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We use machine learning to enable large-scale molecular dynamics (MD) of a correlated electron
model under the Gutzwiller approximation scheme. This model exhibits a Mott transition as a func-
tion of on-site Coulomb repulsion U . Repeated solution of the Gutzwiller self-consistency equations
would be prohibitively expensive for large-scale MD simulations. We show that machine learn-
ing models of the Gutzwiller potential energy can be remarkably accurate. The models, which are
trained with N = 33 atoms, enable highly accurate MD simulations at much larger scales (N & 103).
We investigate the physics of the smooth Mott crossover in the fluid phase.

Understanding strongly correlated electron systems is
an outstanding challenge in condensed matter theory.
Some of the simplest many-body models remain un-
solved. This challenge persists despite steady progress in
theoretical and computational methods. Machine learn-
ing (ML) is becoming a promising tool to help model
various types of many-body phenomena.

Because the many-body quantum state space grows ex-
ponentially with system size, the cost of direct numeri-
cal solution quickly becomes intractable. Unbiased quan-
tum Monte Carlo (QMC) can be very effective in special
cases (e.g., for the square-lattice Hubbard model at half-
filling). But generally one is plagued by the “sign prob-
lem” of resolving the delicate signal that remains after
cancellations between samples with complex phases [1].
Many clever mitigation strategies have emerged [2–6].
An intriguing possibility is to use ML to extract relevant
physics from QMC samples without reweighting [7, 8].

Alternatively, one may seek to represent the many-
body state variationally, e.g. with the density matrix
renormalization group [9, 10] or tensor network general-
izations. ML is inspiring new variational ansatzes [11–14]
that compare favorably with previous ones.

To make quantitative predictions for real correlated
electron materials, one commonly employs physically-
motivated approximations, such as variational and
fixed node QMC [15] and dynamical mean-field theory
(DMFT) [16]. These methods remain computationally
demanding. Again, ML presents new opportunities. For
example, ML may be useful as a low cost surrogate model
for the impurity solver within DMFT [17] or even the full
DMFT calculation itself [18].

An emerging research area is the molecular dynamics
(MD) of strongly correlated electron materials. Devel-
oping such toolkits not only is of fundamental impor-
tance, but also has important technological implications.
While quantum MD methods based on density functional
theory (DFT) have been successfully applied to a wide
variety of materials, they have limited validity in their

treatment of electron correlations. On the other hand,
most of the many-body techniques mentioned above are
computationally too costly for MD simulations.

ML offers the possibility of large-scale MD simula-
tions by emulating the time-consuming quantum calcu-
lations required at each time-step. Indeed, ML has al-
ready proven extremely effective in modeling MD poten-
tials for chemistry and materials applications [19–30]. An
ML model might be trained from a dataset containing
104–106 individual atomic forces, often calculated with
DFT. In organic chemistry, ML now routinely predicts
molecular energies that agree with new DFT calculations
to within 0.04 eV (1 kcal/mol) [22, 26, 27], whereas DFT
itself is almost certainly not this accurate. This success
has spurred recent efforts to calculate the training data at
levels of quantum theory significantly beyond DFT [31–
33].

Here we show that ML can be similarly effective for
building fast, linear-scaling MD potentials that capture
correlated electron physics. Specifically, we use ML to
enable large-scale Gutzwiller MD simulations of a liq-
uid Hubbard model [34, 35]. The correlated electronic
state is computed using an efficient Gutzwiller method
at every time-step. Contrary to DFT, the Gutzwiller
approach captures crucial correlation effects such as the
Mott metal-insulator transition, and produces a U -T
phase diagram qualitatively similar to that of DMFT [36].
For our neural network model [22] running on a single
modern GPU, a typical force evaluation costs ∼ 10µs per
atom. For the systems considered in the present study,
ML is up to 6 orders of magnitude faster than direct
quantum calculations.

The present work opens a path toward large-scale dy-
namical simulation of realistic models of correlated mate-
rials. Future studies could train ML models on data gen-
erated from small scale QMC or DMFT calculations. ML
works well assuming locality, i.e., that the total energy
can be decomposed as a sum of local contributions [37].
Our success in this study offers evidence that locality
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can remain valid in the presence of strong electron cor-
relations.

Following earlier work [34], we consider a single-orbital
model Hamiltonian

H[r,p] = HHubbard[r] + Vpair[r] + Ekin[p], (1)

where {ri} and {pi} are the positions and momentum of
the nuclei. The electronic part

HHubbard = −
∑
i6=j

∑
σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (2)

has hopping and on-site Coulomb repulsion terms. The
operator c†iσ creates an electron with spin σ ∈ {↑, ↓} on
the ith atom, and niσ = c†iσciσ is the number operator.
We take the system to be half filled (one electron per
nucleus). The hoppings tij = t(|ri − rj |) decay exponen-
tially with distance between nuclei, t(r) = t0 exp(−r/ξ1).
The pair repulsions Vpair =

∑
i6=j φij/2 also decay expo-

nentially, φij = φ(|ri − rj |) with φ(r) = φ0 exp(−r/ξ2).
Selecting t0 = 24 eV, ξ1 = 0.526Å, φ0 = 100 eV, and
ξ2 = 0.283Å gives a highly simplified model of hydro-
gen. With these choices, at U = 0 the dimer molecule
is bound with energy −4.58 eV at distance r0 = 0.83Å,
in loose agreement with the physical values of −4.52 eV
and 0.74Å. Our model clearly departs from hydrogen,
however, in the large range of Hubbard U values that we
consider: 0 eV ≤ U ≤ 17 eV [38]. Finally, our Hamilto-
nian includes a kinetic energy term Ekin =

∑
i |pi|2/2m,

where m ≈ 1 amu is the mass of the proton.
Gutzwiller method. To estimate the electronic free

energy at nonzero U , we employ a finite temperature gen-
eralization of the Gutzwiller projection method [36, 39].
In this approach, we seek a variational approximation
ρG = Pρ0P for the density matrix exp(−βHHubbard).
Here ρ0 is the Boltzmann distribution of free quasi-
particles, and the so-called Gutzwiller projection op-
erator P =

∏
i Pi effectively reweights electron occu-

pation numbers at each site. We consider the para-
magnetic phase of the Hubbard model, which means
ni,↑ = ni,↓. The variational target is to minimize a
free energy FG = 〈HHubbard〉G − TSG, where SG =
Tr (ρG/ZG) ln(ρG/ZG), subject to the Gutzwiller con-
straint 〈ni〉G = 〈ni〉0. We use 〈O〉G and 〈O〉0 to denote
expectations of O computed from density matrices ρG
and ρ0, respectively. Importantly, the expectation values
of the hopping terms can be efficiently computed using
the so-called Gutzwiller approximation [40] (exact in in-
finite dimensions): 〈c†i cj〉G = RiRj 〈c†i cj〉0, where the
renormalization factor Ri is uniquely determined from
the electron density n0

i = 〈ni〉G and double occupancy
di = 〈ni↑ni↓〉G [41].

Although SG cannot be evaluated exactly, a good ap-
proximation to the free energy is FG = F0 + U

∑
i di −

T∆S. The term F0 = −kBT lnTrρ0 is the free energy of
quasi-particles and ∆S is the entropy correction due to
the projector P [36].

Self-consistent minimization of FG with respect to the
variational parameters produces the electronic free en-
ergy of interest. This minimization is performed by cy-
cling between two steps [41]. (1) For fixed n0

i and di, the
renormalized Hamiltonian

H0 = −
∑
i6=j

RiRjtijc
†
i cj −

∑
i

µini (3)

is diagonalized to obtain ρ0. The Lagrange multipliers
µi impose the density constraint. (2) For fixed ρ0, one
adjusts n0

i and di to minimize FG.
Once converged, we treat Velec = min FG as the elec-

tronic part of the total MD potential, V = Velec + Vpair.
The corresponding forces,

− ∂V

∂ri
= 2

∑
j

∂tij
∂ri

RiRj 〈c†i cj〉0 −
∑
j

∂φij

∂ri
, (4)

drive MD simulations of the nuclei under the Born Op-
penheimer approximation. To derive Eq. (4), we used the
fact that FG is minimized with respect to the variational
parameters.

The scheme here is largely similar to that of our previ-
ous Gutzwiller-MD study [34]. The primary difference is
that, here, we reinitialize the variational parameters at
each MD time-step before iteratively optimizing them. In
the prior version of our code, we selected the initial guess
for (n0

i , di) as the self-consistent solution obtained in
the previous MD time-step. That lack of reinitialization
leads to weakly stable solution branches of the Gutzwiller
equations, and strong hysteresis. In the present study, we
enforce that Velec is single-valued by reinitializing (n0

i , di)
to default values at each time-step before iteratively solv-
ing the self-consistency equations. This scheme elimi-
nates hysteresis and simultaneously lowers the Gutzwiller
variational free energy.

Machine learning. Solving the above Gutzwiller
equations for the MD potential Velec[r] at each time-step
can be computationally expensive. We use an ML model
to estimate V̂elec ≈ Velec, while treating Vpair exactly. A
key assumption is the (non-unique) decomposition of en-
ergy as a sum of local contributions, V̂elec =

∑N

i=1 V̂elec;i,
where Velec;i is a function only of the atomic environ-
ment near atom i. We use a neural network to model
the local potential Velec;i. We have explored two estab-
lished architectures, the Hierarchically Interacting Parti-
cle Neural Network (HIP-NN) [26] and the Accurate Neu-
ral Network Engine for Molecular Energies (ANI) [22].
Although HIP-NN may yield slightly better accuracies,
we selected ANI for our MD simulations because of its
highly optimized NeuroChem implementation [42].

ANI constructs a rotationally and translationally in-
variant representation of the environment near atom i
from two types of information: (1) the pairwise distances
{rij} for all atoms j satisfying rij = |ri−rj | < 2.8Å, and
(2) the set of three-body angles {θjik}, where cos θjik =
rij · rik/rijrik, provided that both rij and rik are less
than 2.0Å. The values {rij} and {θjik} transformed into
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Figure 1. MD averaged electronic free energy 〈Velec〉 and pair
repulsion energy 〈Vpair〉, for varying Hubbard U . At every
MD time-step, forces are produced by an ML model that em-
ulates the Gutzwiller calculation. The crosses represent refer-
ence simulations that use direct Gutzwiller calculations rather
than ML. The dashed line represents the kinetic energy. The
energy scale is W0 = −〈Velec〉|U=0 = 4.84 eV. Tests show
that these results with N = 100 atoms are representative of
N → ∞.

a fixed-length “feature vector” {Gi,m}m=1...M0
using con-

tinuous binning. In this study, Gi,m contains M0 = 96
scalar components. There will typically be about 5–15
atoms within a distance 2.8Å of atom i, and Gi,m de-
scribes this environment.

The neural network V̂elec,i is composed of multiple
real-valued activations {zℓm}m=1...Mℓ

for layer index ℓ =
0 . . . L. The input to the neural network is the feature
vector, zℓ=0

m = Gi,m. Each neural network layer has the
form, zℓ+1

m = factiv(
∑Mℓ

n=1 w
ℓ
mnz

ℓ
n + bℓm). The matrix ele-

ments wℓ
mn and offsets bℓm are learnable parameters. We

select factiv(x) to be the Continuously Differentiable Ex-
ponential Linear Unit (CELU) [43]. A linear combination
of the outputs of the final layer yields the local potential,
V̂elec;i =

∑ML

n=1 w
L
nz

L
n + bL. We select L = 3 and layer

sizes M0 = 96, M1 = 48, M2 = 32, and M3 = 16. There
are thus approximately 104 learnable parameters in this
neural network.

Training of the model parameters involves optimizing
a loss function L that quantifies the deviation between
the model V̂elec and direct Gutzwiller calculations Velec,
evaluated on a training dataset. The loss function incor-
porates errors in the potential, V̂elec − Velec and forces
∇ri

(V̂elec − Velec). We optimize the parameters wℓ
mn

and bℓm using the Adaptive Moment Estimation (Adam)
variant of stochastic gradient descent [44]. To mitigate
overfitting, we employ weight decay regularization with
α = 10−6 [45] and early stopping. For a general intro-
duction to this ML methodology, see Ref. 46.

To produce our training dataset, we ran MD simula-
tions with forces obtained from direct-Gutzwiller calcu-
lations. We used Verlet integration with a time-step of
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Figure 2. Radial distribution functions g(r) for varying Hub-
bard U , and the same simulation parameters as in Fig. 1. The
results using ML (colored lines) are in strong agreement with
direct Gutzwiller calculations (black dots). The typical bond
length at U = 0 is r0 = 0.83Å.

0.2 fs to evolve the atoms. The simulation box has pe-
riodic boundary conditions, and its volume V0 is set ac-
cording to a fixed density ̺0 = N/V0 = 0.153Å

−3
. Just

N = 33 atoms are sufficient to train an extensible ML
potential, which remains valid for much larger N . To fix
the temperature kBT = 0.15 eV, we employ a Langevin
thermostat with friction coefficient γ = 5×10−3 amu/fs .
We generated independent training data sets for U values
ranging from 0 to 17 eV. For each U , we collected 3, 000
snapshots, one per 200 MD time-steps. Every snapshot
contains the electron free energy and associated forces.

We found that an ML model trained on this dataset
alone would lead to unstable MD simulations. To im-
prove the robustness of our ML model, we collected ad-
ditional data that sampled a broader range of the atomic
configurations. Specifically, we augmented our training
dataset by running additional direct-Gutzwiller MD with
kBT = 0.075 eV and kBT = 0.3 eV for the Langevin ther-
mostat only, without changing the temperature used in
the Gutzwiller equations. Our total training dataset, per
U value, thus contains 9, 000 MD snapshots and about
3× 105 atomic forces.

We reduce variance by averaging over an ensemble of
eight neural networks, each trained on a subset of the
data [47].

Results. We use our ML models to drive efficient
and accurate MD simulations at large scales. Figure 1
shows mean energies for an MD simulation with N = 100
atoms (keeping kBT = 0.15 eV) and 3 × 106 time-steps.
The mean electronic energy evaluated at U = 0 serves
as a convenient energy scale, W0 = 4.84 eV. At large U
the electrons become localized, the electronic energy Velec

goes to zero, and atoms repel according to Vpair. At small
U the system is metallic and Velec is an attractive inter-
action that tends to bond atoms into dimer molecules,
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Figure 3. The diffusivity D for varying Hubbard U , and the
same simulation parameters as in Fig. 1. At U = 0 with
N = 2700 atoms, we measure D0 = 0.0088Å

2

/fs. Direct
Gutzwiller calculations (black crosses) employ five times fewer
time-steps than used in the ML-based simulations. Approxi-
mately N = 800 atoms are required to reach convergence.

counterbalanced by Vpair.
For validation, we also performed reference simulations

using forces from direct-Gutzwiller calculations at each
MD time-step, and only ≈ 105 time-steps. The ML and
reference simulations in Fig. 1 are barely distinguishable,
which is remarkable given that the training data was
generated using only N = 33 atoms. We also directly
compare the ML predictions V̂elec with reference energy
calculations Velec for N = 100 and N = 800. The mean
absolute error (MAE) scales as 0.02

√
N W0. The fac-

tor
√
N appears because the errors in local contributions

V̂elec;i and V̂elec;j are essentially independent for atoms
i 6= j. The MAE of electronic force −∇V̂elec is approxi-
mately 0.009 f0, where f0 = 17.7 eV/Å is the mean force
magnitude at U = 0. If we were to reduce our training
data by a factor of 10, this force MAE would increase by
about 10%.

Figure 2 shows the radial distribution functions g(r).
At U = 0, g(r) has a characteristic peak at r0 = 0.83 Å,
which reflects the bond length of a dimer molecule. This
peak gradually decreases with increasing U , and disap-
pears entirely at U & 3.1W0, where 〈Velec〉 ≈ 0 according
to Fig. 1. The ML-based simulations again appear almost
identical to direct-Gutzwiller reference simulations.

Figure 3 shows a dynamic observable, the diffusivity

D =
1

3N

N∑
i=1

∫ ∞

0

〈vi(t) · vi(0)〉dt. (5)

Replacing ∞ with a finite time τ would yield a naive
estimator of D. Instead we use an estimator D̂(τ) =
1
2τ

1
3N

∑
i |
∫ τ

0
vi(t)dt|2 with reduced variance. Varying

τ , we find that the bias of the estimator D ≈ 〈D̂(τ0)〉
becomes negligible at τ0 corresponding to 105 MD time-
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Figure 4. A volume collapse occurs with decreasing U . Here
we employ an ensemble with constant pressure P = 12, 20, 40,
and 80GPa; the pressure of the previous simulations at fixed
volume V0(N) = N/̺0 corresponds to P = 20GPa when
U ≈ 2.4W0. At this temperature, there is a relatively smooth
Mott cross-over.

steps. We collected more than 10 independent samples
of D̂(τ0) from each MD simulation and estimated the
error bars using bootstrapping. D converges surprisingly
slowly with system size; about N ≈ 800 atoms seem to
be required. Such simulations would have been extremely
challenging without ML.

Due to updates in our Gutzwiller solver, the present
results deviate significantly from prior work [34]. The
mean energies (Fig. 1) and g(r) curves (Fig. 2) now vary
smoothly with U , indicating a crossover rather than a
first order transition. We also observe in Fig. 3 that D
decays smoothly after reaching its peak at the Mott tran-
sition, whereas before we had observed a sharp drop. The
previous results were dependent on strong hysteresis ef-
fects. Here we reinitialize the Gutzwiller parameters at
every time-step, which eliminates hysteresis and lowers
the variational free energy in all instances we checked.
We argue that the present approach is more consis-
tent with the assumption (used in the finite-temperature
Gutzwiller method) that the electrons are in equilibrium.

Finally, we investigate the nature of the Mott transi-
tion using large-scale MD with N = 2700 atoms. Here,
we switch to an ensemble with constant pressure P =
12, 20, 40, and 80GPa, implemented using the Monte
Carlo Barostat algorithm [48]. The pressure of our pre-
vious (fixed density) simulations matches P = 20GPa
when U ≈ 2.4W0. Figure 4 shows collapse of volume V
with decreasing U , corresponding to the crossover from
the Mott insulating phase to the metallic state.

The ML techniques applied here demonstrate that,
with more realistic quantum models, it will be possible
to perform large-scale Gutzwiller MD simulations of the
structural properties of real f -electron materials, such as
Pu, and other correlated electron systems. It is surpris-
ing how accurately ML predicts Gutzwiller forces using
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only the atomic environment within a 2.8 Å radius. The
power of ML is that, under the locality assumption, only
training data for relatively small system sizes is required.
In future work, it should be feasible to generate training
data from, e.g., quantum Monte Carlo or DMFT. Once
the ML model has been trained, accurate MD simula-
tions of unprecedented scale become practical. For MD
boxes with N = 2700 atoms, our ML model running on a
Tesla P100 GPU can evaluate all forces in about 26 ms,
which is ≈ 106 times faster (extrapolated) than our refer-
ence Gutzwiller implementation running on a Intel Xeon
CPU E5-2680. We anticipate that a distributed ML/MD
implementation could readily enable simulations of f -

electron materials with millions of atoms.
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