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We report on transport signatures of eight distinct bubble phases in the N = 3 Landau level of a
AlxGa1−xAs/Al0.24Ga0.76As quantum well with x = 0.0015. These phases occur near partial filling
factors ν⋆ ≈ 0.2 (0.8) and ν⋆ ≈ 0.3 (0.7) and have M = 2 and M = 3 electrons (holes) per bubble,
respectively. We speculate that a small amount of alloy disorder in our sample helps to distinguish
these broken symmetry states in low-temperature transport measurements.

While the effect of disorder on transport characteris-
tics of a two-dimensional electron gas (2DEG) is usu-
ally deemed detrimental, there exist many situations in
which the disorder is beneficial. The most celebrated ex-
amples are integer [1] and fractional [2] quantum Hall
effects (QHEs) which rely on single-(quasi)particle local-
ization by the disorder potential. Many nonequilibrium
transport phenomena in very high Landau levels, such
as microwave-[3] and Hall field-induced resistance oscil-
lations [4], along with several other related phenomena
[5, 6], also benefit from a modest amount of impurities
which can provide large-angle scattering.

Furthermore, disorder provides a pinning potential for
Wigner crystals [7–14] and “bubble” phases [15–22] al-
lowing for their transport manifestation. These bubble
phases can be viewed as generalizations of a Wigner crys-
tal formed from clusters of M ≥ 1 particles per unit
cell. Such clustering of electrons (or holes) into “bub-
bles” is made possible in partially-filled high Landau lev-
els because ring-like electron wavefunctions interact with
a box-like potential which is a result of an interplay be-
tween long-range direct and short-range exchange com-
ponents of Coulomb interaction [15]. At low tempera-
tures these M -particle bubbles crystallize into a triangu-
lar lattice with a lattice constant Λb ≈ 3.3Rc [16], where
Rc = lB

√
2N + 1 is the cyclotron radius, N is the Lan-

dau level index, lB = (~/eB)1/2 is the magnetic length,
and B is the perpendicular magnetic field. Being pinned
by disorder, such bubble crystals are insulating and the
measured resistances are akin to those at the nearest in-
teger filling factors [ν], i.e., both Rxx and Rxy are small,
while Rxy exhibits integer QHE. This picture is also sup-
ported by the observation of pinning mode resonances in
microwave spectroscopy studies [23, 24].

To date, experiments on the bubble phases have fo-
cused primarily on N = 1 [21, 25–31] and N = 2 [18–
20, 22, 31–35] Landau levels. At N = 1, experiments
revealed signatures of eight bubble phases occurring at
ν⋆ ≈ 0.29 and ν⋆ ≈ 0.43 (see, e.g., Ref. 27) in each spin
sublevel (as well as their electron-hole symmetric values,

ν⋆ ≈ 1−0.29 and ν⋆ ≈ 1−0.43), where ν⋆ = ν−⌊ν⌋ is the
partial filling of the Landau level and ⌊ν⌋ = max{m ∈
Z |m ≤ ν} is the integral part of ν. These states can be
ascribed to one- and two-particle bubbles, respectively
[36, 37]. At N = 2, transport studies (see, e.g., Ref. 33)
found four insulating states accompanied by integer QHE
near ν⋆ ≈ 0.28 and ν⋆ ≈ 1−0.28, which likely reflect for-
mation of bubble crystals with M = 2 [38]. While at
N = 2 theory (see, e.g., Refs. 39, 37) also predicts bubble
phases with M = 1, to our knowledge, their existence has
not been confirmed in transport measurements [40]. Sim-
ilar to N = 2, theory [37, 41] predicts at least two kinds
of bubbles at N = 3, with M = 2 and M = 3, but exper-
iments have so far detected only four isotropic insulating
states centered around ν⋆ ≈ 0.27 (see, e.g. Ref. 42).

In this Rapid Communication we report on transport
signatures of eight distinct bubble phases in the N = 3
Landau level of a AlxGa1−xAs/Al0.24Ga0.76As quantum
well with x = 0.0015. These signatures are observed in
both lower and upper spin branches near partial filling
factors ν⋆ ≈ 0.2 and ν⋆ ≈ 0.3 (and their particle-hole
conjugates ν⋆ ≈ 0.8 and ν⋆ ≈ 0.7), which correspond
to M = 2 and M = 3 electrons (or holes) per bub-
ble, respectively. The temperature dependence suggests
that three-particle bubbles start to develop at somewhat
higher temperature than two-particle bubbles. The data
in the control sample (with x = 0) on the other hand,
show only four insulating states which, however, extend
over wider ranges of ν⋆, i.e. 0.20 . ν⋆ . 0.33. We be-
lieve that a small amount of alloy disorder helps to dis-
tinguish between two- and three-particle bubbles in our
AlxGa1−xAs/Al0.24Ga0.76As quantum well.

While we have observed signatures of two-
and three-particle bubbles in several 30 nm-wide
AlxGa1−xAs/Al0.24Ga0.76As quantum wells (with
identical heterostructure design but with different Al
content x from 0.0 to 0.0036 [43]), here we present the
data obtained from a sample with x = 0.0015. After
a brief low-temperature illumination, our sample had
the density ne ≈ 2.9 × 1011 cm−2 and the mobility



2

R
xx

,
R

yy

R
xy

 N  N

R
xx

,
R

yy

R
xy

 N  N

FIG. 1. (Color online) Longitudinal resistance Rxx (solid line,
left axis), Ryy (dotted line, left axis), and Hall resistance Rxy

(right axis) as a function of the filling factor ν at T ≈ 25
mK. Bubble phases in the N = 2 and N = 3 Landau levels
are marked by vertical dashed lines drawn at ν⋆ = 0.28, 0.72
and at ν⋆ = 0.21, 0.30, 0.70, 0.79, respectively. Shaded regions
correspond to 0.38 ≤ ν⋆ ≤ 0.62, where stripe phases form
(see, e.g., Ref. 39).

µ ≈ 3.6 × 106 cm2V−1s−1. The sample was a 4 × 4
mm square with eight indium contacts positioned at the
corners and the midsides. Resistances, Rxx, Ryy, and
Rxy were measured using four-terminal, low-frequency
lock-in technique.
In Fig. 1 we present the longitudinal resistances Rxx

(solid line, left axis), Ryy (dotted line, left axis), and the
Hall resistance Rxy (right axis) as a function of the filling
factor ν measured at T ≈ 25 mK. The shaded areas mark
the regions 0.38 ≤ ν⋆ ≤ 0.62 where Rxx > Ryy reflecting
the formation of anisotropic stripe phases [15, 18, 19]
with the easy direction along 〈110〉 crystal axis. In
the N = 2 Landau level the data clearly show four
isotropic insulating states occurring near partial fillings
ν⋆ ≈ 0.28 and ν⋆ ≈ 0.72 (marked by vertical dashed
lines) of both the lower and the upper spin branch. These
states are attributed to the formation of bubble crystals
formed by clusters of M = 2 electrons or holes. As ex-
pected, Rxx ≈ Ryy ≈ 0, while Rxy exhibits RIQHE at
Rxy = RK/[ν], where RK = h/e2 ≈ 25.812 kΩ is the von
Klitzing constant.
Remarkably, Rxx and Ryy in the N = 3 Landau level

reveal eight well-defined minima, two on each side of
both half-filled spin sublevels. The positions of these
minima are marked by vertical dashed lines drawn at
ν⋆ = 0.21, 0.30, 0.70, 0.79. Since two of these partial fill-
ings are fairly close to ν⋆ = 1/5 and ν⋆ = 4/5 which, in
principle [44], might support FQHE, it is important to
examine the Rxy data more closely. In Fig. 2 we present
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FIG. 2. (Color online) Zoom-in view of Fig. 1 for ν be-
tween 6.0 and 6.5. Re-entrant integer quantum Hall states
are marked by R6a and R6b.

a zoom-in view of the data for 6.0 < ν < 6.5. One
observes that as both Rxx and Ryy approach zero at
ν⋆ ≈ 0.21 and ν⋆ ≈ 0.30, the Hall resistance Rxy ex-
hibits re-entrant integer QHE with Rxy = RK/6 and not
fractional QHE. These observations strongly suggest the
formation of bubble phases at these filling factors, which
we label R6a and R6b.
Although the remaining six minima do not reach zero

in our experiment, they (i) occur either near the same
partial fillings ν⋆ or their electron-hole symmetric coun-
terparts ν⋆ = 0.79 and ν⋆ = 0.70, and (ii) are accompa-
nied by RQHE features in the Rxy. We thus believe that
these features also signal formation of the bubble phases
and we will refer to them as R6c, R6d,R7a,R7b, R7c, and
R7d. As illustrated in Fig. 1, partial fillings of bubble
phases show little difference between the lower and the
upper spin branches (i.e., ν⋆R6α ≈ ν⋆R7α for α = a, b, c, d),
and, as already mentioned, are electron-hole symmetric
(i.e., ν⋆Rid ≈ 1− ν⋆Ria and ν⋆Ric ≈ 1− ν⋆Rib for i = 6, 7).
We can estimate the numberM of electrons per bubble

from ν⋆ < 1/2, Landau level index N , and the lattice
constant of the bubble phase Λb using [45]

M =

√
3

2π

(

Λb

Rc

)2

(N + 1/2)ν⋆ . (1)

With Λb ≈ 3.3Rc [16, 46], N = 3, and ν⋆ = 0.21, 0.30, we
find M ≈ 2 for Ria and M ≈ 3 for Rib [47]. These values
are in excellent agreement with the theory [37, 41, 46]
predicting formation of bubble phases with M = 2 and
M = 3 electrons per bubble in the N = 3 Landau level.
We thus conclude that Ria,Rid and Rib,Ric are two-
and three-particle bubble phases, respectively.
To further test the idea that our data manifest the
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FIG. 3. (Color online) (a) Longitudinal resistance Rxx and
(b) Hall resistance Rxy vs. filling factor ν in the N = 3
Landau level at different temperatures from 21 mK (thick
solid line) to 135 mK (dotted line), as marked. Shaded areas
correspond to the ranges of ν⋆ where calculations [41] predict
bubble phases with M = 2 and M = 3, as marked.

formation of the bubble phases, we have examined the
temperature dependence. In Fig. 3(a) we present longi-
tudinal resistance Rxx as a function of the filling factor ν
measured at different temperatures T from 21 mK (thick
solid line) to 135 mK (dotted line), as marked. At the
highest T ≈ 135 mK, the Rxx is rather featureless, apart
from QHEs near integer ν. In the vicinity of ν⋆ = 1/2,
the Rxx rapidly rises with decreasing T reflecting forma-
tion of stripe phases. Away from half-filling, however, the
Rxx drops as the temperature is lowered and double min-
ima develop on each side of the half-filling. These min-
ima remain roughly at the same filling factors (marked by
vertical dashed lines) over the entire temperature range.
Moreover, these filling factors fall within the ranges of
ν⋆ (shaded areas) where density matrix renormalization
group calculations [41] predict bubble phases with M = 2
and M = 3.

Further examination of the data in Fig. 3 shows that
the minima near ν⋆ ≈ 0.3(0.7) develop faster with de-
creasing T than the ones near ν⋆ ≈ 0.2(0.8), a behav-
ior most evident at intermediate temperatures, although
eventually both approach roughly the same resistance
values at the lowest T . Understanding this subtle differ-
ence in the temperature dependencies of the two phases
will require further investigations.

In Fig. 4 we plot longitudinal resistance Rxx at fill-
ing factors ν corresponding to bubble phases with (a)
M = 2 and (b) M = 3 (as noted in the legend) ver-
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FIG. 4. (Color online) Resistance Rxx at ν⋆ corresponding to
bubble phases in the N = 3 Landau level with (a) M = 2 and
(b) M = 3 particles per bubble, see legend, as a function of
temperature T . Log-linear scale is used for clarity.

sus temperature T using the log-linear scale (for clarity).
Both data sets manifest very similar behavior, apart from
above mentioned better development of the three-particle
bubbles at intermediate T . Each of the data sets shows
that the low-temperature resistance at the bubble min-
ima grows with the total filling factor ν, suggesting weak-
ening of these phases with increasing ν. This observation
is qualitatively consistent with the monotonic decrease of
the onset temperature of the bubble phases in the N = 2
Landau level [33, 48].

It is interesting to note that the resistance minima
which we associate with two- and three-particle bubble
phases are separated by a resistance maximum, suggest-
ing particle delocalization at these ν⋆. This finding seems
to agree with calculations [41] which did not find bubble
phases for 0.25 < ν⋆ < 0.30 atN = 3. However, our mea-
surements in the control sample (with x = 0) show only
four insulating states (see, also Ref. 42) which extend over
much wider ranges of ν⋆, i.e. 0.20 . ν⋆ . 0.33, at low
temperatures [49]. Our observation of finite conductivity
near ν⋆ ≈ 0.25 suggests that alloy disorder narrows the
ranges of filling factors where bubble phases with M = 2
and M = 3 are insulating, allowing to resolve them sep-
arately. If at ν⋆ ≈ 0.25 the bubble phases with M = 2
and M = 3 are energetically degenerate, one can expect
coexistence of both types of bubbles. As one crosses this
filling factor, electrons (or holes) must hop between dif-
ferent types of bubbles as the new bubble lattice is being
formed. Being short-range, alloy disorder can facilitate
such hopping via large-angle scattering events (accompa-
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nied by large momentum transfer) leading to finite con-
ductivity near the transition.

In summary, we have observed transport signatures
of eight bubble phases in the N = 3 Landau level of
a AlxGa1−xAs/Al0.24Ga0.76As quantum well with x =
0.0015. Analysis shows that these phases, found near
partial fillings ν⋆ ≈ 0.2 and 0.8 (ν⋆ ≈ 0.3 and 0.7) of
each spin sublevel, contain M = 2 and M = 3 electrons
(holes) per bubble, respectively. We speculate that a
small amount of alloy disorder in our quantum well al-
lows to distinguish these phases, which are merged with
each other in samples without alloy disorder.
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