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We study the surface of a three-dimensional spin chiral Z2 topological insulator (class CII),
demonstrating the possibility of its localization. This arises through an interplay of interaction
and statistically-symmetric disorder, that confines the gapless fermionic degrees of freedom to a
network of one-dimensional helical domain-walls that can be localized. We identify two distinct
regimes of this gapless insulating phase, a “clogged” regime wherein the network localization is
induced by its junctions between otherwise metallic helical domain-walls, and a “fully localized”
regime of localized domain-walls. The experimental signatures of these regimes are also discussed.

I. INTRODUCTION

The surfaces of topological insulators (TIs)1–4 exhibit
robust symmetry-protected metallic transport even in
the presence of symmetry-preserving heterogeneity (dis-
order) as long as the bulk remains gapped. The evasion
of Anderson localization5,6 is due the anomalous nature
of the surface states, reflecting a nontrivial wavefunction
topology of TI’s bulk. Characterization of such symme-
try protected topological materials is a vibrant field of
research in modern condensed matter physics7,8.

Interactions can destabilize such metallic surfaces9–13

gapping them out by either spontaneously breaking the
protective symmetry, or inducing a symmetry-preserving
topologically-ordered long-range entanglement. How-
ever, it has been noted14,15 and explored more extensively
by us16, that in a two-dimensional (2D) time-reversal
symmetric Z2 TI (class AII)17–19 an interplay of interac-
tion and disorder can lead to another possibility, namely
to a glassy gapless but insulating edge. Such a localized
state breaks the time-reversal symmetry spontaneously,
but in “spin glass” fashion, preserving it statistically. It
exhibits a localization length that is a non-monotonic
function of disorder strength, and is best viewed as lo-
calized insulator of half charge fermionic domain-walls
(Luther-Emery20 fermons)16. Such edge localization pro-
vides a potential explanation of the puzzling experimen-
tal observations in InAs/GaSb TI systems21–24.

Motivated by this nontrivial disorder-interaction inter-
play in an edge of a 2D TI, we explore such phenomena
in a 2D surface of a three-dimensional (3D) TI and find
that only the CII class realizes this idea, namely, ex-
hibits a gapless localized surface. We thus focus on the
CII class TIs in the presence of symmetry breaking, but
statistically preserving disorder. Such a disorder poten-
tial can in principle be generated dynamically26,27. It
allows for three distinct possibilities: a network of chiral
(particle-hole symmetric) or helical (time-reversal sym-
metric) domain-walls28 (see Fig. 1), or a fully gapped
(time-reversal and particle-hole symmetry-broken) insu-
lators, depending on which symmetries are broken by dis-
order. As we demonstrate below, for the second case of a
network of helical domain-walls, in the presence of inter-

FIG. 1. An illustration of a disordered interacting class CII
TI surface, forming helical domain-walls (black solid curves),
between topologically gapped green domains25 and trivially
gapped white regions. Zoom-in: The interdomain four-way
junction modeled as two helical Luttinger liquids with an im-
purity (junction) perturbation.

actions, a CII class TI surface indeed displays a phase
transition to a gapless insulating surface. The latter
exhibits two regimes: a “clogged” regime in which the
barriers to transport are the junctions in the network of
otherwise delocalized domain-walls29, and a fully local-
ized regime of interpenetrating 1D localized helical edge
states16. These interaction-induced regimes are obtained
via standard analysis for helical Luttinger liquids14–16,29.
Topological insulators in other symmetry classes of the
ten-fold way do not allow this novel possibility.
The article is organized as follows. We begin in Sec. II

with an introduction of a continuum model of a surface
of CII class TI. We discuss three classes of symmetry-
breaking heterogeneities that preserve its statistical sym-
metry in Sec. III, focusing on the helical network sur-
face. A single interacting helical junction is studied in
Sec. IVB, and is utilized to make arguments for a lo-
calization transition in the helical surface network. We
conclude with experimental signatures and the future di-
rections in Sec. V.

II. SURFACE MODEL

Three dimensional TIs are characterized by symmetry-
protected metallic surfaces that host 2D massless Dirac
or Majorana quasiparticles1,2,30. In the absence of inter-
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action, they are robust to gapping out or localization by
any symmetry-preserving single particle scattering. We
focus on the spin chiral TI (class CII)30,31, characterized
by a Z2 invariant. Its topologically nontrivial surface ex-
hibits two-valley Dirac cones with the chemical potential
pinned to the Dirac point. The corresponding noninter-
acting clean CII surface Hamiltonian is given by

H0 =vD

∫

x

Ψ† [−iσ̂x∂x − iσ̂y∂y] Ψ, (1)

where Ψ is a four component fermionic Dirac field and
σ̂x,y,z is the “spin” Pauli matrix.
The clean surface Hamiltonian, H0 can be perturbed

by a number of fermion bilinear operators, Ψ†T̂aΨ (listed
in Table I), that can be classified by their commuta-

tion/anticommutation with σ̂x and σ̂y ( [T̂a, σ̂
x], [T̂a, σ̂

y],

{T̂a, σ̂x}, and {T̂a, σ̂y}). If a bilinear commutes with both
the σ̂x and σ̂y, it is regarded as a scalar operator, denoted
by V̂a. A vector operator, Âa, commutes with one of the
σ̂x or σ̂y, but anticommutes with the other one. The
mass operator, M̂a, anticommutes with both the σ̂x and
σ̂y.
We first focus on the symmetric bilinear operators

given by

Hdis =

∫

x

Ψ† [v1τ̂
x + v2τ̂

z + a1σ̂
xτ̂y + a2σ̂

y τ̂y ] Ψ, (2)

where τ̂x,y,z is the “valley” Pauli matrix. The bilinear
operators v1(x), v2(x) are scalar and a1(x), a2(x) vec-
tor, time- and particle-hole symmetry-preserving random
potentials? . The time reversal (T ) and the particle-hole
(P) operations are defined by

T : Ψ →iσ̂yΨ, i→ −i, (3a)

P : Ψ →σ̂xτ̂y(Ψ†)T . (3b)

We note that the matrices in both symmetry operations
(σ̂y and σ̂xτ̂y) are antisymmetric because they corre-
spond to T 2 = −1 and P2 = −13,4. In addition, a chiral
operation (S = T P) can be defined as a product of T
and P . All the bilinear operators in Table I are classified
by these symmetries as well.
We now consider symmetry-breaking random bilinear

perturbations to the T , P symmetric CII surfaces. Al-
though (as listed in Table I) there are various scalar (V̂a)

and vector (Âa) operators, these do not open up a gap or

induce a localization, unlike the mass operator M̂a
25,33.

We thus focus on random symmetry-breaking masses,
HM =

∑4
a=1HM,a, with

HM,a =

∫

x

ma(x)Ψ
†M̂aΨ. (4)

These can be classified as follows (also in Table I): M̂1 =

σ̂z preserves P but breaks T ; M̂2 = σ̂z τ̂y preserves T but

T̂a Billinear operator T P S Class

V̂1,2 τ̂x, τ̂ z
X X X CII

Â1,2 σ̂xτ̂y, σ̂y τ̂y
X X X CII

V̂3 τ̂y
x X x C

Â3,4,5,6 σ̂xτ̂x, σ̂xτ̂ z, σ̂y τ̂x, σ̂y τ̂ z
x X x C

M̂1 σ̂z
x X x C

V̂4 1̂ X x x AII

M̂2 σ̂z τ̂y
X x x AII

Â7,8 σ̂x, σ̂y
x x X AIII

M̂3,4 σ̂z τ̂x, σ̂z τ̂ z
x x X AIII

TABLE I. Classification of the bilinear operators in terms of
the time-reversal (T ), particle-hole (P), and chiral (S = T P)
operations on the CII class [as defined in Eq. (3)], and the

type of perturbations (V̂a, Âa, and M̂a).

breaks P ; M̂3 = σ̂z τ̂x and M̂4 = σ̂z τ̂z preserve S = T P
but break both T and P .
For our purposes here, we imagine simply imposing the

random sign-changing amplitudes, ma(x), such that sta-
tistically (averaged over disorder or samples) T ,P sym-
metries remain intact, i.e., ma has zero mean. More
physically, such random mass operators can arise as a
result of heterogeneous spontaneous symmetry breaking
in the presence of symmetric quenched disorder Hdis and
four-Fermi interactions

HI =

4
∑

a=1

Ua

∫

x

[

Ψ†M̂aΨ
]2

, (5)

where Ua denotes the interaction strength corresponding
to the mass M̂a

26,27, with ma(x) the mean-field order
parameter determined self-consistently26.
Independent of the physical mechanism, we expect

the CII symmetry-breaking random perturbation HM

to generate a surface ground state that is a network
of 1D domain walls, similar to statistical topological
insulators25,34, illustrated in Fig. 1, the fate of which,
in the presence of interactions is the focus of our work.

III. CII CLASS SYMMETRY-BROKEN

SURFACE STATES

In a three-dimensional CII class TI, the random
symmetry-breaking mass operators M̂a can lead to three
types of domain-wall networks, corresponding to three
distinct symmetries of sign-changing massesma(x) intro-
duced in Sec. II (see Table I). As we will discuss below,
with one type of a mass, the inhomogeneous symmetry
breaking leads to a surface state composed of a network
of gapless 1D domain-walls separating domains charac-
terized by a positive and negative value of a mass ma. In
the CII class, it is also possible to generate multiple mass
terms when only the chiral symmetry (S) is preserved.
In this case the symmetry-breaking order parameter is a
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vector, that can rotate smoothly without vanishing, and
as a result, such surface state, previously discussed9–13, is
fully gapped. Looking for a new, gapless but localized TI
surface scenario, here we instead focus on the case only
time-reversal (T ) or particle-hole (P) symmetry is un-
broken, such that there are sharp gapless domain-walls,
that we will argue can get localized for the case of M̂2

disorder in the presence of interactions.

The transport in such symmetry-broken surface states
of CII TIs is governed by the resulting network of the
massless 1D domain-walls. The domain-wall surface
states can be derived analytically in the large domain
size limit via the standard “twist mass” formalism35,36.
The 1D nature of the domain-walls is interrupted by re-
gions where two domain walls come close to each other.
These can be modeled as junctions illustrated in Fig. 1.

Here we are outlining the underlying physics and the
approach, relegating the technical analysis to the Ap-
pendices. To make progress, we take the effect due to
the random mass symmetry-breaking operators [given by
Eq. (4)] to be much stronger than the symmetric disor-
der [given by Hdis in Eq. (1)]. Therefore, we first com-
pute the zero energy states of H0 + HM,a, determining
the structure of the 1D electron domain-walls. We find
that only one class, the helical domain-walls, arising by
domains breaking P but not T symmetry, have the pos-
sibility of localization. We then study the stability of
the resulting network to interactions and symmetric dis-
order, Hdis, taking advantage of our earlier work on 1D
edges of 2D TIs16, as well as the analysis of the four-way
junctions29. The other symmetry-breaking scenarios are
robust to symmetric disorder and interactions and thus
such disordered TI surfaces remain metallic.

A. Particle-hole symmetric surface: Chiral

domain-wall network

A particle-hole symmetric but time-reversal broken
surface corresponds to the random mass operator M̂1 =
σ̂z . In this case the 1D domain-walls are chiral with two
co-moving electrons. The chiral domain-wall states can
be viewed as the spin quantum Hall edge of class C37–40.
The intersections or proximity of chiral domain-walls can
only rearrange their connectivity, but cannot stop the
network state from conducting. Such a metallic state
can be realized as a statistical topological insulator25,34,
or, alternatively can be viewed as a critical state at the
plateau transition6. These are well known to be robust
against local symmetric disorder perturbations, as with
conventional quantum Hall states. We are not aware of
any new physics to be discovered here from the interplay
of disorder and interactions, at least in the large domain
size limit, where the domain-wall structure can be de-
rived analytically.

(b) (c)

FIG. 2. Three possible regimes in the helical domain-wall
networks. (a) Metallic regime. The helical network remains
conducting for weaker Luttinger liquid interaction, K > 1/2.
(b) “Clogged” regime. For 3/8 < K ≤ 1/2, the symmetric
disorder remains irrelevant, but the random junctions (inter-
sections) of the helical domain-walls are relevant and therefore
block the dc transport, with helical electrons confined in the
inter-junction domain-wall segments, breaking time-reversal
symmetry spontaneously29. A clogged state also persists for

K < 3/8 when the 1D domain-wall localization length (ξ
(1D)
loc )

is much longer than the typical length of the domain-wall seg-
ment (lseg). As indicated in the figure, in the clogged regime,
the true physical localization length, ξloc is set by lseg. (c)
“Fully-localized” regime. For K ≤ 3/8 and sufficiently small

1D domain-wall localization length (ξ
(1D)
loc ≪ lseg), the whole

domain-wall network becomes localized with a localization
length set by ξ

(1D)
loc . The yellow (purple) solid lines indicate

the conducting (localized) channels; the purple crosses mark
the perfect barrier junctions; the blue and red arrows indi-
cate the movement of the domain-wall electrons that form
Kramers pairs in each domain-wall segment.

B. Time-reversal symmetric surface: Helical

domain-wall network

We now turn to the most interesting case with a time-
reversal symmetric surface, but with particle-hole sym-
metry randomly broken by the mass operator M̂2 =
σ̂z τ̂y . In this case, the domain-walls form a heli-
cal network state28, protected against localization in
the absence of interactions17,41, and have been studied
previously42–45. We emphasize that class CII TI is the
only ten-fold way insulator that realizes a network of heli-
cal states under inhomogeneous symmetry breaking. The
surface remains metallic as long as the time-reversal sym-
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metry is intact. We next discuss the stability of this
metallic helical network to interactions and symmetry-
preserving disorder in the remainder of this subsection,
with the technical analysis presented in Sec. IVB.

Such surface transport is governed by the network of
interacting helical domain-walls. At length scales shorter
than the distance between junctions the physics is con-
trolled by isolated helical domain walls, analyzable as
a helical Luttinger liquid14,15. For sufficiently strong re-
pulsive interactions, K < 3/8, these can be localized14–16

due to an interplay of symmetric disorder and umklapp
four-fermion interaction16. Such a localized state spon-
taneously and inhomogeneously breaks the time-reversal
symmetry and is best viewed by a localized insulator of
e/2-charge Luther-Emery fermions16. Thus for K < 3/8,
such TI surface becomes a network of localized one-
dimensional insulators. This picture is self-consistent as
long as the localization length along the one-dimensional
domain-walls is short compared to the typical distance
between junctions of the network, a condition that can
be satisfied by taking the domains to be sufficiently large.

In the complementary regime of weaker interactions,
K > 3/8, the isolated 1D domain-wall segments are not

localized, requiring an analysis of the full network, con-
trolled by domain-walls proximity (intersections), that
we model as four-way junctions. The latter problem is
related to the earlier studies of the corner junction46

and the point contact29. We perform a complemen-
tary analysis based on two helical Luttinger liquids with
symmetry-allowed impurity perturbations in Sec. IVB
and Appendix B. As we will demonstrate, for suffi-
ciently strong interactions, K < 1/2, the junctions be-
come strong impurity barriers that suppress all conduc-
tion (before, i.e., for weaker interaction than localization
of isolated domain-walls, K < 3/814–16), and break the
time-reversal symmetry spontaneously. Our results are
consistent with the earlier finding in the helical liquid
point contact study with spin-orbit couplings29.

Combining the results from both the junction and the
domain-wall states, we conclude the existence of three
regimes (summarized in Fig. 2) in the large domains
limit. For weak interactions (K > 1/2), the helical net-
work remains conducting and can be viewed as a sta-
tistical TI surface25,34. For intermediate interactions
(3/8 < K ≤ 1/2), the junctions break time-reversal
symmetry spontaneously and suppress the conduction.
The domain-wall state in each segment remains “delo-
calized”, but the junctions block transport. We refer to
this as a “clogged” regime. For sufficiently strong inter-
actions (K ≤ 3/8), all the junctions and the domain-wall
segments break time-reversal symmetry spontaneously
and form a network of localized one-dimensional chan-
nels. Because the “clogged” and “fully localized” states
are qualitatively the same, they are two distinct regimes
connected by a smooth crossover (driven by interaction
strength K) within a single insulating phase that sets
in for K < 1/2. We discuss this crossover further in
Sec. IVB.

C. Surface with only chiral symmetry: Gapped

insulator

Lastly, for completeness, we discuss the CII TI surface
with both time-reversal and particle-hole symmetry bro-
ken by two mass operators, M̂3 = σ̂z τ̂x and M̂4 = σ̂z τ̂z ,
corresponding to the chiral symmetric class AIII. Qual-
itatively distinct from the case of a single mass, such
symmetry broken surface state is typically fully gapped
because the domains with multiple masses can deform
from one to another without closing the gap25, a pos-
sibility that was anticipated in the previous studies9–13.
Thus, such a surface is a fully gapped insulator up to
disorder-induced rare in-gap states.
Finally we note that for a fine-tuned microscopic

model, where only one type of bilinear appears, e.g.,
M̂3 = σ̂z τ̂x or M̂4 = σ̂z τ̂z , a domain-wall network can
be realized. However, the domain-walls of this network
carry conventional one dimensional electrons. They thus
do not enjoy the protection of T symmetry against local-
ization and can therefore be Anderson-localized by dis-
order alone, in the absence of interactions.

IV. HELICAL DOMAIN-NETWORK ANALYSIS

We now focus on a helical domain-wall network
and analyze its stability to interactions and symmetry-
preserving disorder. To this end, we first demonstrate lo-
calization along independent 1D domain-walls, and then
show that the localization is stable to the ever-present
domain-wall junctions, whose effect is to enhance local-
ization by shifting the critical point to weaker interac-
tions.

A. Independent helical domain-walls

At short length scales (shorter than the typical inter-
junction separation) we can neglect the domain-wall
junctions and focus on the nature of individual helical
domain-wall segments. In this limit, the problem reduces
to independent 1D helical conductors, in the presence
of symmetry-preserving disorder and interactions. This
problem is technically identical to that of an interacting
disordered edge of a 2D TI in the AII class14–16, that can
be localized by the interplay of symmetric disorder and
interactions.
To see this, we consider a helical conductor modeled

as counter-propagating states of right (R) and left (L)
moving helical fermions, with the low-energy disorder-
free Hamiltonian given by

HhLL = vF

∫

x

[

R† (−i∂xR)− L† (−i∂xL)
]

+Hint, (6)

where vF is the Fermi velocity and Hint encodes the Lut-
tinger liquid interactions47,48. Although HhLL takes the
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same form as the spinless Luttinger liquid47,48, it is dis-
tinct from it, as in the helical Luttinger liquids the time-
reversal symmetry (R → L, L → −R, and i → −i)
satisfies T 2 = −1, and thereby forbids single-particle
backscattering perturbation, L†R.
Thus symmetric disorder only allows forward scatter-

ing,

Hchem =

∫

x

V (x)
(

R†R + L†L
)

, (7)

that in the absence of additional interactions does not
lead to localization.
The helical Luttinger liquid is also generically stable to

the (disorder-free) time-reversal symmetric two-particle
umklapp scattering,

Humklapp =

∫

x

[

ei(4kF−Q)x : (L†R)2 : +h.c.
]

(8)

(: A : is the normal ordering of A) as long the reciprocal
lattice wavevector Q is sufficiently incommensurate, i.e.,
as long as |4kF − Q| > δQc (δQc the critical threshold)
is satisfied49.
However, in the presence of symmetric disorder, that

statistically makes up the wavevector incommensura-
tion, the umklapp interaction generates a random time-
reversal symmetric two-fermion back-scattering, that can
lead to a localization of the 1D helical Luttinger liquid
and the associated spin-glass-like time-reversal symmetry
breaking16. Indeed, the standard renormalization group
(RG) analysis shows that an interacting disordered heli-
cal conductor can be localized for K < 3/814,15. Alter-
natively, the problem at K = 1/4 can be mapped onto
noninteracting Luther-Emery fermions20 with chemical
potential disorder16, a model that is known to give lo-
calization for the entire spectrum50. Such an interacting
localized state is best viewed as an Anderson localized
insulator of half-charge fermions (solitons), that exhibits
a nonmonotonic localization as a function of disorder
strength16.
Such localization of the 1D helical liquids then directly

predicts a localization of long segments of nonintersect-
ing domain-wall, valid in the regime when domain-wall
junctions can be neglected. We next analyze the comple-
mentary regime where junctions play an essential role in
localization of the CII surface.

B. Interacting helical junction

For a weaker electron interaction K > 3/8 and/or
smaller domain size, the domain-wall intersections be-
come important, and it is necessary to take into account
junctions (see zoom-in of Fig. 1). At the technical level,
the problem of the four-way helical junction is related to
the studies of a corner junction46 and point contact29 in
a 2D topological insulator. In these previous works, the

junction of four semi-infinite helical Luttinger liquids is
mapped to an infinite spinful Luttinger liquid with an
impurity interaction. We present a technically distinct
but physically equivalent analysis based on two isolated
Luttinger liquids with junction perturbations.
We thus consider two 1D generic helical Luttinger

liquids +,−, interacting via a local junction perturba-
tion, corresponding to two helical domain-walls coming
to close proximity (see the zoom-in in Fig. 1). Because
these are boundaries of the same type of gapped domains,
they map onto two 1D Luttinger liquids of opposite he-
licity, described by two copies of the helical Hamiltonian
[Eq. (6)],

HhLL,2 =vF
∑

s=±

∫

x

[

R†
s (−i∂xRs)− L†

s (−i∂xLs)
]

+Hint,2,

(9)

where Rs (Ls) is the right (left) moving fermion, with the
index s labeling the two helical domain-walls and Hint,2

encoding the Luttinger liquid interactions47 within each
helical liquid. For simplicity, we take these two to have
the same Fermi velocity (vF ) and Luttinger liquid inter-
action; we expect our qualitative conclusions to remain
valid away from this special case.
To construct junction perturbations, we enumerate

all bilinear and quartic operators allowed by the time-
reversal symmetry51,52. For example, as usual the single-
particle backscattering within the same helical liquid
(L†

sRs) is forbidden. We will also ignore perturbations
that are always irrelevant in the RG analysis. The sin-
gle particle forward and backward tunneling processes
between the two helical liquids are given by

H
(1)
junc =− te

[

L†
−(0)R+(0)−R†

−(0)L+(0) + H.c.
]

− te′
[

R†
−(0)R+(0) + L†

−(0)L+(0) + H.c.
]

,

(10)

where te and te′ are the amplitudes of single electron
tunneling. We note that te′ process is only allowed in
the presence of Rashba spin-orbit coupling, which breaks
the nongeneric spin Sz conservation29. For sufficiently
strong te, the connectivity of the two helical liquids may
be restructured. (See the zoom-in of Fig. 1 for the two
possible configurations.)
We also include the two-particle “Cooper pair” tunnel-

ing processes, given by

H
(2)
junc = −t2e

[

L†
−(0)R

†
−(0)R+(0)L+(0) + H.c.

]

, (11)

corresponding to a Kramers pair hopping between two
helical domain walls.
Finally, we include the two-particle backscattering

across the junction,

H
(I)
junc =− tσ

[

L†
+(0)R+(0)L

†
−(0)R−(0) + H.c.

]

− tσ′

[

L†
+(0)R+(0)R

†
−(0)L−(0) + H.c.

]

. (12)
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FIG. 3. Illustration of junction perturbations between two he-
lical domain-wall liquids with opposite helicities in proximity
to each other. In the absence of Rashba spin-orbit coupling,
the red (blue) arrows indicate movers with up (down) spin.
The corresponding fermion fields are labeled on the top of
this illustration. The interactions te, t2e, and tσ are “spin-
preserving” processes; te′ and tσ′ perturbations correspond
to “spin-flip” processes which require Rahsba spin-orbit cou-
pling.

The tσ and tσ′ processes can be viewed as “spin-flip”
processes. In particular, tσ′ operator breaks the non-
generic spin Sz conservation29. These two interactions
are analogous to the primary inter-edge interactions in
the studies of helical liquid drag52,53. When tσ and tσ′

are both relevant, the junction becomes a barrier that
suppresses electrical conduction and breaks time-reversal
symmetry29.

In the presence of time-reversal symmetry one can also
consider an interaction-assisted backscattering52

H
(irr)
junc =−W ′

+

[

R†
−(0)L−(0)R

†
+(0)R+(0)

− L†
−(0)R−(0)L

†
+(0)L+(0) + H.c.

]

−W ′
−

[

R†
+(0)L+(0)R

†
−(0)R−(0)

− L†
+(0)R+(0)L

†
−(0)L+(0)−H.c.

]

. (13)

However, standard RG analysis shows that it and all
other perturbations are irrelevant. Thus, in the remain-

ing discussion we will focus on HhLL,2 +H
(1)
junc +H

(2)
junc +

H
(I)
juct, processes, summarized in Fig. 3.

In order to study above processes in the presence
of Luttinger liquid interactions, we employ standard
bosonization47,48 of above Hamiltonian. With the de-
tailed derivation relegated to Appendix B, below we sum-
marize the results of the leading order renormalization

group analysis, with the RG flow equations given by

dte
dl

=

[

1− 1

2

(

K +
1

K

)]

te, (14a)

dte′

dl
=

[

1− 1

2

(

K +
1

K

)]

te′ , (14b)

dt2e
dl

=

[

1− 2

K

]

t2e, (14c)

dtσ
dl

= [1− 2K] tσ, (14d)

dtσ′

dl
= [1− 2K] tσ′ . (14e)

These are consistent with the previous works on the cor-
ner junction46 and the quantum point contact29. We also
note that te and te′ are at most marginal in the noninter-
acting limit, K = 1. This ensures that the configuration
of two helical states we consider is unchanged in the re-
pulsive interaction regime. The Cooper pair tunneling
t2e naturally becomes relevant for sufficiently strong at-
tractive interactions (K > 2). Thus, below we focus on
the two-particle backscattering, tσ and tσ′ , that become
relevant for K < 1/2.
For such strongly repulsive interactions, K < 1/2, we

only need to consider HhLL,2 + H
(I)
junc. As detailed in

Appendix B, the inter-domain-wall coupling decomposes
the action into symmetric and antisymmetric sectors. In
each sector, the action can be mapped to the Kane-Fisher
model54,55 with K → 2K. For K < 1/2, the impurity
interactions effectively cut (i.e., pin) the symmetric and
antisymmetric Luttinger liquids. In the physical basis
of two helical Luttinger liquids, the junction coupling
creates a perfectly reflecting boundary condition which
suppresses all conduction29. The junction is therefore
“clogged.” Concomitantly, the time-reversal symmetry
is broken spontaneously and heterogeneously by the net-
work of junctions29.
At the critical point K = 1/2, the transmission across

a single junction is nonzero and can be computed exactly
by fermionizing the symmetric and antisymmetric sectors
into a noninteracting model of Luther-Emery fermions.
The scattering problem can then be solved exactly, with
the physical transmission (T) and reflection (R) coeffi-
cients given by29,

T =

(

2e|Mb|/v

e2|Mb|/v + 1

)2

, (15a)

R =

(

e2|Mb|/v − 1

e2|Mb|/v + 1

)2

, (15b)

where b = S,A indicates symmetric and antisymmetric
sectors. Above, MS = tσ/(πα) and MA = tσ′/(πα),
with α the ultraviolet length-scale cutoff. We note that
the expressions are independent of the energy due to low-
energy point-scattering approximation. When |Mb|/v ≫
1, the transmission T ≈ 4 exp(−2|Mb|/v). Therefore, we
conclude that the junction at K = 1/2 is also clogged
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for |Mb|/v ≫ 1. The details of this analysis, extended
beyond a point junction limit is relegated to Appendix B.
Above results can now be bootstrapped to charac-

terize the helical network surface of clogged junctions.
The surface can be viewed as a network of ideal helical
conductors that are connected by clogged resistive junc-
tions. Each clogged junction contributes incoherently a
suppression factor Gj ∼ exp (−2|Mj|/v), where j is the
junction index and |Mj | is the amplitude of the effective
potential. The conductance is determined by the most
conductive path in the network. We estimate the con-

ductance by G ∼ ∏′
j Gj ∼ exp

(

−2
∑′

j |Mj |/v
)

, where

the summation runs over all the junctions in the most
conductive path. Without loss of generality, the num-
ber of the junctions in the path is roughly L/lseg (lseg
the typical length of the domain-wall segment). Combin-
ing above estimates, we predict a surface conductance

G ∼ exp(−2M̄
v

L
lseg

) where M̄ is the averaged value of

|Mj |. As a comparison, the conductance in the localized
regime is G ∼ exp (−2L/ξloc), where ξloc is the averaged
localization length. The exponentially small conductance
of the clogged state and the absence of qualitative dis-
tinctions, argues that these regimes are a single localized
state, separated by a smooth crossover, rather than a
genuine phase transition.

V. DISCUSSION AND SUMMARY

We explored the stability of a 2D metallic surface of a
3D spin chiral (CII class) topological insulator to disorder
and interaction. In the scenario of a symmetry broken
surface that forms multiple statistically symmetric do-
mains, we argued that the surface can realize a gapless

insulating ground state, with two regimes - a network of
1D helical domain-walls interrupted by blockaded junc-
tions (the clogged regime), and a network of localized 1D
helical channels (the fully-localized regime). This gap-
less insulating surface state, realized only in the CII TI
class, is a distinct scenario from the previously discussed
possibilities of interacting TI surfaces9–13.
The gapless insulating surface of nontrivial TIs pre-

dicted here shares many experimental features with a 2D
conventional Anderson insulator, exhibiting vanishing dc
conductivity and nonzero compressibility. However, it
may be distinguishable through real-space surface imag-
ing (e.g., STM) by its low-energy states organized into
the characteristic domain-wall network, quite different
from the conventional 2D localized states. In addition,
the half-charge excitations in the localized regime16 and
the perfect barrier junctions29 should in principle be ex-
perimentally detectable via noise measurements.
Finite temperature and finite frequency measurements

may also be able to distinguish between the clogged and
fully-localized regimes, tunable by the strength of inter-
actions and disorder, with the latter controlling the do-
main size. In the clogged regime of the dilute domain-

wall limit the temperature dependence of the surface
transport is dictated by the weak junction links54,55 and
should then exhibit the one-dimensional insulator depen-
dence. The ac conductivity will show a crossover fre-
quency scale set by ω∗ ∼ vF /lseg (lseg the length of
domain-wall segment) above which the ac conductivity
is the same as that of a 1D helical liquid56. In contrast,
at low frequency (ω < ω∗) the ac conductivity should
vanish due to the weak link barriers at the junctions.

In the fully-localized regime, the transport is governed
by a network of one-dimensional localized insulators. The
low temperature conductance due to a localized insula-
tor should follow G ∼ e−2L/ξloc , where ξloc is the lo-
calization length. The ac conductivity should show the
Mott conductivity σ ∝ ω257 up to logarithmic correc-
tions. These two regimes are connected via a crossover for
finite domain-wall segments and become distinct phases
in the infinite domain-wall segment limit.

In this work, we consider statistically symmetry-
preserving disorder that creates inhomogeneous symme-
try breaking. Such disorder may be generated due to the
interplay of symmetric disorder and interaction, leading
to instabilities of the dirty interacting topological surface
states58–60. A systematic derivation of the heterogeneous
spontaneous symmetry breaking in a dirty interacting TI
is beyond the scope of the current work and is left to fu-
ture studies.

We note that the clogged state predicted here
may also be realized in the Luttinger liquid networks
of the (twisted) bilayer graphene and other related
platforms61–72. If so, the clogged phenomenology pre-
dicted here may extend to those systems as well. We
leave to future work the extension of the present anal-
ysis to six-way junctions, relevant in the twisted bilayer
graphene systems63,64.
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Appendix A: Derivations of domain-wall states

Here we derive the low-energy domain-wall model from
the 2D surface theory encoded in H0 + Hdis + HM,a,
Eqs. (1), (2), and (4). Our strategy is to first solve
H0 + HM,a exactly, thereby obtaining the domain-wall
states and then treat Hdis as a perturbation. The solu-
tion of H0 + HM,a can be parametrized by Ψ0(x, y) =

f(x)
[

ψ̃1(y)v̂1 + ψ̃2(y)v̂2

]

where ψ̃1,2(y) are normalized

wavefunctions of y and v̂1,2 is a four component vector.
Taking ma(x) = ma sgn(x), we find that the amplitude
f(x) and vectors v̂1,2 satisfy,

−ivDσ̂xv̂1,2∂xf(x) +ma sgn(x)M̂av̂1,2f(x) = 0, (A1)

that reduces to

v̂1,2∂xf(x) = −ma

vD

(

iσ̂xM̂a

)

sgn(x)v̂1,2f(x). (A2)

The zero energy normalizable amplitude solution is given
by

f(x) =

√

ma

vD
e−(ma/vD)|x|, (A3)

and the four component vectors satisfy

iσ̂xM̂av̂1,2 = v̂1,2. (A4)

The above solution f(x) describes the domain-wall profile
across x, with the domain-wall chosen to run along y.
The single domain-wall assumption is justified as long
as its width (vD/ma) is much smaller than the typical
domain size w, i.e., wma/vD ≫ 1.
To obtain the effective 1D domain-wall Hamiltonian we

substitute Ψ0 for Ψ insideH0+Hdis+HM,a. The resulting
kinetic energy part of the domain-wall Hamiltonian is
then given by

HDW,0 = [H0 +HM,a]Ψ→Ψ0

=vD

∫

dy
[

−is1ψ̃†
1∂yψ̃1 − is2ψ̃

†
2∂yψ̃2

]

, (A5)

where s1,2 = v̂†1,2σ̂
y v̂1,2 = ±1 determines the sign of ve-

locities for the fermion fields ψi. The domain-wall model
is chiral when s1 = s2. We note that there is no mixing
term because [σ̂xM̂a, σ̂

y] = 0.
The disorder part of the Hamiltonian is given by

HDW,dis = Hdis [Ψ → Ψ0] ,

=
∑

a,b

∫

dy ψ̃†
av̂

†
a [ṽ1τ̂

x + ṽ2τ̂
z + ã1σ̂

xτ̂y + ã2σ̂
y τ̂y ] v̂bψ̃b,

(A6)

where a, b = 1, 2 are the one-dimensional fermion fla-
vors. The 1D disorder bilinears, ṽ1, ṽ2, ã1, and ã2, corre-
spond to their 2D disorder counter-parts, v1, v2, a1, and
a2, respectively, related by, Õ(y) =

∫

dxf2(x)O(x, y) for
O = v1, v2, a1, a2.
We now use this set up to derive and analyze the

structure of the chiral, helical, and (fine-tuned) non-
topological domain-walls.

1. Chiral domain-walls

In the presence of only M̂1 = σ̂z mass operator, the
time-reversal symmetry (T ) is broken, but the particle-
hole (P) is preserved. The resulting symmetry-broken
surface corresponds to the symmetry class C73. The
corresponding spinor equation reduces to iσ̂xM̂1v̂1,2 =
σ̂y v̂1,2 = v̂1,2, with solutions

v̂1 =
1√
2











1

0

i

0











, v̂2 =
1√
2











0

1

0

i











. (A7)

We can then identify that s1 = v̂†1σ̂
y v̂1 = 1 and

s2 = v̂†2σ̂
y v̂2 = 1. Based on the structure in Eq. (A5), the

domain-wall state only contains right-mover fermions.
Thus such a domain-wall solution realizes a chiral state,
which corresponds to the spin quantum Hall edge of
class C37–40, and is robust against any local perturba-
tion within a domain-wall.
For completeness, we also construct the disorder po-

tential on the domain-wall even though a chiral state is
robust against such disorder. Using Eqs. (A6) and (A7),
the effective disorder domain-wall Hamiltonian is given
by

H
(1)
DW,dis=

∫

y

[

ṽ2(y)(ψ
†
1ψ1 − ψ†

2ψ2)+ã2(y)(iψ
†
2ψ1 − iψ†

1ψ2)
]

.

Above ṽ2 plays the role of an anti-symmetric chemical
potential in the two right movers, and ãy is an impurity
forward scattering between two right movers, that cannot
induce localization74.

2. Helical domain-walls

We now consider a symmetry-breaking mass M̂2 =
σ̂z τ̂y . This mass bilinear breaks the particle-hole
symmetry but preserves time-reversal symmetry. The
symmetry-broken surface belongs to the class AII (the
same as the 2D time-reversal symmetric Z2 TIs). The
corresponding spinor equation is σ̂y τ̂y v̂1,2 = v̂1,2 yields
solutions

v̂1 =
1

2











1

i

i

−1











, v̂2 =
1

2











1

−i
−i
−1











. (A8)

In this case, s1 = v̂†1σ̂
y v̂1 = 1 and s2 = v̂†2σ̂

y v̂2 = −1.
According to Eq. (A5), the domain-wall movers are de-
scribed by a right mover (s1 = 1) and a left mover
(s2 = −1). In order to assess the effect of symmetric
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disorder, we construct the domain-wall disorder poten-
tial Hamiltonian based on Eq. (A6), obtaining

H
(2)
DW,dis =

∫

y

ã2(y)
[

ψ̃†
1ψ̃1 + ψ̃†

2ψ̃2

]

. (A9)

The domain-wall disorder is controlled by a scalar poten-
tial ã2, corresponding to a randomly fluctuating chemi-
cal potential. Based on symmetry, one can also include
V̂4 = 1̂ in Table I. This only creates correction to the
existing random chemical potential fluctuation. There
are no additional bilinear operators with T 2 = −1, so we
conclude that the domain-wall state is a helical state28

which is topological protected from disorder in the ab-
sence of interactions17.

3. Normal domain-wall

For certain microscopic models (e.g., fine tuning inter-
actions such that only U3 6= 0 or U4 6= 0 appear), it is
possible to realize only one mass term. Here, we perform
the same analysis to derive the domain-wall states due
to only M̂3 = σ̂z τ̂x or M̂4 = σ̂z τ̂z mass operators. In
the two dimensions, the AIII class is topologically triv-
ial. The spinor solutions (v̂1,2 for M̂3, û1,2 for M̂4) obey
σ̂y τ̂xv̂1,2 = v̂1,2 and σ̂y τ̂z û1,2 = û1,2. The corresponding
solutions are given by

v̂1 =
1

2











1

1

i

i











, v̂2 =
1

2











1

−1

−i
i











, (A10)

and

û1 =
1√
2











1

0

i

0











, û2 =
1√
2











0

1

0

−i











(A11)

We thus identify that v̂†1σ̂
y v̂1 = û†1σ̂

yû1 = 1 (right

mover) and v̂†2σ̂
y v̂2 = û†2σ̂

y û2 = −1 (left mover). There-
fore, both cases give a non-chiral state. Because the sur-
face state is in class A, the massless domain-wall hosts
non-topological 1D fermions.
For completeness, we also discuss the corresponding

domain-wall disorder. With the mass M̂3, the disorder
part is given by

H
(3)
DW,dis =

∫

y

ṽ1(y)
[

ψ̃†
1ψ̃1 − ψ̃†

2ψ̃2

]

+

∫

y

ã1(y)
[

ψ̃†
2ψ̃1 + ψ̃†

1ψ̃2

]

. (A12)

For M̂4 case we instead find,

H
(4)
DW,dis =

∫

y

ṽ2(y)
[

ψ̃†
1ψ̃1 − ψ̃†

2ψ̃2

]

−
∫

y

ã1(y)
[

ψ̃†
2ψ̃1 + ψ̃†

1ψ̃2

]

. (A13)

The antisymmetry chemical potentials (ṽ1 inH
(3)
DW,dis and

ṽ2 in H
(4)
DW,dis ) couples to the difference of right and

left mover local densities. Both cases allow for conven-
tional impurity backscattering (ã1 in both cases) within
the domain wall, and thus realizes topologically trivial
1D fermions, which are therefore not protected against
Anderson localization.

Appendix B: Helical junction

In this appendix, we provide the derivations of the
results in Sec. IVB. We will also review the standard
bosonization and the Luther-Emery analysis.

1. Bosonization

In order to treat the Luttinger interaction nonpertur-
batively, we adopt the standard field theoretic bosoniza-
tion method48. The fermionic fields can be described by
chiral bosons via

Ra(x) =
Ûa√
2πα

ei[φa+θa](x), La(x) =
Ûa√
2πα

ei[φa−θa](x),

(B1)

where φa=± is the bosonic phase field, θa=± is the
phonon-like boson, Ua=± is the Klein factor47, and α is
the ultraviolet length scale that is determined by the mi-
croscopic model. The time-reversal operation (T 2 = −1)
in the bosonic language is defined as follows: φ± →
−φ± + π

2 , θ± → θ± − π
2 , and i → −i. This corresponds

to the fermionic operation R± → L±, L± → −R±, and
i → −i. We note that the introduction of the Klein fac-
tors (Ua=±) here is just for bookkeeping purpose.
Now, we perform the standard bosonization and ana-

lyze the Hamiltonian. The Hamiltonian of each helical
liquid is bosonized to

HhLL,2 =
∑

a=±

∫

x

[

v

2πK
(∂xθa)

2
+
vK

2π
(∂xφa)

2

]

, (B2)

where we have assumed the same velocity (v) and the
same Luttinger parameter (K) among the two helical
liquids. K encodes the strength Luttinger liquid inter-
actions. K < 1 (K > 1) for repulsive (attractive) inter-
actions. K = 1 is at the non-interacting fermion limit.
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The impurity perturbations [given by Eqs. (10), (11), and
(12)] are bosonized to

H
(1)
junc =− te

2πα

[

Û †
−Û+(2i)e

i(φ+−φ−) sin (θ+ + θ−) + H.c.
]

− te′

2πα

[

Û †
−Û+2e

i(φ+−φ−) cos (θ+ − θ−) + H.c.
]

,

(B3)

H
(2)
junc =− t2e

4πα2

[

Û †
−Û

†
−Û+Û+e

i(2φ+−2φ−) +H.c.
]

,

(B4)

H
(I)
junc =− tσ

2π2α2
cos [2θ+ + 2θ−]−

tσ′

2π2α2
cos [2θ+ − 2θ−] .

(B5)

The corresponding renormalization group equations can
be found in Eq. (14).

2. Clogged junction

We are interested in the repulsive interacting regime
(K < 1) in the helical network model. Therefore, we
focus on the tσ and tσ′ interactions given by Eq. (B5)
and ignore other processes. In the strong coupling limit
(K < 1/2), the ground state constraints are θ+(t, x =
0) + θ−(t, x = 0) = nπ and θ+(t, x = 0) + θ−(t, x = 0) =
mπ where n and m are integers. The ground state yields
static solutions at x = 0: θ+(t, x = 0) = (n+m)π/2 and
θ−(t, x = 0) = (n−m)π/2. As a consequence, the current
I± = − 1

π∂tθ± at x = 0 is zero in both of the helical
liquids. Therefore, we predict that a four-way junction
with semi-infinite helical liquids becomes “clogged” for
K < 1/2.
An alternative way to view the clogging is to map

the problem to a modified Kane-Fisher single impurity
problem54,55. We define symmetric and anti-symmetric
collective bosonic modes as follows:

ΘS =
1√
2
(θ+ + θ−), ΦS =

1√
2
(φ+ + φ−), (B6)

ΘA =
1√
2
(θ+ − θ−), ΦA =

1√
2
(φ+ − φ−). (B7)

The subscript S and A denote the symmetric and anti-
symmetric collective modes respectively. Now, we use the
collective coordinate to rewrite the theory. The Luttinger
liquid Hamiltonian in Eq. (B2) is now expressed by

HhLL,2 =

∫

x

[

v

2πK
(∂xΘS)

2
+
vK

2π
(∂xΦS)

2

]

(B8)

+

∫

x

[

v

2πK
(∂xΘA)

2
+
vK

2π
(∂xΦA)

2

]

. (B9)

We note that the impurity interaction can not induce
renormalization of the velocity and Luttinger parameter.

The junction interactions in Eq. (B5) becomes to

H
(I)
junc = − tσ

2π2α2
cos

[

2
√
2ΘS

]

− tσ′

2π2α2
cos

[

2
√
2ΘA

]

.

(B10)

Both the symmetric and anti-symmetric sectors can be
individually mapped to the Kane-Fisher problem54,55

with K → 2K. The critical point is given by K = 1/2
below which the transmission of both the symmetric and
anti-symmetric modes vanish to zero.

3. Luther-Emery Analysis

At the critical point K = 1/2, one can perform
standard refermionization for the two helical Luttinger
liquids problem since both the symmetric and the
anti-symmetric sectors correspond to the Kane-Fisher
model54,55. We introduce the Luther-Emery fermions via

Ψb,R(x) =
ei[Φb(x)/

√
2+

√
2Θb(x)]

√
2πα

,

Ψb,L(x) =
ei[Φb(x)/

√
2−

√
2Θb(x)]

√
2πα

, (B11)

where b = S,A is the index for symmetric (S) and an-
tisymmetric (A) collective modes. The Luther-Emery
fermion Hamiltonian of the sector b is given by

Hb =− iv

∫

dx
[

Ψ†
b,R∂xΨb,R −Ψ†

b,L∂xΨb,L

]

+Mb

[

Ψ†
b,RΨb,L +Ψ†

b,LΨb,R

]

x=0
, (B12)

where Mb=S = tσ/(πα) and Mb=A = tσ′/(πα). The
impurity mass problem can be solved via standard quan-
tum mechanical scattering approach. Firstly, we derive
the Dirac equation as follows:

[

−iv∂x Mbδ(x)

Mbδ(x) iv∂x

][

Ψb,R

Ψb,L

]

= E

[

Ψb,R

Ψb,L

]

(B13)

→− ivσ̂z∂xΨ̂b +Mbδ(x)σ̂
xΨ̂b = EΨ̂b, (B14)

where Ψ̂b is the two-component column vector that con-
tains Ψb,R and Ψb,L. The above equation satisfies a
boundary condition as follows:

−ivσ̂z
[

Ψ̂b(0
+)− Ψ̂b(0

−)
]

+Mbσ̂
xΨ̂b(0) = 0. (B15)

We note that this boundary condition is ambiguous
because the wavefunction might be discontinuous at
x = 0.

Instead of studying the delta distribution problem, we
replace the impurity potential by a square well potential,
Mbδ(x) → M̃bΘ(x)Θ(d − x), where d is the size of mass
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Δ=0.5

Δ=1

Δ=2

Δ=5

Δ=5

Δ=0.5

Δ=1

Δ=2

(a) (b)

FIG. 4. Reflection and transmission of 1D Dirac scattering
problem (finite mass region) as functions of rescaled energy.
(a) Reflection, R = |A|2. (b) Transmission, T = |D|2. Both
A and B are given by Eq. (B21). xE is the dimensionless
energy parameter defined in the text below Eq. (B21). Black,
blue, green, and red curves indicate ∆ = Mb/v = 0.5, 1, 2, 5
respectively. The perfect transmissions (T= 1 and R= 0) for
xE > 1 correspond to the Fabry-Pérot interference.

region and M̃b = Mb/d is the “mass” strength. The im-
purity limit is obtained by taking d→ 0+. With a finite
d, the wavefunction is continuous everywhere because of
the analyticity. We consider a scattering ansatz as fol-
lows:

Ψ̂b(x)=















































eikx

[

1

0

]

+Ae−ikx

[

0

1

]

, for x ≤ 0,

Beiqx

[

1
−vq+E

M̃b

]

+Ce−iqx

[

−vq+E

M̃b

1

]

, for 0<x≤d,

Deikx

[

1

0

]

, for x > d,

(B16)

where k = E/v and q =
√

E2 − M̃2
b /v. The boundary

conditions are given by

B + C

(−vq + E

M̃b

)

=1, (B17)

B

(−vq + E

M̃b

)

+ C =A, (B18)

Beiqd + Ce−iqd

(−vq + E

M̃b

)

=Deikd, (B19)

Beiqd
(−vq + E

M̃b

)

+ Ce−iqd =0. (B20)

With the help of Mathematica, one can obtain the solu-

tions as follows:

A =

(

√

x2E − 1− xE

)(

−1 + e2i∆
√

x2
E
−1

)

1 +
(

2xE
√

x2E − 1− 2x2E + 1
)

e2i∆
√

x2
E
−1
,

(B21a)

B =
1

1 +
(

2xE
√

x2E − 1− 2x2E + 1
)

e2i∆
√

x2
E
−1
,

(B21b)

C =

(

√

x2E − 1− xE

)

e2i∆
√

x2
E
−1

1 +
(

2xE
√

x2E − 1− 2x2E + 1
)

e2i∆
√

x2
E
−1
, (B21c)

D =
2
(

xE
√

x2E − 1− x2E + 1
)

e
i∆

(√
x2
E
−1−xE

)

1 +
(

2xE
√

x2E − 1− 2x2E + 1
)

e2i∆
√

x2
E
−1
,

(B21d)

where xE ≡ E/|M̃b| and ∆ ≡ d|M̃b|/v = |Mb|/v. The
reflection is R = |A|2 and transmission is T = |D|2. The
dependence of xE and ∆ are plotted in Fig. 4. For ∆ =
|Mb|/v ≫ 1, the scattering problem reveals a sharp gap
structure because R ≈ 1 for xE < 1. For xE > 1, there
are some special energies that allow perfect transmission.
This is related to the Fabry-Pérot interference. However,
we do not focus on such high energy phenomenon in this
work.
Now, we consider d → 0+ with M̃bd = Mb fixed. The

finite mass region is reduced to a single impurity poten-
tial. In the impurity case, xE = Ed/|Mb| → 0 for a
fixed Mb/v. The expression of transmission and reflec-
tion are reduced to Eq. (15). The results do not depend

on the energy due to the infinite |M̃b| = |Mb|/d in this
limit. These results characterize the low energy scatter-
ing in the network model. In particular, the transmission
T → 4e−2|Mb|/v when |Mb|/v ≫ 1.
In the four-way junction problem, the clogging condi-

tions atK = 1/2 correspond to perfect reflections in both
the symmetric and antisymmetric sectors. In the zero
energy limit, the clogging conditions are |MS |/v ≫ 1
and |MA|/v ≫ 1. To make the junction more real-
istic, we can assume that both the domain-wall seg-
ment and the interacting region are finite. The longest
wavelength is set by the typical domain-wall segment
length, lseg, corresponding to the lowest kinetic en-
ergy E0 = v(2π/lseg). The clogging conditions become
to v(2π/lseg) < |tσ|/(παd), v(2π/lseg) < |tσ′ |/(παd),
|tσ|/(vπα) ≫ 1, and |tσ′ |/(vπα) ≫ 1. The former two
conditions are from comparing the energy of the electron
to the local mass; the latter two conditions are related to
the existence of sharp gaps.
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Phys. Rev. Lett. 115, 136804 (2015).

23 L. Du, T. Li, W. Lou, X. Wu, X. Liu, Z. Han, C. Zhang,
G. Sullivan, A. Ikhlassi, K. Chang, and R.-R. Du, Phys.
Rev. Lett. 119, 056803 (2017).

24 T. Li, P. Wang, G. Sullivan, X. Lin, and R.-R. Du, Phys.
Rev. B 96, 241406 (2017).

25 T. Morimoto, A. Furusaki, and C. Mudry, Phys. Rev. B
91, 235111 (2015).

26 T. Morimoto, A. Furusaki, and C. Mudry, Phys. Rev. B
92, 125104 (2015).

27 X.-Y. Song and A. P. Schnyder, Phys. Rev. B 95, 195108
(2017).

28 A. C. Potter, C. Wang, M. A. Metlitski, and A. Vish-
wanath, Phys. Rev. B 96, 235114 (2017).

29 J. C. Y. Teo and C. L. Kane, Phys. Rev. B 79, 235321
(2009).

30 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Lud-
wig, Phys. Rev. B 78, 195125 (2008).

31 P. Hosur, S. Ryu, and A. Vishwanath, Phys. Rev. B 81,
045120 (2010).

32 S. Ryu, C. Mudry, A. W. W. Ludwig, and A. Furusaki,
Phys. Rev. B 85, 235115 (2012).

33 A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and

G. Grinstein, Phys. Rev. B 50, 7526 (1994).
34 I. C. Fulga, B. van Heck, J. M. Edge, and A. R. Akhmerov,

Phys. Rev. B 89, 155424 (2014).
35 R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
36 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev.

Lett. 42, 1698 (1979).
37 I. A. Gruzberg, N. Read, and S. Sachdev, Phys. Rev. B

55, 10593 (1997).
38 T. Senthil, M. P. A. Fisher, L. Balents, and C. Nayak,

Phys. Rev. Lett. 81, 4704 (1998).
39 I. A. Gruzberg, A. W. W. Ludwig, and N. Read, Phys.

Rev. Lett. 82, 4524 (1999).
40 T. Senthil, J. B. Marston, and M. P. A. Fisher, Phys. Rev.

B 60, 4245 (1999).
41 H.-Y. Xie, H. Li, Y.-Z. Chou, and M. S. Foster, Phys. Rev.

Lett. 116, 086603 (2016).
42 H. Obuse, A. Furusaki, S. Ryu, and C. Mudry, Phys. Rev.

B 76, 075301 (2007).
43 H. Obuse, A. Furusaki, S. Ryu, and C. Mudry, Phys. Rev.

B 78, 115301 (2008).
44 S. Ryu, C. Mudry, H. Obuse, and A. Furusaki, New Jour-

nal of Physics 12, 065005 (2010).
45 H. Obuse, S. Ryu, A. Furusaki, and C. Mudry, Phys. Rev.

B 89, 155315 (2014).
46 C.-Y. Hou, E.-A. Kim, and C. Chamon, Phys. Rev. Lett.

102, 076602 (2009).
47 T. Giamarchi, Quantum physics in one dimension (Oxford

Science Publications, 2004).
48 R. Shankar, Quantum Field Theory and Condensed Mat-

ter: An Introduction (Cambridge University Press, 2017).
49 V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. 42,

65 (1979).
50 M. Bocquet, Nuclear Physics B 546, 621 (1999).
51 Y. Tanaka and N. Nagaosa, Phys. Rev. Lett. 103, 166403

(2009).
52 Y.-Z. Chou, A. Levchenko, and M. S. Foster, Phys. Rev.

Lett. 115, 186404 (2015).
53 Y.-Z. Chou, Phys. Rev. B 99, 045125 (2019).
54 C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233

(1992).
55 C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220

(1992).
56 N. Kainaris, I. V. Gornyi, S. T. Carr, and A. D. Mirlin,

Phys. Rev. B 90, 075118 (2014).
57 N. F. Mott, The Philosophical Magazine: A Journal of

Theoretical Experimental and Applied Physics 17, 1259
(1968), https://doi.org/10.1080/14786436808223200.

58 M. S. Foster and E. A. Yuzbashyan, Phys. Rev. Lett. 109,
246801 (2012).

59 R. Nandkishore, J. Maciejko, D. A. Huse, and S. L.
Sondhi, Phys. Rev. B 87, 174511 (2013).

60 M. S. Foster, H.-Y. Xie, and Y.-Z. Chou, Phys. Rev. B
89, 155140 (2014).

61 F. Zhang, A. H. MacDonald, and E. J. Mele, Proceedings
of the National Academy of Sciences 110, 10546 (2013).

62 P. San-Jose and E. Prada, Phys. Rev. B 88, 121408 (2013).
63 S. Hattendorf, A. Georgi, M. Liebmann, and M. Morgen-

stern, Surface Science 610, 53 (2013).
64 J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden,

L. Brown, J. Park, D. A. Muller, and P. L. McEuen, Pro-
ceedings of the National Academy of Sciences 110, 11256
(2013).

65 L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco Jr,
C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin,



13

A. Zettl, et al., Nature 520, 650 (2015).
66 L.-J. Yin, H. Jiang, J.-B. Qiao, and L. He, Nature com-

munications 7, 11760 (2016).
67 J. Li, K. Wang, K. J. McFaul, Z. Zern, Y. Ren, K. Watan-

abe, T. Taniguchi, Z. Qiao, and J. Zhu, Nature nanotech-
nology 11, 1060 (2016).

68 J. Li, R.-X. Zhang, Z. Yin, J. Zhang, K. Watanabe,
T. Taniguchi, C. Liu, and J. Zhu, arXiv preprint
arXiv:1708.02311 (2017).

69 Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, and W. Yao,
Nature Physics 13, 356 (2017).

70 D. K. Efimkin and A. H. MacDonald, Phys. Rev. B 98,

035404 (2018).
71 S. Huang, K. Kim, D. K. Efimkin, T. Lovorn, T. Taniguchi,

K. Watanabe, A. H. MacDonald, E. Tutuc, and B. J.
LeRoy, Phys. Rev. Lett. 121, 037702 (2018).

72 X.-C. Wu, C.-M. Jian, and C. Xu, arXiv preprint
arXiv:1811.08442 (2018).

73 A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142
(1997).

74 C. L. Kane and M. P. A. Fisher, Phys. Rev. B 51, 13449
(1995).


