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Quantum many-fermion systems give rise to diverse states of matter that often reveal themselves
in distinctive transport properties. While some of these states can be captured by microscopic
models accessible to numerical exact quantum Monte Carlo simulations, it nevertheless remains
challenging to numerically access their transport properties. Here we demonstrate that quantum
loop topography (QLT) can be used to directly probe transport by machine learning current-current
correlations in imaginary time. We showcase this approach by studying the emergence of super-
conducting fluctuations in the negative-U Hubbard model and a spin-fermion model for a metallic
quantum critical point. For both sign-free models, we find that the QLT approach detects a change
in transport in very good agreement with their established phase diagrams. These proof-of-principle
calculations combined with the numerical efficiency of the QLT approach point a way to identify
hitherto elusive transport phenomena such as non-Fermi liquids using machine learning algorithms.

Quantum many-body systems exhibit an intriguing di-
versity of collective states that have no classical coun-
terpart. Paradigmatic examples include the formation
of Bose-Einstein condensates and superfluids in bosonic
systems [1], the emergence of spin liquids and macro-
scopic entanglement in magnetic systems [2], or the ob-
servation of superconductivity in many-electron systems
[3]. The microscopic physics giving rise to these phenom-
ena is well understood for systems of many interacting
bosonic or spin degrees of freedom, either via controlled
analytical calculations for minimal model Hamiltonians
or via numerical simulations providing even quantitative
guidance. The fundamental understanding of quantum
many-fermion systems, however, has proved to be more
elusive. The distinct feature leading to a seemingly un-
surmountable complication for these systems arguably is
the profusion of gapless modes near the Fermi energy.
On the analytical side, the concurrent treatment of these
gapless degrees of freedom and their interactions with
other (bosonic) soft modes, e.g. in the vicinity of a quan-
tum phase transition [4, 5], has remained a formidable
challenge. On the numerical side, many-fermion sys-
tems have long proved to resist a solution via quantum
Monte Carlo techniques due to the occurrence of the
so-called sign problem [6] that is closely linked to the
complex sign structure of the many-fermion wavefunc-
tion (another consequence of the existence of a multitude
of gapless modes). Adding to this complexity, the key
features revealing the nature of collective many-fermion
states (such as superconductors, strange metals, or non-
Fermi liquids) are often their transport properties that
are notoriously difficult to calculate.

It is the purpose of this manuscript to outline a numer-
ical scheme that allows for a direct quantitative probe
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of transport properties in interacting many-electron sys-
tems by combining elements from machine learning and
quantum Monte Carlo (QMC) techniques. To do so, we
build on progress on two separate fronts advancing the
numerical description of many-fermion systems. First,
it has been realized that quantum criticality in itiner-
ant fermion systems can be studied in a numerically ex-
act manner in sign-problem free models [7] built around
the effective action for multiple fermion bands. How-
ever, to infer transport properties one faces the prob-
lem that QMC simulations intrinsically provide access to
imaginary time correlations only, and the analytic con-
tinuation to real time is numerically ill-posed, yielding
no controlled framework to probe transport properties.
Instead, we resort to the recent development of machine
learning approaches in quantum statistical physics and
demonstrate that quantum loop topography (QLT), a
numerical scheme initially designed to identify the topo-
logical Hall response of a system [8], can in fact be used
to measure longitudinal transport properties of itinerant
many-fermion systems.

Here we show that the QLT approach can be adapted
to extract the essential features of the imaginary time
current-current correlation function. One principle ex-
ample which we focus on is the study of superconduc-
tivity, whose onset can, in principle, be tracked e.g. via
the superfluid density which can be rigorously obtained
from current-current correlations [9, 10]. We demon-
strate that the QLT+QMC approach succeeds in identi-
fying the essential features of this transition without any
prior knowledge (e.g. about the explicit calculation of
the superfluid density) and quantitatively matches exist-
ing results for the onset of superconductivity for a num-
ber of microscopic model systems, but at a considerably
lower computational cost.

QLT for longitudinal transport.– The recent foray of ap-
plying machine learning techniques to quantum many-
body systems can roughly be divided into two classes of
general approaches: (i) the representation of many-body
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FIG. 1. Neural network architectures. (a) QLT used
as an input to a feed-forward fully-connected shallow neural
network with one hidden layer consisting of n = 40 sigmoid
neurons. Only triangular loops L4jkl are illustrated. (b) Deep
convolutional neural network that convolves and pools the
unprocessed Green’s functions P (r, r′) before threading them
through a fully-connected layer of n = 256 hidden neurons.

wavefunctions using restricted Boltzmann machines al-
lowing for a new class of variational algorithms to ef-
ficiently find ground states of quantum many-body sys-
tems [11–16], and (ii) the use of artificial neural networks
(ANNs), typically combined with preprocessing steps, to
allow for quantum state recognition [8, 17–30]. In the
latter category, the QLT [8] stands out as a preprocess-
ing step that, by using loop topography as a filter, selects
and organizes the simulation data with the physical re-
sponse characteristic of the target phase in mind (and
thereby distinguishes itself from e.g. the application of
convolutional neural networks (CNNs) whose motivation
is primarily rooted in image recognition techniques). The
QLT-preprocessed data is then fed into a shallow ANN,
which can be trained to discriminate different quantum
phases of matter. This general setup is schematically il-
lustrated in Fig. 1. The QLT approach has so far been
employed to the detection of topological order in integer
and fractional Chern insulators [8] by targeting the Hall
transport and to positively identify a Z2 spin liquid [31]
by targeting Wilson loops.

Targeting the longitudinal transport for the purpose of
the current study, we build a vector at each site j consist-

ing of all small loops with three vertices, L4jkl and with

four vertices, L�
jklm including the site j. The loops rep-

resent chained products of Green’s functions, i.e. bilin-

ear fermionic operators c†i cj , evaluated for a given Monte

Carlo sample α, P̃jk|α:

L4jkl ≡ P̃jk|αP̃kl|βP̃lj |γ , (1)

and

L�
jklm ≡ P̃jk|α′ P̃kl|β′ P̃lm|γ′ P̃mj |δ′ , (2)

limiting the neighboring sites to be within a short-
distance cutoff dc. The loop operators associated with

a site are illustrated in Fig. 2 for the shortest lengths,
i.e. length 3 and 4.

To see how the loop operators L�
jklm and L4jkl capture

the longitudinal transport, consider the zero-frequency
current-current correlation function

Λxx(r1, r2;ωn = 0) ≡
∫
dτ
〈
ĵx (r1, τ) ĵx (r2, 0)

〉
, (3)

where ĵx(r1, τ) = eHτ ĵx(r1)e−Hτ with the current den-

sity operator ĵx(r1) = −i[H(r1), x̂]. Its Fourier trans-
form is well known to be related [9, 10] to the super-
fluid density ρs through ρs ∝ Λxx(qx → 0, qy = 0, ωn =
0)− Λxx(qx=0, qy→0, ωn=0).

To gain further analytical insight, consider a gapped
mean-field Hamiltonian with a single flat band which can
be approximated as H ′ = −Π, where Π ≡ |G〉〈G| is the
projection operator for the ground state |G〉. At zero
temperature we can evaluate the current-current correla-
tion function for the system with the Hamiltonian H ′:

Λxx(r1, r2;ωn=0) = 〈G|ĵx(r1)(1−Π)ĵx(r2)|G〉

= Tr
[
Πĵx(r1)(1−Π)ĵx(r2)

]
,

=
∑
r3r4

Pr2r4Pr4r1Pr1r3Pr3r2 (x1 − x4) (x2 − x3)

−
∑
r4

Pr2r4Pr4r1Pr1r2 (x1 − x4) (x2 − x1) ,

(4)

where Pr′r ≡ 〈G|c†r′cr|G〉 is the two-point function and
xi is the x coordinate of position ri. Here, we used the
definition of the current density operator for the third
equality [32]. Hence for the approximate Hamiltonian
H ′, the current-current correlation function at zero tem-
perature consists of an appropriately weighted combina-
tion of quadrilateral loops and triangular loops of two-
point functions.

Note that L4jkl and L�
ijkl defined in Eqs. (1) and

(2) involve samples of the Green’s functions P̃jk|α typi-
cally coming from a determinant quantum Monte Carlo
(DQMC) calculation. By processing the loop opera-
tors during the sampling process and avoiding an a pos-
teriori Monte Carlo averaging, we quickly pass these
fluctuation-laden data, which encodes (partial) informa-
tion of the current-current correlation function, to the
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FIG. 2. Illustration of the (i) triangular and (ii) quadrilat-
eral loop operators employed to calculate the longitudinal
transport.
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machine learning step, see Fig. 1(a). Clearly, the loop op-

erators L�
jklm and L4jkl built from individual Monte Carlo

samples and only for short-ranged loops, cannot replace
a rigorous calculation of the current-current correlation
function, especially for a gapless system. But we antici-
pate the QLT consisting of the triangular and quadrilat-
eral loops to serve as a proxy for the current-current cor-
relation function containing qualitative information re-
garding longitudinal transport directly in the imaginary
time data. Such a proxy is particularly desirable since
traditional approaches, based on an explicit construction
of time-displaced Green’s functions, are costly and fre-
quently require numerical stabilization [33, 34], whereas
QLT only demands equal-time correlations, readily avail-
able in DQMC simulations. To feature physical charac-
teristics other than transport, the QLT needs to be gen-
eralized accordingly.
Models and Results.– To test the potential of the
QLT+QMC approach for efficiently detecting qualitative
differences in the transport from equal-time Green’s func-
tion data, we consider two paradigmatic model systems
that host superconductivity in parts of their respective
phase diagrams – the attractive Hubbard model and a
spin-fermion model of a quantum critical metal. Since
both models are two-dimensional lattice models, we note
that there are two subtleties to detecting superconduc-
tivity in two spatial dimensions (2D). First, the super-
conducting order parameter is not readily accessible in a
QMC simulation and one has to follow a carefully defined
limiting process to obtain the superfluid density from
current-current correlation functions [9, 10]. Second, the
superconducting phase transition in 2D is of Kosterlitz-
Thouless (KT) type and hence the superconducting tran-
sition is signaled by the superfluid density exceeding the
critical KT value [35]. Prior to this transition, the onset
of superconducting fluctuations and a regime of diamag-
netism is indicated by a sign change in the orbital mag-
netic response [36]. Given the explicit tie between the
QLT and the zero-frequency current-current correlation
functions discussed earlier for the simple gapped Hamil-
tonian, one can readily anticipate that the QLT approach
will provide enough information on superconducting fluc-
tuations so that the artificial neural network (ANN) fed
with this data will be able to recognize the onset of the
diamagnetic regime that precedes superconductivity.

We start by considering what is probably considered
the simplest model for superconductivity – the negative-
U Hubbard model on the square lattice [9, 37]

H =−
∑
〈ij〉,s

(
c†j,sci,s + c†i,scj,s

)
− µ

∑
i

(ni,↑ + ni,↓) ,

+ U
∑
i

(
ni,↑ −

1

2

)(
ni,↓ −

1

2

)
(5)

where c†i,s is an electron creation operator at site i with

spin s = ↑, ↓ and ni,s = c†i,sci,s is the electron density

operator. U = − |U | < 0 is the attractive interaction
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FIG. 3. Negative-U Hubbard model. The neural outputs
of the quantum loop topography (QLT) and convolutional
neural network (CNN) architectures (Fig. 1) for supercon-
ducting transport versus the inverse temperature β. While
the inputs for the deep CNN are the unprocessed Green’s
functions P (r, r′) from the square-lattice negative-U Hubbard
model in Eq. (5), we preprocess the input for the shallow ANN
of the QLT architecture in the form of the quantum loops in
Eq. (1) and (2). Both architectures are trained with sam-
ples at low temperature β = 20 representing superconducting
transport and high temperature β = 2 representing normal
state transport. Then the resulting architectures are applied
towards the interpolating temperatures. The vertical dashed
line indicates βc = 1/Tc ≈ 5.7 [37, 38] and defines the s-wave
superconductor phase (green shaded region).

strength and µ is the chemical potential. Without loss of
generality, we set U = −8 and tune the electron density
〈n〉 = 〈n↑〉 + 〈n↓〉 ' 0.9 slightly below half filling. Nu-
merically, we study a system of 8× 8 sites. For each site,
we build and collect site-touching quantum loops L� and
L4. The so constructed QLT data forms a field of prin-
ciple input vectors x for a shallow ANN, see Fig. 1(a).

In an initial training step, the ANN is optimized with
a training set consisting of about 20,000 samples ob-
tained from the superconducting phase at low tempera-
ture (β = 20) and the normal phase at high temperature
(β = 2). For training, we employ a cross-entropy cost
function and L2 regularization to avoid over-training and
a mini-batch size of 10. We also reserve an independent
validation set of 10 ∼ 20% of the training data set for
validation purposes (such as learning speed control and
termination [39]). After this training step, the QLT input
from a range of β interpolating between the two training
points is classified using the optimized ANN, with the
result summarized in Fig. 3. Clearly, the ANN transport
classification of the two phases is achieved with a high
confidence > 99% in the low and high temperature lim-
its. In between, it indicates a smooth onset around the
temperature Tfluct = β−1 ∼ 0.28, which we interpret as
the onset of superconducting fluctuations and therefore
expect it to be slightly higher than the reported critical
temperature for the KT transition Tc ' 0.175 [37, 38].
As we argued above, the ANN has no means of deter-
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FIG. 4. Mean-field transition of the negative-U Hub-
bard model. Comparison of the mean-field s-wave pairing
gap ∆ (red dots) and the neural output from the QLT+QMC
approach. The consistent onset of both functions demon-
strates that the machine learning approach is indeed sensitive
to the onset of superconductivity. The vertical dashed line
indicates the mean-field transition temperature βc ∼ 0.545.

mining the exact KT transition temperature, and this is
the best performance we can in fact anticipate.

We benchmark our QLT approach against two alter-
native approaches. First, we consider the mean-field the-
ory of the negative-U Hubbard model and compare our
QLT+QMC approach for this mean-field model against
exact analytical results. Since the mean-field theory can-
not capture fluctuations, the change of transport prop-
erties and the superconducting transition strictly coin-
cide within the mean-field theory. Hence, we anticipate
the assessment of superconductivity within the QLT ap-
proach to coincide with the mean-field transition. To
test this, we solve the self-consistent gap equations at
each inverse temperature β to obtain the s-wave pair-
ing gap ∆(β). We then sample via finite-temperature
Monte Carlo simulations, using the corresponding BdG
mean-field model with the respective ∆(β), and gener-
ate a Markov sequence of the quasi-particle occupation
number, which is then fed into the QLT approach. The
resulting phase diagram (for U = −8 and µ = −0.5) is
shown in Fig. 4 where we used β = 0.3 and β = 0.8
as the high and low temperature training points, respec-
tively. Indeed, the QLT assessment of superconductivity
shows a sharp onset at the mean-field superconducting
transition.

Our second benchmark is to compare against an al-
ternative numerical approach where the entire, unpro-

cessed Green’s functions P̃jk|α for all j, k’s are used as
input for a CNN, Fig. 1(b), akin to previous work [20]
that demonstrated the feasibility of such an approach
to locate symmetry-breaking phase transitions in quan-
tum many-fermion systems. The CNN is optimized with
a training set of about 8,000 samples of unprocessed
Greens functions. Note that these sample inputs are 4-
dimensional, L2×L2, and hence considerably larger than

the condensed quasi-two-dimensional QLT loop vector
fields, L2 × D(dc), where D(dc) denotes the dimension
of a loop vector for given maximal loop length dc. Fig. 3
shows the direct comparison of the QLT+shallow ANN
approach versus such a CNN setting. With the two tech-
niques giving essentially the same result, we conclude
that both approaches are indeed capable of detecting the
onset of superconducting fluctuations from raw data of
equal-time Green’s functions. The QLT approach, how-
ever, succeeds in doing so with a significantly smaller
input and data size, which is of enormous practical ad-
vantage.

As a second principle example, we now turn to a model
in which superconductivity arises from the quantum crit-
ical fluctuations in the vicinity of a spin-density wave
(SDW) transition [7, 36, 41, 42]. Specifically, we consider
a square lattice spin-fermion model S = Sψ + Sϕ + Sλ
[36], in which two flavors of spin−1/2 fermions are cou-
pled to an easy-plane SDW order parameter ~ϕ at wave
vector Q = (π, π),

Sψ =

∫
τ,r,r′

∑
s,α

[(∂τ − µ) δrr′ − tαrr′ ]ψ†αrsψαr′s

Sλ = λ

∫
τ,r

eiQ·ri ~ϕr ·
(
ψ†ars~σss′ψbrs′ + h.c.

)
Sϕ =

∫
τ,r

1

2c2
(∂τ ~ϕ)

2
+

1

2
(∇~ϕ)

2
+
r

2
~ϕ2 +

u

4
(~ϕ2)2, (6)

where α = a, b labels the two fermion flavors, and s =↑, ↓
denotes the spin. The nearest-neighbor fermion hopping
amplitudes are chosen as ta,x = tb,y = 1 and ta,y = tb,x =
0.5. We further set the Yukawa coupling λ = 3, chemical
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FIG. 5. Neural network output for the superconducting tran-
sition near a metallic quantum critical point. The train-
ing points were at β = 30 for superfluid transport and β = 5
for metallic transport. The vertical lines indicate the super-
conducting transition temperature βc ∼ 12.5 (dashed) de-
rived from the superfluid density measurements and the on-
set of diamagnetic fluctuations βdia ∼ 6.9 (dotted) where the
orbital magnetic susceptibility changes sign [36]. The inset
(modified from [36]) illustrates the chosen finite-temperature
scan cutting into the superconducting dome.
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potential µ = 0.5, u = 1 and the bare bosonic velocity to
be c = 2. Studying a system of size 8 × 8, we tune the
dynamics of the SDW order parameter to the vicinity of
the SDW transition, r = 10.35, around which a finite-
temperature superconducting dome is found [36].

The results of a finite-temperature scan cutting into
the superconducting dome are shown in Fig. 5. It clearly
confirms that the QLT+QMC approach can indeed cor-
rectly detect the onset of superconducting fluctuations
in this spin-fermion model. This is evident by the fact
that the neural network output is turning on where ear-
lier studies of current-current correlations [36, 43] as a
proxy for superconductivity found the onset of diamag-
netic fluctuations (dotted line) [36]. We also find very
good agreement with the alternative numerical approach
of feeding the unprocessed Green’s function data into
a CNN – albeit using only the dimensionally reduced
QLT data. Further note that the QLT+QMC approach
achieved the above detection of superconducting trans-
port using only O(10) uncorrelated samples of the QMC
Markov chain [44], a huge reduction over the number of
samples used in the traditional superfluid density calcu-
lation [36, 45].
Conclusions.– To summarize, we have introduced a fea-
ture selection protocol for machine learning longitudinal
transport and demonstrated that such a QLT prepro-
cessing step allows to identify the onset of superconduc-
tivity in quantum many-fermion systems at considerably
lower numerical cost than traditional approaches. Com-
paring to other machine learning approaches, we showed

that the response theory guided QLT+QMC approach
performs just as well as the much more involved CNN
approach rooted in image recognition techniques while
using only a fraction of the Monte Carlo data. The ma-
jor advantage of the QLT+QMC approach is that it is
motivated by quantum statistical physics considerations
and therefore allows for a much better intuitive under-
standing of its capabilities. A further advantage is that
the QLT is semi-locally defined and as such it does not
require e.g. translational symmetry. In an explicit ap-
plication, we showed that the QLT+QMC approach can
detect correctly transport signatures of superconducting
fluctuations by comparing the neural network outcome
to rigorous traditional measurements of the superfluid
density. Looking ahead, we anticipate that QLT+QMC
will be even more valuable in detecting states without
traditional representation that are nevertheless defined
through non-trivial transport properties such as non-
Fermi liquids.
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