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We present a simple theory of thermoelectric transport in bilayer graphene and report our results
for the electrical resistivity, the thermal resistivity, the Seebeck coefficient, and the Wiedemann-
Franz ratio as functions of doping density and temperature. In the absence of disorder, the thermal
resistivity tends to zero as the charge neutrality point is approached; the electric resistivity jumps
from zero to an intrinsic finite value, and the Seebeck coefficient diverges in the same limit. Even
though these results are similar to those obtained for single-layer graphene, their derivation is
considerably more delicate. The singularities are removed by the inclusion of a small amount of
disorder, which leads to the appearance of a “window” of doping densities 0 < n < nc (with nc

tending to zero in the zero-disorder limit) in which the Wiedemann-Franz law is severely violated.

PACS numbers: 65.80.Ck , 72.80.Vp , 72.20.Pa

Introduction – The electric and thermal transport
properties of graphene-based devices are a topic of great
interest. Even setting aside their great potential for real-
world applications, these systems have already offered
unprecedented opportunities to study new modalities of
transport, in which hydrodynamic flow patterns, gov-
erned by global conservation laws, supersede the con-
ventional diffusive dynamics of individual carriers [1–5].
The simultaneous presence of carriers of opposite po-
larities – electrons and holes – whose density can be
tuned by chemical doping, electrostatic gating, or sim-
ply by changing the temperature, creates a rich scenario
of transport behaviors [6–9]. A particularly interesting
one has recently been observed in a single layer of ultra-
clean graphene near the charge neutrality point (CNP),
where the chemical potential µ = 0. The system is a
zero-gap semiconductor with linearly dispersing conduc-
tion and valence bands and equal numbers of electrons
and holes arising from thermal fluctuations at finite tem-
perature. Because µ = 0 the thermal (entropy) current
coincides with the energy current, and because of the lin-
ear dispersion the latter coincides with the total momen-
tum density, which is a constant of the motion as long
as impurities, lattice vibrations and umklapp effects are
negligible. Thus we have an interesting situation in which
the thermal resistivity vanishes while the electric resistiv-
ity remains finite because electrons and holes, moving in
opposite directions under the action of an electric field,
exert mutual friction on each other [10–13]. The result is
that the Wiedemann-Franz (WF) ratio between the elec-
tric resistivity and the thermal resistivity is enhanced
well above the standard value of L0 ≡ π2(kB/e)

2/3 (the
so-called Wiedemann-Franz law) – an effect that is in-
deed observed experimentally [14], but only in a narrow
window of doping densities around the CNP – a window
whose width shrinks to zero as the system is made less

and less disordered. It should also be noted that this be-
havior is diametrically opposite to what one expects and
observes in heavily doped graphene: in that case, only
one polarity of carriers contributes to both electric and
thermal transport and the electric resistivity plummets
(barring electron-impurity and electron-phonon scatter-
ing) while the thermal resistivity rises to a finite value:
in this case, the WF ratio drops below L0 [15–18].

Motivated by these interesting findings, in this paper
we investigate thermoelectric transport in a more com-
plex system, AB-stacked bilayer graphene (BLG), which
is a zero-gap semiconductor with electron-hole symmetric
parabolic bands touching at the Dirac point [19]. BLG is
a quite distinct system from its single layer with the pos-
sibility of having a gate-induced tunable band gap [20].
We ask in particular, whether a large violation of the WF
law will still be present in the double-layer system near
CNP. At first glance, a major qualitative difference exists
between the two systems, because neither the energy cur-
rent nor the particle current are conserved in the bilayer.
There seems to be no reason why the thermal resistivity
would vanish in a bilayer at CNP when momentum-non-
conserving processes are negligible. Indeed, a naive cal-
culation, based on the textbook theory of thermoelectric
transport, would lead precisely to this conclusion: that
the thermo-electric transport coefficients are free of sin-
gularities and qualitatively similar to what was obtained
in single-layer graphene after the inclusion of disorder.

One of the main purposes of this paper is to show that
the naive conclusion is, in fact, incorrect. After introduc-
ing a more careful treatment of the Boltzmann equation,
which includes a conserved mode in which electrons and
holes travel in the same direction, we are able to show
that the transport coefficients remain singular as long
as total momentum is conserved: that is to say, we find
that, just as in single-layer graphene [10], the electri-
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cal resistivity jumps from zero to a finite universal value
(controlled by the strength of the Coulomb interaction)
at the CNP, the thermal resistivity tends to zero, and
the Seebeck coefficient diverges. This happens because
the conserved mode – electrons and holes traveling in
the same direction – strongly overlaps the energy cur-
rent mode and provides a dissipation-free channel of en-
ergy transport at CNP. The inclusion of disorder, even
in the smallest amount, “cures” the singularities and cre-
ates a region of “disorder-enabled hydrodynamics” in the
immediate vicinity of the CNP. Thus, the second pur-
pose of this paper is to determine the qualitative behav-
ior of the thermo-electric transport coefficients of bilayer
graphene in this regime. We find that the WF ratio,
plotted as a function of doping density, follows a squared
Lorentzian behavior, whose quarter-maximum occurs at
doping density nc proportional to the strength of disor-
der, such that the WF ratio increases with decreasing dis-
order for n < nc and decreases with decreasing disorder
for n > nc. At the same time, the Seebeck coefficient ex-
hibits an interesting non-monotonic behavior, vanishish-
ing at CNP and peaking in absolute value at n ∼ nc.
This behavior, admittedly very similar to what has been
predicted and observed in single-layer graphene, should
be promptly comparable with the results of experimental
measurements, as soon as they become available.
Within the framework of quasi-classical transport the-

ory [21], the state of the carriers is described by a non-
equilibrium distribution function fk,γ , where k is the
Bloch wave vector and γ = ±1 is the band index. The
deviation from equilibrium is δfk,γ = fk,γ − f0k,γ , where
f0k,γ is the equilibrium distribution function at chemical
potential µ and temperature T . The quantities of inter-
est are the electric current je and the thermal current jq,
however, in order to homogenize the dimensions we will
be working with the particle current jn = je/(−e) (−e
is the charge of the electron) and the entropy current
in units of the Boltzmann constant kB , js = βjq, where
β = (kBT )

−1. With this choice, the thermoelectric ma-
trix [see below Eq. (2)] manifestly satisfies Onsager reci-
procity. The currents are related to the non-equilibrium
distribution function by [22]

jn =
∑

k,γ

vk,γδfk,γ , js =
∑

k,γ

βǫ̃k,γvk,γδfk,γ , (1)

where ǫk,γ = γ[
√

(t/2)2 + (~vk)2 − t/2] and vk,γ =

2γ~v2k/
√

t2 + (2~vk)2 are, respectively, the energy and
the velocity of band γ = ± at the wave vector k, while
ǫ̃k,γ ≡ ǫk,γ − µ. Here v = 108 cm/s is the Fermi velocity
and t = 0.4 eV is the vertical interlayer hopping between
the two layers [23, 24]. Our two-band approximation is
justified up to T ∼ t/kB ∼ 4, 600 K.
The currents are connected to the electric field E

and to the temperature gradient ∇T by the ther-
moelectric resistivity matrix, ρ, which we define as
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Figure 1. A comparison between the dimensionless electric
and thermal resistivities ρ̄el and ρ̄th, calculated with a (a) two-
mode Ansatz and (b) three-mode Ansatz. Curves are plotted
as functions of density (in units of 1012 cm−2 and for T = 100
K. Solid curves correspond to the clean limit, whereas dotted
ones are the calculated in the presence of small amount of
disorder (λ = 0.005).

− (eE , kB∇T )
T
= ρ·(jn , js)

T
(here “T” stands for the

vector transposition). The elements of ρ are expressed in
terms of three transport coefficients: the reduced electric
resistivity ρ̄el, i.e. the ordinary electric resistivity multi-
plied by e2, the reduced thermal resistivity ρ̄th, i.e. the
usual thermal resistivity multiplied by k2BT , and the di-
mensionless Seebeck coefficient Q̄, i.e. the ordinary See-
beck coefficient expressed in units of kB/e, in the follow-
ing form (see Ref. 21)

ρ =

(

ρ̄el + Q̄2ρ̄th Q̄ρ̄th
Q̄ρ̄th ρ̄th

)

, (2)

with detρ = ρ̄elρ̄th. The (dimensionless) Wiedemann-
Franz ratio is defined as WF ≡ ρ̄el/ρ̄th = detρ/ρ̄2th,.
WF = π2/3 when the Wiedemann-Franz law is satisfied
in its standard form, e.g., for a parabolic band electron
gas in the presence of quenched short-range disorder.

Two-mode Ansatz. The standard textbook calculation
of thermoelectric coefficients [21] starts with the intro-
duction of a 2-parameter Ansatz δfk,γ = f ′

0k,γvk,γ ·(pn+
βǫ̃k,γps), where vk,γ and βǫ̃k,γvk,γ are the “modes” used
to expand δfk,γ. The two parameters pn and ps cor-
respond to shifts of the particle momentum associated
with the jn and js, respectively. Finally, the factor f

′

0k,γ ,
which denotes the derivative of the Fermi distribution
with respect to energy, accounts for the fact that only
electrons around the Fermi surface are mobile.

We stress that the choice of the Ansatz is the delicate
point of the entire calculation. (The rest of the section
is completely general and valid independently of such
choice.) The two-parameter Ansatz above is, for BLG,
incomplete and leads to the wrong results for ρ̄el and ρ̄th.
In the following section we will amend it by including a
third parameter, corresponding to the current conserved
by the collision integral (i.e. the momentum density).
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Using Eq. (1) we obtain (jn , js)
T
= D · (pn , ps)

T
,

where D is the 2× 2 matrix of “Drude weights”

Dij =
1

2

∑

k,γ

f ′

0kγu
i
k,γ · uj

k,γ , (3)

where ui
k,γ = (vk,γ , βǫ̃k,γvk,γ)i and i, j = 1, 2. Dij

quantifies the “overlap” between the modes ui and uj

(it can in fact be interpreted as a scalar product in the
mode space). To determine pn and ps, we substitute
the Ansatz for δfk,γ into the Boltzmann equation for the
steady state response in the presence of fields E and ∇T ,

− f ′

0k,γvk,γ · [eE+ βǫ̃k,γkB∇T ] = Ik,γ . (4)

Here Ik,γ is the collision integral, which depends on the
details of the microscopic scattering mechanism. Eq. (4)
is projected over the same set of modes which are used
to expand δfk,γ , i.e. it is multiplied by one of the
modes ui

k,γ , integrated over k and summed over bands.
In this way, the differential Eq. (4) is transformed into
an algebraic one, and is easily solved for pn and ps.
The key inputs are the moments of the collision inte-
gral, which to linear order in pn and ps are given by
∑

k,γ u
i
k,γIk,γ = Ĩij(pn , ps)j . Hereafter summation of

repeated latin indices is understood. Such equation de-
fines the 2×2 matrix Ĩ, which we refer to as “collision ker-
nel”, and whose matrix elements are the Ĩij (i, j = 1, 2).
In the supplementary online material [25] we make use
of a standard approximation for the Coulomb collision
integral (screened interaction plus Fermi golden rule) to
find

Ĩij = −
β

4π

∑

q

∫

∞

−∞

dω
|V (q)|2(ℑΠ1

iℑΠ
1
j −ℑΠ0ℑΠ2

ij)

sinh2(β~ω/2)
,

(5)
where the response functions Πα(q, ω) are defined as

Πα = 4
∑

γ,γ′

∑

k

F γγ′

k,k+q(f0k,γ − f0k+q,γ′)

ǫk,γ − ǫk+q,γ′ + ~ω + i0+
Mα

k,k+q,γ,γ′.

(6)
In Eq. (5) we only took into account the direct scat-
tering processes and no exchange, corresponding to the
large-N limit, where N = gsgv is the number of flavors.
Here M0

k,k+q,γ,γ′ = 1, M1
k,k+q,γ,γ′ = x̂ · (ui

k,γ −ui
k+q,γ′),

and M2
k,k+q,γ,γ′ = (ui

k,γ − ui
k+q,γ′) · (u

j
k,γ − u

j
k+q,γ′).

Furthermore, V (q) = 2πe2/[κ(q + qTF)] is the screened
Coulomb interaction and qTF = 4e2t/[2κ(~v)2] is the
Thomas-Fermi screening wave vector. The factor 4 ac-
counts for the spin and valley degeneracy and κ is the
dielectric constant of the substrate (within our calcula-
tions, we set κ = 4 as for an h-BN substrate). We note
that the above Thomas-Fermi screened Coulomb interac-
tion is actaully equivalent to the RPA-screened potential
V (q) = vq/|1 − vqΠ0(q → 0, T )| (vq = 2πe2/κq) at long

wave-length limit q → 0 which turns out to be indepen-
dent of temperature in BLG [26]. This can be appreciated
from the BLG polarizability Π(q → 0, T ), see Sec. III in
[27], where at q → 0 the temperature effects from intra-
band and interband transitions cancel out, resulting in a
constant static polarizability equal to the BLG density
of states NF at all temperatures. The lowest bands in
BLG are to a good approximation parabolic and there-
fore NF ≈ t/[π(~v)2] is density-independent. The form

factors F γγ′

k,k+q = [1 + γγ′ cos(2θk − 2θk+q)]/2, where θk
is the angle formed by the k vector with the x-axis, come
from the overlap of the wave functions at wave vectors k
and k + q. Simple algebraic manipulations lead to the
final expression for the two-mode thermoelectric resistiv-
ity matrix, ρ̃ = D−1 · Ĩ · D−1. For future purposes we
define the conductivity matrix σ̃ ≡ ρ̃

−1 = D · Ĩ−1 ·D.
This procedure works remarkably well for both

parabolic-band electron gases and monolayer graphene in
the clean limit. [10] In such limit, i.e. when the only col-
lision mechanism is the electron-electron interaction, the
thermoelectric transport is strongly influenced by the ex-
act conservation of the momentum density. For example,
when one of the two currents overlaps sufficiently with
the momentum density [where the overlap is defined as
in Eq. (3)], then it is also conserved. This in turn im-
plies that either ρ̄el or ρ̄th vanishes. For parabolic-band
electron gases and (massive or massless) Dirac systems,
such result is readily obtained with a two-mode Ansatz.
In such special cases, the overlap between the two cur-
rents and momentum (which coincides, in fact, with one
of them at all times) is automatically taken into account.
It is then clear what fails when the two-mode Ansatz is

applied to BLG: the overlap between the currents and the
momentum density, the conserved mode of the collision
integral, is not explicitly taken into account. Hence, all
the coefficients of the matrix ρ̃ are non-zero, and so is
its determinant. Therefore, all thermoelectric transport
coefficients are finite, see Fig. 1(a). Such result is wrong
as we proceed to show in the next section.
Three-mode Ansatz. To account for the conserved

mode of the collision integral (the momentum density)
we express the deviation of fk,γ from equilibrium as

δfk,γ = f ′

0k,γ

[

~v2k · pk/t+ vk,γ · (pn + βǫ̃k,γps)
]

,
(7)

where pk is the shift associated with the momentum den-
sity scaled with t/~v2, in such a way that it has the same
dimension as the other modes.
A more general situation (away from the CNP) might

require to include more modes, in order to achieve a bet-
ter quantitative agreement with the true solution of the
Boltzmann equation. However, as we will shown later,
the Ansatz (7) is able to capture all the main qualitative

features (vanishing of the thermal/charge conductivities,
divergence of the Seebeck coefficient, etc.). In addition,
there is no real locking imposed a priori between the
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Figure 2. (a) Numerical WF ratio (scaled with π2/3) and (b) Seebeck coefficient as a function of density for different
temperatures as labeled. The disorder strength is λ = 0.005. The full red dots indicate the critical densities nc which are
obtained by setting ρ̃D = ρ̄el,C .

electron and hole velocities. As such, the three modes of
the anstaz describe different situations, in which parti-
cles and holes may co-propagate, counter-propagate, or
any combination in between. The coefficients of the sep-
arate modes are allowed to vanish, describing situations
in which one particular configuration is realised.
We now define the three-component mode vector as

u
j
k,γ = (~v2k/t,vk,γ , βǫ̃k,γvk,γ)j . Using Eq. (1) and (3),

we get (jn, js)i = Dij(pk,pn,ps)j , where i = 1, 2 and
j = 0, 1, 2,. Note that D is now a 2×3 matrix. Similarly,
for the Coulomb collision kernel we find

Ijj′ =





η 0 0

0 Ĩ11 Ĩ12
0 Ĩ12 Ĩ22





jj′

(8)

where j, j′ = 0, 1, 2. The Ĩij are defined in Eq. (5). The
conductivity matrix is easily seen to be σ = D · I−1 ·D.
Inverting it, in the limit of η → 0, we obtain

ρ =

(

[D02]
2 −D01D02

−D01D02 [D01]
2

)

[D01]2σ̃22 + [D02]2σ̃11 − 2D01D02[σ̃12]2
(9)

where σ̃ii′ = limη→0 σii′ coincide with the conductivities
obtained with the two-mode Ansatz. Note that, since
detρ = ρ̄elρ̄th = 0, either the electrical or thermal re-
sistivity must necessarily be zero. At charge neutrality
D01 = 0. Therefore, ρ11(n = 0) = σ̃−1

11 , while all the
other components of ρ are zero. Thus, at the CNP, the
thermal resistivity vanishes and the electrical resistivity
is finite. Away from the CNP we find

ρ̄th(n 6= 0) = ρ22, ρ̄el(n 6= 0) = 0, Q̄ = −D02/D01 .
(10)

Numerical results for ρ̄el and ρ̄th are shown in Fig. 1.
Within the two-mode approximation [Fig. 1(a)] both the

electrical and thermal resistivities are always finite. In
contrast, with the three mode Ansatz [Fig. 1(b)], the
electrical resistivity ρ̄el(n 6= 0) = 0 and exhibits a dis-
continuity at the CNP in the absence of disorder (solid
curves). Interestingly, both models yield the same intrin-
sic resistivity at n = 0 [full red dots in Fig. 1(a) and (b)].
At this point the only carriers in the system are ther-
mally excited electrons and holes, in the conduction and
valence bands, respectively. The two types of carries drift
in opposite directions under the action of an electric field.
Because of the transfer of momentum (known as Coulomb
drag [28]) between them, the resistivity becomes finite.

Disorder-enabled hydrodynamics. An infinitesimal
amount of disorder, which breaks the exact conservation
of momentum, regularizes the singular results of the clean
limit. We assume a momentum-non-conserving kernel ID
(D for disorder) proportional to a dimensionless momen-
tum relaxation rate λ, which we take to be ≪ 1. The pre-
cise form of ID is not important for our purposes. How-
ever, for the sake of illustration, we will later make use of
a simple model of electrons and holes scattering against
randomly distributed impurities of density nd with short-
range potential V0δ(r): for this model λ = ndV

2
0 /(~v)

2,
as detailed in the supplementary online material [25].

The resistivity matrix is now the sum of two term ρ =
ρC + ρD, where ρC is given by Eq. (9), whereas ρD =
D−1 · ID · D−1. The electrical and thermal resistivities
now read [10] ρ̄−1

el ≃ ρ̄−1

el,C + ρ̃−1

D and ρ̄th = ρ̄th,C + ρ̄th,D,

where ρ̃D = ρ̄th,D(D02/D01)
2. In Fig. 1(b) we plot such

ρ̄el and ρ̄th (dotted curves) and compare them with the
results of the previous section (solid curves). The effect
of disorder on the thermal resistivity is just a small shift.
Conversely, it regularizes the electric resistivity. From
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the results above we obtain the WF ratio

WF =

(

Γ

(D01/D02)2 + Γ2

)2

, Γ2 =
ρ̄th,D
ρ̄el,C

. (11)

which is a square of a Lorentzian. This formula shows
that, at the CNP,WF → 1/Γ2, i.e. it is greatly enhanced
relative to its standard noninteracting value π2/3 and
diverges as the strength of disorder tends to zero.
In Figs. 2(a) and (b) we show numerical results forWF

and the Seebeck coefficient Q̄, respectively. We define a
crossover density nc, below which the enhancement of
the WF persists, from the condition ρ̃D = ρ̄el,C [the dots
in Fig. 2(a) indicate its position]. We call such regime
(n < nc) “disorder-enabled hydrodynamics” [10]. In it,
WF remains much larger than π2/3, in fact larger than
1/Γ2 ≫ π2/3. (A more lenient crossover density could
be defined [10] as that at which WF first drops below
π2/3.)
The disorder-regularized Seebeck coefficient

[Figs. 2(b)] exhibits a large swing about the CNP
and goes to zero at n = 0, as expected from particle-hole
symmetry. The swing region, in which the derivative of
Q̄ vs density reverses its sign, is yet another incarnation
of the disorder-enabled hydrodynamic regime [10]. Its
width is defined by the same condition |n| < nc.
In Summary, we have presented the theory of ther-

moelectric transport in clean bilayer graphene. We have
shown that the conventional semi-classical (Boltzmann)
textbook approach to the calculation of thermoelectric
coefficients [21], which works remarkably well for both
parabolic-band electron gases and Dirac systems [10],
fails for such system. This is attributed to the fact
that neither the particle current nor the energy current
are conserved quantities in bilayer graphene. The cor-
rect results are found by explicitly including the current
conserved by the electron-electron collision integral, i.e.
the momentum density, in the “augmented” Ansatz for
the non-equilibrium distribution function. Note that in
previously studied examples the explicit addition of the
conserved momentum mode was not required. This for-
tunate situation occurred because the momentum mode
was automatically subsumed under either the particle
current or the energy current mode. Bilayer graphene
is the first system studied in this context in which the
two-mode Ansatz fails and the momentum mode must
be introduced explicitly. While our minimal three-mode
Ansatz model is able to capture all the main qualita-

tive features of the thermoelectric coefficients in BLG,
for a quantitative study, one might consider more com-
plete models, i.e. including more modes in the Boltzmann
equation, including the long-range disorder, electron-
phonon scatterings, puddles contributions, etc.
We find that, at the charge neutrality point: (i) the

thermal resistivity vanishes; (ii) the electric resistivity
jumps from zero to a finite value; (iii) the Seebeck coeffi-
cient diverges. These singularities are cured by the inclu-

sion of a small amount of disorder. Breaking the exact
momentum conservation, it opens a “window” of doping
densities 0 < n < nc (with nc tending to zero in the
zero-disorder limit) in which the Wiedemann-Franz law
is largely violated. There, the WF ratio greatly exceeds
the standard value and the Seebeck coefficient exhibits
a non-monotonic behavior (as a function of doping den-
sity). Such predictions can be tested in experiments in
sufficiently clean samples of bilayer graphene.
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