)
+
J

2

∑
kσ

(
iB1E−β

†
kσ αkσ − 2B2eikxSyβ†kσ αkσ −A1 σ (E−)∗ βkσ α−k−σ + 2iA2 σ e−i kxSy βkσ β−k−σ

)]
+ h.c.

+λ
∑
kσ

(
α†kσ αkσ + β†kσβkσ − 2S

)
, (C2)

where we have adopted the shorthand Cµ ≡ cos(kµ), Sµ ≡ sin(kµ), and E± ≡ exp(ikx)± exp(iky). In real space, the
positions of the α and β states within the same unit cell are spatially separated, so the second-quantized Hamiltonian is
invariant under k→ k+Gµ only up to a gauge transformation [62]. The presence of an external magnetic field Bz now

appends the Zeeman term (9) to Hmf. Eq. (C2) is easily converted into the form Hmf =
∑

k(Ψ†kH(k) Ψk)/2, where

Ψ is the eight-component spinor defined as Ψ†k = (α†k↑ β
†
k↑ α

†
k↓ β

†
k↓ α−k↑ β−k↑ α−k↓ β−k↓). This can be diagonalized in

accordance with the process sketched in Sec. II B to calculate the Berry curvatures and conductivities.

More compactly though, Hmf can equivalently be expressed using the reduced four -component spinor ψ† =
(α†k↑ β

†
k↑ α−k↓ β−k↓). Up to a constant, the bosonic mean-field Hamiltonian reads

H(k) =
1

2


−B + 4B2 J Cx Sy + 2λ 2iB1 J (Cy + iSx) 4iA2 J Cx Sy −2A1 J (Cy + iSx)
−2iB1 J (Cy − iSx) −B − 4B2 J Cx Sy + 2λ 2A1 J (Cy − iSx) −4iA2 J Cx Sy
−4iA2 J Cx Sy 2A1 J (Cy + iSx) B − 4B2 J Cx Sy + 2λ 2B1 J (−iCy + Sx)
−2A1 J (Cy − iSx) 4iA2 J Cx Sy 2B1 J (iCy + Sx) B + 4B2 J Cx Sy + 2λ

 . (C3)

Denoting the Pauli matrices acting in spin and sublattice space by σ and τ , respectively,

H = λσ0τ0 + Jσ2(A1Sxτ1 +A1Cyτ2 − 2A2CxSyτ3)− B

2
σ3τ0 − Jσ3(B1Sxτ1 + B1Cyτ2 − 2B2CxSyτ3). (C4)

This form of the kernel H contains the same information as the 8× 8 matrix for the full spinor Ψ but is much more
amenable to analytical calculations. On grounds of simplicity, it is therefore convenient to frame the discussion in the
following subsections in terms of the 4× 4-matrix description of the mean-field Hamiltonian H(k). In this language,
the dynamic matrix K = ρ3H = σ3τ0H is

K = −B
2
σ0τ0 − JB1Sxσ0τ1 − JB1Cyσ0τ2 + 2JB2CxSyσ0τ3 − iJA1Sxσ1τ1 − iJA1Cyσ1τ2 + 2iJA2CxSyσ1τ3 + λσ3τ0.

(C5)

Diagonalizing this dynamic matrix results in two particle bands, which we list as m = 1, 2, and two hole bands
(m = 3, 4). Note that one could just as well have elected to work with Ψ instead of ψ and the correspondence between
these bands and our previous indexing scheme is m = {1, 2, 3, 4} ↔ n = {1, 3, 6, 8}. For the remaining n bands,
associated with n = {2, 4, 5, 7} ≡ n′, the energies and curvatures are simply related as εn′,k = ε(n′+4) mod 8 ,k and

Ωn′,k = −Ω(n′+4) mod 8 ,−k, but (n′ + 4) mod 8 ∈ {1, 3, 6, 8}, closing the loop between the four- and eight-component
formulations.
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1. Effective antiunitary symmetry

As mentioned in Sec. III B 1, the pairwise degeneracy of the particle bands in the one-orbital model (at zero Zeeman
fields) is due to an effective symmetry of the Hamiltonian, which we single out here. To begin with, we identify an
anti-unitary operator O = U C, where U is unitary and C is complex conjugation such that

OK(k)O† = −K(k) =⇒ U K∗(k)U† = −K(k). (C6)

This implies that if Φm is an eigenvector of K with eigenvalue ωm, then so is U Φ∗m but with eigenvalue −ωm, which
is precisely the particle-hole symmetry that must be broken to lift the degeneracy of the bosonic bands. The only
such operator (unique up to an additional phase factor) is O = σ2τ2C, i.e. U = σ2τ2. Eq. (C6) then states that

σ3Uσ3H∗(k)U† = −H(k). (C7)

As σ3 and U = σ2τ2 anticommute, this yields an effective “time-reversal symmetry”, i.e. H(k) and the anti-unitary
operator O commute,

OH(k)O† = H(k). (C8)

Since O2 = +1, this does not translate to a Kramers degeneracy (in general, all eigenvalues of H are indeed nonde-
generate) whereas Eq. (C6) does force the spectrum of K to be symmetric with respect to zero energy. It then follows
that the resulting degenerate bands have opposite Chern numbers. The wavefunctions are the eigenvectors of K and
by virtue of Eq. (C6), may be grouped according to the eigenvalues as Tk = [v1(k) v2(k) (Uv∗1(k)) (Uv∗2(k))]. More
concisely,

Tk = UT∗kσ1; U = σ2τ2. (C9)

The implication for the Berry curvature is that

Ωmk = i εµν

[
σ3

∂ T†k
∂ kµ

σ3

∂ Tk

∂ kν

]
mm

= i εµν

[
σ3σ1

∂ TTk
∂ kµ

U†σ3U
∂ T∗k
∂ kν

σ1

]
mm

= i εµν

[
σ3

∂ TTk
∂ kµ

σ3

∂ T∗k
∂ kν

]
mm

= −Ω∗mk = −Ωmk, (C10)

where m = 3 (m = 4) for m = 1 (m = 2), and we have used the fact that Ωmk is real in the last step. Translating
back to the band index n, this proves that the pairs n = (1, 2) and (3, 4) are indeed degenerate and also have the
same curvatures modulo k→ −k. The degeneracy is split at any temperature by a uniform Zeeman field BZ , which
creates a constant gap between the two bands at each momentum.

2. Magnetic order

Within the Schwinger boson framework, magnetic order is obtained via the condensation of bosons, which occurs
when the bosonic modes have at least one zero eigenvalue [63, 64]. The minima of the spinon bands are found from
diagonalizing K = σ3τ0H(k), with H(k) as in Eq. (C3), and lie at ±k0, where k0 = (π/2, 0). Without an external
magnetic field (Bz = 0), the eigenvalues, each doubly degenerate at these momenta, are

ε± =

∣∣∣∣√λ2 − 2A2
1J

2 ±
√

2B1J

∣∣∣∣ . (C11)

For B1 > 0, the spinon gap is set by ε− and closes when
√
λ2 − 2A2

1J
2 =
√

2B1J ; B2 appears neither in this equation

nor in the eigenstates below. Eliminating B1 in favor of A1, λ, and setting ξ ≡ λ/(
√

2A1J) for notational convenience,
we find that the two zero energy eigenvectors at k = k0 = (π/2, 0) are

Ψ1 =
(

eiπ/4ξ, i
√
ξ2 − 1, 0, 1

)T
, Ψ2 =

(
i
√
ξ2 − 1,−e−iπ/4ξ, 1, 0

)T
, (C12)
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where the superscript T denotes transpose. Likewise, at k = −k0 = (−π/2, 0), there are two degenerate eigenvectors
when the gap closes:

Ψ3 =
(

e−iπ/4ξ, i
√
ξ2 − 1, 0, 1

)T
, Ψ4 =

(
i
√
ξ2 − 1,−eiπ/4ξ, 1, 0

)T
. (C13)

The condensate in real space is a linear combination of those at ±k0. Introducing arbitrary complex numbers zi to
represent the strength thereof, we have

〈αr↑〉
〈βr↑〉
〈α†r↓〉
〈β†r↓〉

 = (z1Ψ1 + z2Ψ2)eik0·r + (z3Ψ3 + z4Ψ4)e−ik0·r, (C14)

whereafter the condensate on each sublattice can be written as

Xα =

(
〈αr↑〉
〈αr↓〉

)
=

(
eiπ/4z1ξ + iz2

√
ξ2 − 1 e−iπ/4z3ξ + iz4

√
ξ2 − 1

z∗4 z∗2

)(
eik0·r

e−ik0·r

)
, (C15)

Xβ =

(
〈βr↑〉
〈βr↓〉

)
=

(
iz1

√
ξ2 − 1− e−iπ/4z2ξ iz3

√
ξ2 − 1− eiπ/4z4ξ

z∗3 z∗1

)(
eik0·r

e−ik0·r

)
.

The spinor (eik0·r, e−ik0·r)T is proportional to (1, 1)T for even x, whereas for odd x coordinate, it is ∝ (1,−1)T (the
overall U(1) phase is redundant for calculating physical spin expectation values). This calls for further classification
of the sites on the α and β sublattices—defined by (−1)jx+jy = 1 and −1, respectively—according as whether x is
even (e) or odd (o), creating a four-sublattice structure for the magnetic order. The expectation value of the spin at
each site can then be evaluated as 〈Sµa(r)〉 = X†µaσXµa for µ = {α, β} and a = {e, o}.

At this point, we note that the spin-liquid state described by the ansatz (31) has a gauge-invariant flux φ of
π (modulo 2π) through each elementary square plaquette [65] (see main text for definition). Similar π-flux states
on the square lattice were studied by Yang and Wang [14]; the latter states are all identical in the limit of only
A1 6= 0. The corresponding magnetically ordered state was found to be a subset of the classical ground state for the
J2/J1 = 1/2-Heisenberg model, and, in general, quite distinct from Néel order. A formal route to draw a connection
to the Yang-Wang π-flux ansatz is to construct a local gauge transformation mapping the one-orbital model onto it.
Recall that under such a transformation, one generically has

bjσ → eiϕ(j)bjσ, Ai,j → ei(ϕ(i)+ϕ(j))Ai,j Bi,j → ei(ϕ(i)−ϕ(j))Bi,j . (C16)

The ansatz (31) is characterized by Ai,i+x̂ = A1 and Ai,i+ŷ = (−1)ix+iyA1, whereas that of Ref. 14 has Ai,i+x̂ =
(−1)iyA1 and Ai,i+ŷ = −A1. If the two are to be related by a gauge transformation, then the phase ϕ(j) must satisfy

ϕ(jx, jy) + ϕ(jx + 1, jy) = πjy, ϕ(jx, jy) + ϕ(jx, jy + 1) = π(jx + jy + 1). (C17)

Both these equations hold modulo 2π and their solution is ϕ(jx, jy) = π
(
−2j2

x + 2jy + 1
)
/4. Applying this transfor-

mation shifts the one-orbital dispersion minima, which are inherently gauge dependent: with the earlier gauge choice,
the minima were positioned at (±π/2, 0) but in the new gauge, they are at ±(π/2, π/2), as expected from Ref. 14
in the limit where all terms but A1 are zero. Proceeding beyond this special case, we can similarly transform the
remaining (A2, B1, B2) terms in Eq. (33) according to Eq. (C16), and the minimal ansatz which gives quantized
Chern bands in this gauge reads:

Ai,i+x̂ = (−1)iyA1, Ai,i+ŷ = −A1,

Bi,i+x̂ = −(−1)ixB1, Bi,i+ŷ = B1(−1)ix+iy , Bi,i+x̂+ŷ = Bi,i+x̂−ŷ = −iB2(−1)iy . (C18)

As Fig. 10(a) corroborates, the minima for the lowest-energy spinon band remain at ±(π/2, π/2) even on turning on
B1 and B2 [cf. Fig. 4(e)].

We return to our original gauge choice where the computation of magnetic order is more tractable. Noting that
the spin-liquid state for the one-orbital model reduces to that in Ref. 14 in the limit of only A1 6= 0, we first set
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(a)

(b) (c)

(d) (e)

FIG. 10. (a) Dispersion of the n = 1 spinon band corresponding to the Schwinger boson ansatz for the one-orbital model in
Eq. (C18) with J = 1, A1 = 1, B1 = 0.5, B2 = 0.5, λ = 2.0, and Bz = 0. In this gauge, the minima are always at ±(π/2, π/2).
(b) The Néel state is obtained upon boson condensation with ξ = 1 (implying B1 = 0) and only one of the zi (taken to be
z1 here) nonzero. (c) This state can be perturbed by increasing ξ which equals 1.05 here, thus setting B1 ≈ 0.32A1. (d)
The magnetically ordered state with the complex coefficients chosen to be {z1, z2, z3, z4} = {z, iz, 0, 0}, and (e) {z,−iz, 0, 0}.
The magnetic moment is uniform at all sites for the states exhibited, and the vector plotted in each figure is, for clarity,
(Sx/2, Sy/2, Sz).

ξ = 1 (as dictated by the gap-closing condition with B1 = 0). Upon calculating the spin expectation values using the
boson-condensation procedure, we find that the ordered moments on the four sites of a plaquette add to zero, i.e.∑

µ=α,β

∑
a=e,o

〈Sµa〉 = 0, (C19)

which is precisely the four-sublattice ordered state in Ref. 14. A particular instance thereof is the Néel state which is
obtained when the coefficients are chosen such that only one of the four zi is nonzero. For general ξ > 1, the spinors
Xµa are

Xαe =

(
ξ(eiπ/4z1 + e−iπ/4z3) + i

√
ξ2 − 1(z2 + z4)

z∗4 + z∗2

)
, Xαo =

(
ξ(eiπ/4z1 − e−iπ/4z3) + i

√
ξ2 − 1(z2 − z4)

z∗4 − z∗2

)
, (C20)

Xβe =

(
−ξ(e−iπ/4z2 + eiπ/4z4) + i

√
ξ2 − 1(z1 + z3)

z∗3 + z∗1

)
, Xβo =

(
ξ(−e−iπ/4z2 + eiπ/4z4) + i

√
ξ2 − 1(z1 − z3)

z∗3 − z∗1

)
.

Akin to the analysis above, we again compute the values of the ordered moment at each site but the analytical
expressions in this case prove to be unwieldy. Specifically, Szµa takes the form

Szαe = ξ2
(
|z1 − iz3|2 + |z2 + z4|2

)
− 2|z2 + z4|2 + 2ξ

√
ξ2 − 1 Im

[
(z∗2 + z∗4)(z1eiπ/4 + z3e−iπ/4)

]
, (C21)
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Szαo = ξ2
(
|z1 + iz3|2 + |z2 − z4|2

)
− 2|z2 − z4|2 + 2ξ

√
ξ2 − 1 Im

[
(z∗2 − z∗4)(z1eiπ/4 − z3e−iπ/4)

]
,

Szβe = ξ2
(
|z2 + iz4|2 + |z1 + z3|2

)
− 2|z1 + z3|2 + 2ξ

√
ξ2 − 1 Im

[
(z1 + z3)(z∗2eiπ/4 + z∗4e−iπ/4)

]
,

Szβo = ξ2
(
|z2 − iz4|2 + |z1 − z3|2

)
− 2|z1 − z3|2 + 2ξ

√
ξ2 − 1 Im

[
(z1 − z3)(z∗2eiπ/4 − z∗4e−iπ/4)

]
.

As can be seen, for general complex values zi, there is no simple relation between the z-components. Further,

∑
µ=α,β

∑
a=e,o

〈Szµ,a〉 = 4(ξ2 − 1)

4∑
i=1

|zi|2 + 4ξ
√
ξ2 − 1 Im

[
z1z
∗
2eiπ/4 + z3z

∗
4e−iπ/4

]
(C22)

vanishes only for ξ = 1. Therefore, the sum of ordered moments on the four sites of a plaquette is nonzero, and the
spin order parameter can be parametrized as

〈S(j)〉 = n(0,0) + (−1)jxn(π,0) + (−1)jyn(0,π) + (−1)jx+jyn(π,π), (C23)

where we have defined

n(0,0) =
1

4

(
〈Sαe〉+ 〈Sαo〉+ 〈Sβe〉+ 〈Sβo〉

)
, n(π,0) =

1

4

(
〈Sαe〉 − 〈Sαo〉+ 〈Sβe〉 − 〈Sβo〉

)
,

n(0,π) =
1

4

(
〈Sαe〉 − 〈Sαo〉 − 〈Sβe〉+ 〈Sβo〉

)
, n(π,π) =

1

4

(
〈Sαe〉+ 〈Sαo〉 − 〈Sβe〉 − 〈Sβo〉

)
. (C24)

It is noteworthy that n(0,0) = 0 exactly corresponds to the solution of Ref. 14 with zero average moment on a
plaquette. The most general ordered state breaks C4 and lattice translation (Tx and Ty) symmetries but preserves
the reflections Rx and Ry; of course, it also breaks time reversal and SRI. While the moments on the four sites of
each plaquette are generically distinct, previously studied states on the square lattice, like the Néel, the canted Néel,
or the tetrahedral umbrella state [66] are not necessarily ruled out. If the structure of the condensate is such that
n(π,π) is large in magnitude compared to n(0,0),n(π,0), and n(0,π), the magnetically ordered state can be thought of
as a perturbation to the Néel state, an example of which is sketched in Fig. 10(c) for zi = 0 ∀ i 6= 1. The magnitude
of the ordered moments is uniform at all lattice sites, i.e. X†µaXµa = constant, if we choose such a solution for the
zi. One can also impose this requirement of uniformity when more than one coefficient is nonzero. Endowed with
this constraint, there are four solutions, which are {z1, z2, z3, z4} = {z,±iz, 0, 0} or {0, 0, z,±iz}. The two associated
symmetry-inequivalent ordered states are shown in Figs. 10(d) and 10(e).

Appendix D: SBMFT with Dzyaloshinskii-Moriya
interactions

In this section, we continue along the lines of Sec. IV
to develop the mean-field Hamiltonian for the nearest-
neighbor Heisenberg antiferromagnet with additional
Dzyaloshinskii-Moriya couplings. Pursuant to Eq. (48),
the mean-field approximation for the in-plane DM term
is

H
(3)
mf =

D‖

2

∑
〈i,j〉

(
B∗i,j Ĉi,j + Ĉ†i,jBi,j +A∗i,jD̂i,j + D̂†i,jAi,j

)
=
D‖

2

∑
〈i,j〉

− i

2
dije

iσθij
(
B∗i,jb

†
j−σbiσ + σA∗i,jbiσbjσ

)
+ h.c..

(D1)

The total mean-field Hamiltonian Hmf is now a sum of
Eqs. (8), (9), and (D1). All things considered, Hspin

bears the mean-field momentum-space representation:

H
(1)
mf =

∑
kσ µ

[
Jµe−ikµ

(
B∗

2
b†kσ bkσ − σ

A∗

2
bkσ b−k−σ

)
+ h.c.

+ λ b†kσ bkσ

]
− 2NsλS + 2NsJ

(
|A|2 − |B|2

)
,

H
(2)
mf = −B

2

∑
kσ

σ b†kσ bkσ, (D2)

H
(3)
mf =

Dm

4

∑
kσ

[
−i Ēσ

(
B∗b†k−σ bkσ + σA∗bkσ b−kσ

)
+ h.c.

]
.

For the sake of notational brevity, we work with the
shorthand Eσ ≡ (ei kx + iσ ei ky ) and overhead bars con-
note the same expressions but with the replacement k→
−k; thus, (E+)∗ = Ē−. Upon expanding and explicitly
summing over σ =↑, ↓ in Eq. (D2), the full Hamiltonian is

expressible, as before, as Hmf =
∑

k(Ψ†kH(k) Ψk)/2 with
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the spinor Ψ†k ≡
(
b†k↑ b

†
k↓ b−k↑ b−k↓

)
, and the kernel

H(k) =


(
B Jµeikµ

)r
+
(
λ− B

2

)
i
4 D‖

(
B E− − B∗ Ē−

)
i
2D‖AE− −J AE+

i
4 D‖

(
B E+ − B∗ Ē+

) (
B Jµeikµ

)r
+
(
λ+ B

2

)
JAE+ − i

2D‖AE+
− i

2D‖A
∗ Ē+ J A∗E+

(
B Jµe−ikµ

)r
+
(
λ− B

2

)
i
4 D‖

(
B Ē+ − B∗ E+

)
−J A∗E+

i
2D‖A

∗Ē− i
4 D‖

(
B Ē− − B∗ E−

) (
B Jµe−ikµ

)r
+
(
λ+ B

2

)
 ,

(D3)

where the superscript r stands for the real part; Hmf fur-
ther includes another constant piece, which we ignore.
Diagonalizing with the paraunitary matrix Tk gives the

full information of the dispersions for the volume-mode
bands and some representative energy dispersions are
shown in Fig. 7.

Appendix E: Three-orbital model

The three-orbital CuO2 model—with the broken time-reversal and reflection symmetries of pattern D—allows for
nonzero loop currents unlike its one-orbital counterpart [9] studied in Sec. III, and offers the added advantage of an
explicitly translation-invariant ansatz. In this section, we illustrate that the three-orbital model also shows a large
thermal Hall conductivity in the presence of a magnetic field, analogous to the one-orbital model, with identical
broken symmetries as in Sec. III B.

A1, iB1
A2, iB2

(a)

êy/2
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(b)

FIG. 11. (a) Schwinger-boson mean-field ansatz for the three-orbital model. Since the ansatz is explicitly translation invariant,
we show only one Cu atom and its four neighboring oxygen atoms. The arrows indicate the directionality of the bonds, which
is required for specifying Ai,j (odd under i ↔ j) and complex Bi,j (as B∗i,j = Bj,i). (b) The lattice conventions employed for
this model. A single unit cell, shown here with dotted lines, consists of three sites, labeled α, β, and γ.

Let us consider the Schwinger-boson ansatz for this model, illustrated in Fig. 11(a). More explicitly, in the mean-
field Hamiltonian (29), the only bond operator expectation values are

A
j,j± êµ2

= ±A1, B
j,j± êµ2

= ±iB1, Aj± x̂2 ,j+ ŷ
2

= Aj± x̂2 ,j− ŷ2 = A2, Bj± x̂2 ,j+ ŷ
2

= Bj± x̂2 ,j− ŷ2 = iB2, (E1)

where Aj,k, iBj,k ∈ R. The basis vectors of the direct lattice are êµ; µ = x, y, and we adopt the convention that
integer-valued (half-integer-valued) lattice indices refer to copper (oxygen) sites (see Fig. 11(b)). The state with only
A1 (or also B1) nonzero has the full symmetries of the square lattice but turning on B2 (and/or A2) breaks the
symmetries down to 4

mm
′m′. Denoting the three sites of a unit cell, at position (u, v), as α(u,v), β(u,v), γ(u,v) and
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expanding, the mean-field Hamiltonian is

Hmf =
∑

(u,v), σ

J

2

[(
iB1 α

†
(u,v)σβ(u,v)σ + iB1 α

†
(u,v)σγ(u,v)σ − iB1 α

†
(u,v)σβ(u−1,v)σ − iB1 α

†
(u,v)σγ(u,v−1)σ

)

−
(
A∗1 σ α(u,v)σβ(u,v)−σ +A∗1 σ α(u,v)σγ(u,v)−σ −A

∗
1 σ α(u,v)σβ(u−1,v)−σ −A

∗
1 σ α(u,v)σγ(u,v−1)−σ

)
−
(
A∗2 σ β(u,v)σγ(u,v)−σ +A∗2 σ β(u−1,v)σγ(u,v)−σ +A∗2 σ β(u−1,v)σγ(u,v−1)−σ +A∗2 σ β(u,v)σγ(u,v−1)−σ

)
+

(
iB2 β

†
(u,v)σγ(u,v)σ + iB2 β

†
(u−1,v)σγ(u,v)σ + iB2 β

†
(u−1,v)σγ(u,v−1)σ + iB2 β

†
(u,v)σγ(u,v−1)σ

)
+ h.c.

]
+
∑

(u,v), σ

λ

(
α†(u,v)σα(u,v)σ + β†(u,v)σβ(u,v)σ + γ†(u,v)σγ(u,v)σ − 3S

)
. (E2)

After a Fourier transform to momentum space, this reads (up to constants)

Hmf =
∑
kσ

[
− JB1

(
α†kσβkσ Sx + α†kσγkσ Sy

)
+ i JA∗1 σ

(
αkσβ−k−σ Sx + αkσγ−k−σ Sy

)
+ h.c.

+ 2J CxCy
(

iB2β
†
kσγkσ −A

∗
2 σ βkσγ−k−σ + h.c.

)
+ λ

(
α†kσαkσ + β†kσβkσ + γ†kσγkσ − 3S

)]
, (E3)

where we use the shorthand Cµ(Sµ) ≡ cos (sin)
kµ
2 . Adding on an external magnetic field introduces the Zeeman term

of Eq. (9) and subsequently, the Hamiltonian can be expressed as

Hmf =
∑
k

Ψ†kH(k) Ψk; Ψ†k ≡
(
α†k↑ β

†
k↑ γ

†
k↑ α−k↑ β−k↓ γ−k↓

)
, (E4)

with the kernel

H(k) =
1

2



2λ−Bz −2J B1 Sx −2J B1 Sy 0 −2i J A1 Sx −2i J A1 Sy
−2J B1 Sx 2λ−Bz 4i J B2 Cx Cy −2i J A1 Sx 0 −4J A2 Cx Cy
−2J B1 Sy −4i J B2 Cx Cy 2λ−Bz −2i J A1 Sy 4J A2 Cx Cy 0

0 2iJ A1 Sx 2i J A1 Sy Bz + 2λ 2J B1 Sx 2J B1 Sy
2i J A1 Sx 0 4J A2 Cx Cy 2J B1 Sx Bz + 2λ −4i J B2 Cx Cy
2i J A1 Sy −4J A2 Cx Cy 0 2J B1 Sy 4i J B2 Cx Cy Bz + 2λ

 . (E5)

This mean-field Hamiltonian can now be easily diagonalized, employing the standard methods formulated above—the
resultant band structure is sketched in Fig. 12.

In like manner, from the paraunitary matrix Tk, one can once again calculate the Berry curvature for these bands
[Fig. 13(a)] using the partition H1 = {k : ky < 0} and H2 = {k : ky ≥ 0}. The caveat is that the expression for the
thermal Hall conductivity in Eq. (21) is formulated exclusively in terms of particle bands whereas our choice of the
six-component spinor in Eq. (E4) eliminates the trivial particle-hole duplication, leaving us with three particle and
three hole bands. Exploiting the relation (27) between the curvatures of the particle and hole bands, Eq. (21) can be
brought to the more implementable form

κxy = −k
2
B T

~V
∑
k

 ∑
n∈ particle

{
c2 [nB (εnk)]− π2

3

}
Ωnk −

∑
n∈ hole

{
c2 [nB (εn−k)]− π2

3

}
Ωn−k

 . (E6)

Summing over all six bands, the net conductivity in Fig. 13 is observed to be three orders of magnitude greater than in
the model with Dzyaloshinskii-Moriya interactions alone. The behaviors at both high and low temperatures resemble
that for the one-orbital model in Fig. 5 and is owed to origins similar to the discussion in Sec. III B 2. Furthermore,
we again find an anomalous contribution.
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(a) (b) (c) (d)

FIG. 12. Schwinger boson band structure for three of the six different particle bands with J = 1, A1 = 1, B1 = 0.5, λ = 2.5,
and Bz = 0; the other bands are degenerate at zero field and are not shown. The remaining parameters are chosen as follows:
(a) A2 = 0, B2 = 0; (b) A2 = 0.75, B2 = 0; (c) A2 = 0.75, B2 = 0.5. Only with B2 6= 0 are the upper bands prevented from
touching; all the bands then acquire well-defined Chern numbers. The bands that are the degenerate counterparts of the ones
shown have the same Chern numbers. (d) The dispersion for the lowest-energy band exhibits minima at k = (0, 0), signaling
ferromagnetic order in the spin correlations.
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FIG. 13. (a) Berry curvatures of the particle bands with nonzero Chern numbers in the three-orbital model, with the parameters
J = 1, A1 = 1, A2 = 0.75, B1 = B2 = 0.5, Bz = 0, and λ = 2.5. (b) The thermal Hall conductivity as a function of temperature
at fixed Bz = 0.5 for two (arbitrarily chosen) values of A2, indicating that the strength of the thermal Hall signal does vary with
A2 even though the Chern numbers do not. (c–d) The magnetic field dependence of the conductivity for different temperatures
with A2 = 0.75.
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“Emergence of chiral spin liquids via quantum melting of
noncoplanar magnetic orders,” Phys. Rev. B 96, 115115
(2017).

http://dx.doi.org/10.7566/JPSJ.86.011010
http://dx.doi.org/10.1103/PhysRevX.8.011012
http://dx.doi.org/10.1103/PhysRevX.8.011012
http://dx.doi.org/ 10.1103/PhysRevLett.108.087205
http://dx.doi.org/ 10.1103/PhysRevLett.108.087205
http://dx.doi.org/10.1142/S0217984990001318
http://dx.doi.org/10.1142/S0217984990001318
http://dx.doi.org/10.1103/PhysRevB.51.1922
http://dx.doi.org/10.1143/jpsj.74.1674
http://dx.doi.org/10.1143/jpsj.74.1674
http://dx.doi.org/10.1143/jpsj.76.053702
http://dx.doi.org/ 10.1103/PhysRevLett.60.1057
http://dx.doi.org/ 10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1017/CBO9780511973765
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/ 10.1103/PhysRev.120.91
http://dx.doi.org/ 10.1103/PhysRevLett.4.228
http://dx.doi.org/10.1103/PhysRevB.91.125413
https://arxiv.org/abs/1805.05872
http://arxiv.org/abs/1805.05872
http://arxiv.org/abs/1805.05872
http://dx.doi.org/ 10.1103/PhysRevB.42.6509
http://dx.doi.org/10.1103/PhysRevB.44.10112
http://dx.doi.org/10.1103/PhysRevB.44.10112
http://dx.doi.org/10.1103/PhysRevB.54.12946
http://dx.doi.org/10.1103/PhysRevB.54.12946
http://dx.doi.org/10.1038/35008005
http://dx.doi.org/10.1038/nature02774
http://arxiv.org/abs/1903.01992
http://arxiv.org/abs/1903.01125
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevX.7.031051
https://arxiv.org/abs/1802.01533
http://arxiv.org/abs/1802.01533
http://dx.doi.org/10.1103/PhysRevB.40.5028
http://dx.doi.org/10.1103/PhysRevB.45.12377
http://dx.doi.org/ 10.1209/epl/i2005-10389-2
http://dx.doi.org/10.1103/PhysRevB.96.115115
http://dx.doi.org/10.1103/PhysRevB.96.115115

	Thermal Hall effect in square-lattice spin liquids: a Schwinger boson mean-field study
	Abstract
	Introduction
	Formalism
	Schwinger-boson mean-field theory
	Diagonalization of bosonic quadratic Hamiltonians
	Berry curvature and thermal Hall conductivity

	Spin liquid Ansätze with time-reversal symmetry breaking
	One-orbital model with trivial bands
	Chern numbers and thermal Hall conductivity
	Spectrum and symmetries
	Parameter dependence of xy


	Antiferromagnet with Dzyaloshinskii-Moriya interactions
	Conclusion
	Acknowledgments
	Coupling to an orbital magnetic field
	Perturbations in the CP1 theory
	Mean field Hamiltonian for the one-orbital model
	Effective antiunitary symmetry
	Magnetic order

	SBMFT with Dzyaloshinskii-Moriya interactions
	Three-orbital model
	References


