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Electronic tunability in crystals with weakly-bound layers can be achieved through layer stacking
order. One such example is MoTe2, where the low-temperature orthorhombic Td phase is topological
and host to Weyl quasiparticles. The transition mechanism to the non-trivial topology is elucidated
by single crystal neutron diffraction. Upon cooling from the monoclinic 1T′ to the Td phase,
diffuse scattering accompanies the transition, arising from random, in-plane layer displacements,
and dissipates upon entering the Td phase. Diffuse scattering is observed only in the H0L plane due
to irreversible layer shifts along the c-axis that break the centrosymmetry of the monoclinic lattice.

Transition metal dichalcogenides (TMDs) are hosts
to exotic quantum states, with electronic features that
are suitable for optoelectronic and quantum technologies
[1, 2]. Their crystal structures consist of Van der Waals-
bound layers, where a change in the layer stacking can
result in new properties such as superconductivity, re-
cently observed in bilayer graphene with a “magic”twist
angle [3], or transition to the Weyl semimetal state [4–
7] reported in the Td phase of MoTe2 and in the Kooi
phase of Ge2Sb2Te5[8]. MoTe2 is a prototype for un-
derstanding how stacking variations in layered materials
can lead to exotic states of matter. Its crystal structure
can be tuned by temperature and pressure between two
phases; the 1T′, a topologically trivial phase, and the
non-centrosymmetric Td phase, the host of Weyl quasi-
particles. The crystal symmetry is thus essential to pre-
dicting the emergence of topologically protected states.

The mechanism of the structural transition has been
of particular interest in MoTe2, since Weyl quasiparticles
are predicted in the low temperature phase of the non-
centrosymmetric orthorhombic Td phase, protected by
crystal symmetry. Early X-ray diffraction and Raman
scattering measurements suggested that the high tem-
perature 1T′ monoclinic structure belongs to the P21/m
space group that preserves inversion symmetry [9–12].
More recent Raman and second harmonic generation
measurements indicated that the inversion symmetry of
the 1T′ phase is most likely broken in thin films [13].

How the stacking pattern and disorder arise in MoTe2
has implications on many other Van der Waals-bound
layered materials where stacking can be controlled repro-
ducibly by temperature or pressure. Examples include
transitions with pressure in WTe2 [14], ReS2 [15], ReSe2
[16], MoS2 [17–19], and Ta2NiSe5 [20]; with temperature
in RuCl3 [21], CrX3 (X=Cl, Br, I) [22], and CdPS3 [23];
and with either temperature or pressure in In2Se3 [24, 25]
and MoTe2 [26]. In MoTe2, the stability of the 1T′ and
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Td phases was explained through density functional the-
ory (DFT) calculations [27], but neglected to investigate
how the transition proceeds.

The difference between 1T′ and Td states can be il-
lustrated by considering the nature of the layer stack-
ing. Shown in Figs 1(a) and (d) are the crystal struc-
tures of the Td and 1T′, respectively. The Td phase
can be thought of as having “AA”layer order, where
“A”denotes an operation mapping one layer to the next.
For Td, this operation involves translation along the c-
axis by 0.5 lattice constants and reflections about the
a- and b-directions. Though there are two layers per
unit cell, the operation is the same for both layers. In
contrast, the layer stacking of 1T′ can be described by
“AB”, where “B” denotes an operation just like “A” but
with an additional shift of about ±0.15 lattice constants
along the a-direction, where the sign depends on weather
the “B” is in an even or odd position in the layer se-
quence. Though this description of 1T′ is approximate
and neglects additional intralayer distortions relative to
the layers in Td, it captures the binary choice of layer
placement at each inter-layer boundary. The additional
shifts in 1T′ result in a tilting of the unit cell with a
monoclinic angle β ≈ 93.9◦. To elucidate the nature of
the transition mechanism across the phase boundary, we
employed high-resolution single crystal neutron diffrac-
tion. In this letter, we show that the diffuse scattering
that appears on cooling through the 1T′ to Td transi-
tion is consistent with random layer shifts, driving the
transition from ABAB layer stacking in the 1T′ phase to
AAAA layer stacking in the Td phase.

The single crystal of MoTe2 was grown in a 1:25 mo-
lar ratio of Mo:Te using high purity elements (99.9999%
for both). The elements were heated together in an
evacuated silica ampoule to 1050 ◦C, held there for 24
hours, then cooled to 900 ◦C at a rate of 0.5 ◦C/h and
quenched in liquid nitrogen. The neutron scattering mea-
surements were performed on the single crystal diffrac-
tometer TOPAZ at Oak Ridge National Laboratory. By
indexing the Bragg peaks, an orientation matrix (a.k.a.
UB matrix) is defined for the data at each temperature.
The lattice constants are obtained from the UB matri-
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ces. For the 295 and 260 K data, the UB matrices are
defined using only the reflections from one of the twin
domains. The structure factors of each Bragg reflections
are calculated from the reduced and normalized data in
order to determine the crystal structure. To accommo-
date the L-direction elongated peak shape, the intensities
of the reflections are taken as integrals over a box of size
0.3×0.3×0.5 in reciprocal units subtracting the average
background in a shell of 0.08 reciprocal unit thickness.
Atomic coordinates in this paper are defined in the con-
vention typically used for the 1T′ phase, i.e., b < a < c.
The lattice parameters are listed in Table 1. Data in the
form of intensity as a function of momentum transfer in
three-dimensional reciprocal space were collected succes-
sively at 295, 260, 240, and 100 K, and averaged within
−0.1 ≤ K ≤ 0.1 for the H0L plane and −0.1 ≤ H ≤ 0.1
for the 0KL plane. There are two twins with opposite
tilts in the sample. Alignment was done with the dom-
inant twin, which occupies an estimated 85-90% of the
crystal as determined from the ratios of various Bragg
peak intensities. Since shearing of layers along the a-
direction in the ac-plane corresponds to a displacement
of Bragg peaks and other reciprocal-space features along
L in the H0L plane, the Bragg peaks of the minority twin
occupy positions of approximately (H,0,L-0.3H). We ac-
counted for the domain mosaic spread seen in the H0L
plane in our data by convoluting the simulated inten-
sities with a 2-dimensional Gaussian having widths in
the radial and angular directions increasing linearly in
the momentum transfer magnitude |Q|, with the mosaic
spread estimated to correspond to that of the data. Since
the simulated data were calculated for an orthorhombic
supercell while the phase at 260 K is monoclinic, the 260
K simulated data were plotted for a monoclinic unit cell
with β ≈ 93.9◦ by shifting intensities from (H,0,L) to
(H,0,L-0.15H). The data plotted in Fig. 3(d) are av-
eraged within ±0.1 r.l.u. in the H and K directions,
subtracted from a background taken as the average of
intensities along (1.8,0,L) and (2.2,0,L) which were each
averaged within 0.05 and 0.1 r.l.u. in the H and K direc-
tions, respectively. To correct for misalignment during
the temperature change, the simulated intensities were
translated uniformly along L to match the data. The
data in Fig. 3(e) were averaged similarly to Fig. 3 (d),
but with the background taken as the average of (2.8,
0, L) and (3.2, 0, L) intensities. For the band struc-
ture calculations, we used density functional theory as
implemented in the Vienna Ab initio Simulation Package
(VASP). The details of the calculation are the same as
those reported in Ref. [28].

Shown in Fig. 1(b) is a plot of the (HK0) scattering
plane for data collected at 100 K in the Td phase. The
Bragg reflections are the black dots while the red circles
represent the calculated peak intensity. A similar plot is
shown in Fig. 1(e) for data collected at 295 K in the 1T′
phase. The Rietveld refinement was performed on the
structure factors extracted from Bragg reflections and the
results are summarized in Table I. Ab initio calculation

were performed on the refined structures of Td and 1T′
phases. With kz ∼ 0, cuts near the Fermi surface are
shown in Figs. 1(c) through 1(f) at E ∼ 57meV above
the Fermi level, EF . Weyl nodes, indicated by WP on
the plots, are only observed in the Td phase (Fig. 1(c)),
as previously reported, at the intersections of electron
and hole pockets [5–7]. In the centrosymmetric P21/m
symmetry (Fig. 1(f)), Weyl nodes are absent, consistent
with previous results as well [5–7]. Thus the emergence
of Weyl nodes upon cooling to the Td phase is tightly
linked to the shifting layers, which is discussed next.

A single layer in MoTe2 consists of the transition metal
(Mo) atoms surrounded by the chalcogen (Te) atoms in
either trigonal prismatic (2H) or octahedral (1T′ and Td)
local environments as shown in Fig. 1 (a) and (d). The
refinement indicates that the 1T′ to Td transition that
occurs between 260 and 240 K does not affect the lo-
cal octahedral structure within the monolayer. Instead,
the transition is driven by a relative shift of the layers
along the ab-plane, changing the monoclinic unit cell to
orthorhombic. The layer shift occurs between two high
symmetry positions. In the 1T′ phase, the 2-fold screw
rotation along the b-axis maps each layer to its next near-
est neighboring layer. In the Td phase, the 2-fold screw
rotation along the b-axis is broken by the shifting lay-
ers, while a new 2-fold screw rotation along the c-axis
connecting adjacent layers is established.

Fig. 2 is a plot of intensity maps from elastic scattering
in the H0L and 0KL planes. At 295 K, the crystal is in
the 1T′ phase. At 260 K, the crystal is still in the 1T′
phase, but diffuse scattering streaks are observed along L
in the H0L plane. By 240 K the crystal is mostly in the
Td phase, but with some diffuse scattering streaks along
L observed in the H0L plane that are less intense than at
260 K. By 100 K, the crystal has transformed into the Td

phase to the point where no diffuse scattering intensity
can be observed. The 0KL scattering planes shown on
the right panels of Fig. 2 show no clear diffuse streaks
along L at any temperature, in contrast to the diffuse
scattering observed in the H0L plane. Diffuse streaks
were also observed about the c-axis during the 1T′-Td

transition by earlier X-ray diffraction measurements, but
attributed to variations of the β-angle with temperature
[29], which is different from what we discuss below.

To estimate the degree of stacking disorder during the
structural phase transition, we compare the diffuse scat-
tering intensity at 260 and 240 K to the results from a
model of stacking disorder that we describe below. Both
the 1T′ [26] and Td [9] phases can be constructed by
stacking variants of a ”base” layer, ignoring the slight
differences in atomic coordinates within each layer be-
tween the Td and 1T′ phases. Each phase can be built
from a sequence of stacking operations, ”AAAAAA...”
for Td and ”ABABAB...” for 1T′ (Fig. 3(a)). Oper-
ation A reflects about the a-direction and translates by
0.5 lattice constants along the c-direction; the translation
along the b-axis of operation A is 0.5 for Td and is dif-
ferent for the P21-symmetry 1T′, but this difference does
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not affect the diffuse scattering in the H0L plane. Opera-
tion B is the same as operation A but with an additional
translation along the a-axis by ±0.15 lattice constants,
with the direction alternating from one layer to the next.
The change in a-direction displacements results in the
orthorhombic Td phase becoming monoclinic in 1T′.

For modeling the diffuse scattering, we start from the
1T′ stacking sequence ABABAB...., then randomly re-
place B-boundaries with A-boundaries with probability
p. Although this model is crude, it allows us to verify that
disordered A/B stacking does indeed explain the diffuse
scattering reasonably well, and to estimate the amount
of stacking defects at 260 and 240 K. A supercell is con-
structed with a large number of layers, and the intensity
is taken as the square of the neutron scattering structure
factor (with the Debye-Waller factor neglected for sim-
plicity) [30], then convoluted with a Gaussian function to
mimic resolution effects or changes in the mosaic spread.
The diffuse scattering corresponds to intensities at frac-
tional L as defined in Td-cell reciprocal lattice units. We
note that only disorder for displacements along b-axis
would contribute to diffuse scattering in the 0KL plane,
which suggests that the lack of clear diffuse scattering
streaks in the 0KL planes in Fig. 2 implies that there
is little to no disorder along the b-direction. We also
note that, since the additional a-axis displacements are
multiples of 0.15 ≈ 1/6, the contribution to the diffuse
scattering along (60L) is likely to be small. We indeed
see little diffuse scattering along (60L), so the data ap-
pear to be consistent with our model. (Details on the
relation between displacements along specific axes and
diffuse scattering in specific planes can be found in the
Supplement[31]).

Simulated H0L-plane intensity maps are shown in Fig.
3(b) (260 K) and Fig. 3(c) (240 K). Both simulations were
based on a 1000-layer supercell where a 1T′ crystal with
two twins having volume fractions of 87% and 13% has
B-boundaries replaced by A-boundaries with probability
p = 0.3 at 260 K and p = 0.8 at 240 K. The model
describes well the overall pattern of diffuse scattering in
the H0L plane; for example, similar diffuse scattering
streaks are seen along (20L), (30L), and most of (40L),
while (60L) and (70L) are relatively clean. A closer look
at the comparison between the data at 260 K and the
model along (20L) is shown in Fig. 3 (d), again with cal-
culations using a 1000-layer supercell and p = 0.3. There

is very good agreement between the model and data, with
discrepancies likely due to either varying the distribution
of domain orientation or due to inhomogeneities (differ-
ent regions of the crystal having varying values of p).

For the 240 K data shown in Fig. 3 (e), we compare
the intensity along (30L) to two models. Model #1 is
the model described above with p = 0.8. Model #2 is
a similar model but starting from the Td phase stack-
ing and replacing A-boundaries with B-boundaries with
probability p=0.1. Both calculations used 4000 layers.
These two models are motivated by different schemes of
the 1T′ to Td transition. Model #1 assumes B to A tran-
sitions are one-way and irreversible, whereas model #2 is
motivated by a transition scenario involving fluctuating
layers which can shift back and forth but have an aver-
age probability of occupying at a certain position. Our
data are more consistent with the first model than the
second. First, we would expect the intensity upon (H, 0,
L) to (H, 0, -L) to be symmetric in model #2 but not
in model #1. (See Supplement for further details.[31])
Although our data do not match perfectly with either
model, intensities in the H0L plane appear to lack L-
reflection symmetry, in particular intensities near (3, 0,
-0.5) and (3, 0, 0.5) in Fig. 3 (e). Second, one would
expect the distribution of twin domains to become more
equal if A to B fluctuations were to occur with a signifi-
cant probability, but our analysis suggests the estimated
87%-13% distribution of twin domains at 295 K is most
likely true at 260 K as well. To conclude, our layer stack-
ing models can explain the diffuse scattering across the
transition where the shift of the layers along the c-axis
is coupled with Weyl node creation or annihilation. It is
this layer shift that breaks the 2-fold screw rotation along
b-axis and establishes a new 2-fold screw rotation along
c. This work may stimulate further studies to determine
exactly at which angle and layer sequencing Weyl nodes
are created or annihilated.
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FIG. 1. Shown in (a) and (d) are the refined crystal structures
of the Td and 1T′ phases of MoTe2. (b) and (e) are neutron
scattering intensity maps of the HK0 planes at 100 K and 295
K. (c) and (f) are plots in the kx-ky plane of the Fermi surface
with kz ∼ 0 from electronic band structure calculations using
the refined parameters of Pnm21 and P21/m structures.

TABLE I. Refined atom positions of MoTe2 at 295 K, 260
K, 240 K and 100 K using P21/m (295 K and 260 K) and
Pnm21 (240 K and 100 K) space group. The lattice constants
are a = 6.33 Å, b = 3.48 Å, c = 13.82 Å, β = 93.8◦ (295 K),
and β = 93.7◦ (260K).

295 K 260 K 240 K 100 K
Mo1 x 0.188(1) 0.191(1) 0.8975(7) 0.8944(6)

z 0.0078(5) 0.0081(6) 0.0001(4) 0.9996(3)
Mo2 x 0.319(1) 0.318(1) 0.5316(7) 0.5288(5)

z 0.5066(5) 0.5062(7) 0.9857(3) 0.9859
Te1 x 0.582(1) 0.579(2) 0.287(1) 0.2838(8)

z 0.1050(6) 0.1052(8) 0.0979(5) 0.0979(4)
Te2 x 0.104(1) 0.107(2) 0.7926(9) 0.7893(7)

z 0.1505(6) 0.1513(7) 0.1416(5) 0.1410(3)
Te3 x 0.556(1) 0.558(2) 0.3589(9) 0.3610(7)

z 0.3512(6) 0.3511(7) 0.3437(4) 0.3444(3)
Te4 x 0.053(1) 0.054(2) 0.856(1) 0.8592(7)

z 0.3955(6) 0.3963(7) 0.3870(5) 0.3873(3)
χ2 22.28 28.72 6.72 4.94
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FIG. 2. Neutron scattering intensity maps of the H0L and
0KL planes. Diffuse scattering streaks appear along L in the
H0L plane only, upon cooling from 295 to 240 K. By compar-
ison, in the 0KL plane, no diffuse streaks are observed.
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FIG. 3. (a) A schematic diagram describing the model used to
explain the diffuse scattering. (b, c) Simulated H0L intensity
maps for 260 K in (b) and 240 K in (c). (d) Comparison of
model and data along (20L) at 260 K. (e) Comparison of the
diffuse scattering along (30L) at 240 K and the results of the
same model as for (c) (# 1), with a second model (# 2).
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