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A recent experiment on a 51-atom Rydberg blockaded chain observed anomalously long-lived tem-
poral oscillations of local observables after quenching from an antiferromagnetic initial state. This
coherence is surprising as the initial state should have thermalized rapidly to infinite temperature.
In this article, we show that the experimental Hamiltonian exhibits non-thermal behavior across its
entire many-body spectrum, with similar finite-size scaling properties as models proximate to inte-
grable points. Moreover, we construct an explicit small local deformation of the Hamiltonian which
enhances both the signatures of integrability and the coherent oscillations observed after the quench.
Our results suggest that a parent proximate integrable point controls the early-to-intermediate time
dynamics of the experimental system. The unconventional quench dynamics in the parent model
could signal a novel class of integrable system.

Introduction— Remarkable experimental advances in
the construction and control of synthetic quantum sys-
tems [1–14] have revived interest in foundational ques-
tions about quantum thermalization and the emergence
of statistical mechanics [15–17]. Experiments have ob-
served robust thermalization when the interactions are
strong, localization and the concomitant persistence of
initial state memory when spatial inhomogeneities are
strong, and long-lived prethermal states near special in-
tegrable points [4–14].

Conventional wisdom holds that generic, strongly in-
teracting isolated systems quickly reach local thermal
equilibrium at infinite temperature, irrespective of the
initial state [15–17]. It therefore came as a surprise when
recent quench experiments in long Rydberg-blockaded
atomic chains reported a strong initial state dependence
in infinite temperature thermalization times [12]. In the
Rydberg-blockaded regime, the effective dynamics occurs
in a constrained manifold as adjacent atoms cannot si-
multaneously support Rydberg excitations. The exper-
iment observed long-lived coherent oscillations in local
observables starting from a Neél state with the maxi-
mum number of Rydberg excitations (called |Z2〉), but
fast relaxation starting from a state with no Rydberg ex-
citations (|0〉). What is the source of this coherence at
infinite temperature?

In this letter, we provide a partial answer by identify-
ing signatures of integrability in the Hamiltonian control-
ling the time-evolution (H0 in Eq. (1)). Specifically, we
construct a deformation of H0 that both magnifies the
amplitude and lifetime of the coherent oscillations ob-
served in quenches, and monotonically enhances various
spectral signatures of integrability. From our study, we
hypothesize that a parent non-ergodic point that is prox-
imate in parameter space to H0 controls its short-time
dynamics and small system-size eigenspectra. This par-
ent point is a new model in constrained systems that has
not been previously studied; although it is exhibits var-
ious signatures of integrability, the long-lived oscillatory
response suggests that it could differ from more conven-

tional examples of integrability in novel and interesting
ways.

The dynamics of constrained systems has been stud-
ied in various contexts [18–23], and recent work [24] has
attributed the coherent oscillations in the Rydberg chain
to ‘quantum scars’, in loose analogy with the anomalous
single-particle states that appear near certain classical
periodic orbits in the semiclassical (~ → 0) limit [25].
Our work helps firm up this analogy by identifying the
parent integrable point controlling the dynamics with the
“classical model” and the magnitude of the deviation
from this point with ~. Identifying and solving the par-
ent model is therefore an intriguing route to analytically
describing quantum scars and establishing their physical
origin.

Model— The Rydberg experiment [12] realizes a quan-
tum simulator composed of 51 qubits by coherently driv-
ing transitions between the ground state |g〉 ≡ |↓〉 and
a highly excited Rydberg state |r〉 ≡ |↑〉 of neutral 87Rb
atoms arranged in a linear array. Due to the strong van
der Waals interaction between the excited atoms, it is
energetically forbidden for neighboring atoms to be si-
multaneously excited, i.e. states like | · · · ↑↑ · · · 〉 are for-
bidden. These Rydberg blockade constraints lead to a
Hilbert space with dimension D given by the (L + 2)’th
Fibonacci number for a chain of length L. Asymptoti-

cally, D ∼
(

1+
√
5

2

)L
. We assume that the constraint is

strictly enforced so that the system never leaves the con-
strained manifold, and drop the smaller further neighbor
interactions. The effective Hamiltonian is then

H0 = −
L∑
i=1

Pi−1XiPi+1, (1)

where Xi, Yi, Zi are Pauli spin 1/2 operators acting on
the unconstrained Hilbert space and Pi = (1 − Zi)/2 is
the projector onto the ground state of the atom at site i.
With open boundary conditions, we define P0 = PL+1 =
1. H0 creates/destroys excitations at site i only if the
neighboring sites are down, preserving the constraints.
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Despite its apparent simplicity, the projectors make this
model strongly interacting. Ref. 12 reported two qualita-
tively different dynamical behaviors for the domain wall
density (

∑
i ZiZi+1/L) upon quenching to H0 from the

state with no Rydberg excitations, |0〉 = |↓〉⊗L, and the
Neél state, |Z2〉 = |↓↑↓↑ · · · 〉. Both states have energy
E = 0, corresponding to infinite temperature within the
constrained Hilbert space.

The traceless Hamiltonian H0 has time-reversal sym-
metry T and spatial inversion symmetry I about the cen-
tral site/bond. In addition, H0 anticommutes with the

operator P =
∏L
i=1 Zi so that the eigenenergies come in

±E pairs for E 6= 0. The zero energy manifold is highly
degenerate (dim kerH ∼

√
D) due to these symmetries

[24, 26]. This degeneracy is not entropically relevant and
does not play an important role in what follows.

The complete set of symmetry-preserving local defor-
mations of H0 up to range four is captured by the de-
formed Hamiltonian,

H = H0 −
∑
i

hXZ(Pi−1XiPi+1Zi+2 + Zi−2Pi−1XiPi+1)

− hY Z(Pi−1YiPi+1Zi+2 + Zi−2Pi−1YiPi+1). (2)

We have included a time-reversal breaking hY Z term as
well for future comparison. We will see that the proxi-
mate near integrable point lies in this expanded parame-
ter space. A more detailed derivation of the Hamiltonian
in (2) is given in Appendix A.

Other deformations of H0 have been studied be-
fore [27–29]; notably, these include diagonal terms such
as
∑
i Zi which break P. Although there are known in-

tegrable lines in these models [27] (including the famous
Golden Chain [30]), we do not numerically find that they
are relevant to explaining the quench dynamics governed
by H0. A possible reason is that these deformations im-
part different energy density to the |0〉 and |Z2〉 states,
moving them away from infinite temperature and from
one another.

Level Statistics— To start, we explore the infinite-
temperature dynamical properties of the deformed model
(2) using the level spacing ratio rn, defined as rn ≡
min(∆En+1/∆En,∆En/∆En+1) where ∆En = En −
En−1 and En is the nth energy eigenvalue [31, 32]. In
thermal systems, spectrally averaged rn ([r]) flows with
system size to the GUE value 0.6 when time reversal is
broken (hY Z 6= 0) and the GOE value 0.53 otherwise[32].
In an integrable system with extensively many conser-
vation laws, energy levels do not repel and [r] → 0.39
corresponding to Poisson statistics. Near an integrable
point, [r] may look intermediate between the Poisson and
thermal values, but flows towards the thermal value with
increasing system size[33]. Prior work on H0 has ob-
served a very slow flow of [r] towards the GOE value
with increasing L [24, 34].

Fig. 1(a) shows [r] averaged over the middle third of
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FIG. 1. Color plots of the mean level spacing ratio [r] vs
hXZ and hY Z for the model (2). Panel (a) shows robust ther-
malization to the appropriate GOE/GUE ensemble in most
of the parameter space. There is an integrable looking region
in the vicinity of the origin H0 near hXZ ≈ −0.02; this is
clearer in the zoomed-in panels (c,d). Panel (b) shows [r] as
a function of hXZ and L for hY Z = 0, showing both a dip in
[r] towards the integrable value as a function of hXZ , and a
gradual drift of the dip value towards thermal with increas-
ing L — indicating that the exact integrable point requires
further deformations.

the spectrum and the I = ±1 inversion sectors as a func-
tion of hXZ and hY Z . Except for a small region in the
vicinity of —but not-centered on— H0, [r] comes close
to its random matrix value, suggesting robust thermal-
ization. This confirms that the presence of constraints
and the zero-energy degeneracy do not impede thermal-
ization [22, 23]. Panels (c) and (d) zoom into the re-
gion near H0, revealing strong signatures of integrability
([r] ≈ 0.39). The apparently integrable region shrinks
toward hXZ ≈ −0.02, hY Z ≈ 0 with increasing L, sug-
gesting that there is a near integrable point (rather than
an integrable manifold), which controls the scaling of [r]
at H0 for accessible system sizes. The dramatic decrease
in [r] towards the Poisson value takes place over a very
small ∆hXZ ≈ 0.02; this sensitivity is symptomatic of
proximity to integrability.

As the level-statistics data is relatively insensitive to
the breaking of time-reversal by hY Z , we set hY Z = 0
henceforth. Fig. 1(b) shows [r] as a function of hXZ for
different system sizes L. While there is a pronounced dip
in [r] towards the Poisson value near hXZ ≈ −0.02, the
value of [r] near this dip shows a slow drift towards the
GOE value with increasing L. This implies that while our
chosen deformation makes H0 look more integrable, the
exact proximate integrable point likely does not strictly
live in the two-dimensional parameter space explored by
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FIG. 2. Half-chain entanglement entropy (EE) density of eigenstates plotted against energy density for L = 22 and hY Z = 0 (a-
c). Panels (d-f) show the distribution of EEVs across the middle third of the eigenspectrum for the domain-wall operator at the
center of the chain, showing strong narrowing with increasing L for hXZ ' 0.07 (f) but almost no narrowing for hXZ ' −0.02
(d). Panel (g) shows the scaling of fluctuations of EEVs between neighboring eigenstates (3) as a function of Hilbert space

dimension D. This quantity narrows slower than the ETH prediction D−1/2 for H0 and Hint. Panel (h) shows the scaling of
the fluctuations ∆ with D as a function of hXZ . The narrowing is slowest for hXZ ' −0.02 but increases towards the ETH
value of −1/2 on perturbing hXZ away from this value. The intermediate values of the slope (approximately −1/4 for H0) are
consistent with proximity to integrability[35].

(2). Given the smallness of the optimal hXZ , it is possible
that we have only found the leading terms of a quasi-
local integrable Hamiltonian which includes a hierarchy
of additional longer range terms with smaller amplitudes.

Below, we use the deformed model with hXZ =
−0.0236 (where [r] ≈ 0.39) as a proxy for the parent
model of H0 at the numerically accessible system sizes,
and the model with hXZ = 0.0708 (where [r] ≈ 0.53)
as an example of a strongly thermalizing point. We de-
note the Hamiltonians at these points as Hint and Hth

respectively.
Eigenstate entanglement entropy— The eigenstate

thermalization hypothesis (ETH) states that thermaliza-
tion occurs at the level of individual eigenstates [36–39].
When the ETH holds, systems locally thermalize irre-
spective of the initial state. A convenient observable-
independent diagnostic of the ETH is the half-chain Von
Neumann entanglement entropy (EE) evaluated in eigen-
states (Fig. 2 (a-c)). The ETH implies that this quantity
coincides with the thermal entropy density S(E), and
is accordingly a smooth function of energy density as
L → ∞. This is clearly seen in the narrow scatter in
Fig. 2(c) for the EE evaluated in Hth.

In contrast, distribution of observables can be ex-
tremely broad in integrable systems, with a width that
does not narrow even as L→∞ [16]. Eigenstates in inte-
grable systems are labeled by extensively many conserved
quantities whose sectors coexist at the same energy den-
sity. The number of states in a given sector ranges from
O(1) to O(L) to exp(O(L)), and the corresponding EE
can range from 0 to O(log(L)) to O(L) all at the same
energy. The broad scatter of the EE evaluated in Hint

(Fig. 2(a)) is characteristic of such integrable systems.

The EE distribution in Fig. 2(b) for H0 clearly lies
between that of H0 and Hth. It is narrower than that
of Hint, but exhibits outlier states with small EE near
infinite temperature even at L = 22. We hypothesize
that these outlier states (dubbed many-body scars in
Refs. [24, 40]) at H0 are thus a finite-size shadow of the
low-entropy conserved sectors in the proximate integrable
parent model. Finally, notice that this dramatic change
in eigenstate properties across (a)-(c) takes place over a
very small range of ∆hXZ , consistent with the parameter
sensitivity seen near integrability.

Finite-size ETH scaling— To establish proximity to
integrability at H0, we turn to a quantitative finite-size
ETH scaling study. The ETH hypothesizes that few-
body observables Ô in eigenstates depend smoothly on
energy E with small fluctuations[38]. More precisely,

∆On ≡ |〈En|Ô|En〉 − 〈En−1|Ô|En−1〉| ∼
1√

eS(En)
. (3)

At infinite temperature, S(E = 0) = logD so, ∆On ∼
1/
√
D [41]. In contrast, neighboring energy eigenstates

in integrable systems can belong to different conserva-
tion law sectors and thus have very different expectation
values, so that ∆On ∼ D0.

Fig. 2 (d-f) shows the distributions of the eigenstate
expectation values (EEVs) for O = ZL/2ZL/2+1 across
eigenstates in the middle third of the spectrum. The
width of this distribution shows no/weak/strong nar-
rowing with increasing L for Hint/H0/Hth respectively.
Fig. 2(g) quantifies the scaling of the width with D us-
ing the spectrally averaged [∆On]. Only Hth exhibits
the D−1/2 scaling predicted by Eq. (3); the other two
Hamiltonians exhibit significantly slower scaling with D.
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FIG. 3. Time dynamics for a local domain wall operator start-
ing from the |Z2〉 state for L = 22 and three different quench
Hamiltonians Hint, H0 and Hth. The dynamics shows large
initial oscillations in all cases, with the amplitude at Hint be-
ing much larger than that at H0 or Hth. Panel (b) shows
the difference between the late time diagonal ensemble value
and the canonical equilibrium prediction as a function of L
for the three different quench Hamiltonians. While this dif-
ference decreases slowly with L for H0, we see no significant
flow for Hint and a fast decrease for Hth.

Fig. 2(h) plots the slopes α of the curves in panel (g)
[∆O] ∼ Dα as a function of hXZ . The slopes decreases
monotonically from close to zero at hXZ = −0.02, reach-
ing the ETH value of −0.5 at large |hXZ |. This behavior
is a finite-size effect and has been numerically observed
near known integrable points [35]. Perturbing away from
the integrable point where α = 0 by ε generates a scat-
tering length `(ε) beyond which the states in different
conserved sectors mix. That is, α smoothly crosses over
from 0 to −0.5 at the value εc such that `(εc) = L. As
L → ∞, εc → 0 and α = −0.5 for ε 6= 0 Fig. 2(h)
thus provides strong evidence that H0 exhibits anoma-
lous EEV scaling at the numerically accessible system
sizes due to its proximity to a parent integrable point.

Dynamics— The previous numerical results show that
the bulk spectral and eigenstate behavior of H0 are con-
trolled by a proximate model with strong signatures of
integrability. Fig. 3(a) shows that the experimentally in-
triguing coherent oscillation after quenching from |Z2〉 is
also strongly correlated with the proximity to Hint. Un-
der evolution by each of the three representative Hamilto-
nians, Hint, H0, Hth, the domain wall density relaxes to a
stationary value after a long-lived oscillation. The ampli-
tude and duration of the oscillation significantly increases
from Hth to H0 and then to Hint, despite only a mod-

est change in hXZ . Likewise, the difference between the
late time value (dashed) and the expected thermal value
(black dashed) increases, as do the fluctuations about
that value. In contrast, all three models quickly relax to
thermal equilibrium upon quenching from the state |0〉
(not shown).

The proximity to integrability explains both the late
time dynamics and sensitivity to initial conditions. In the
absence of accidental spectral degeneracies, a local ob-
servable 〈O〉 relaxes to a late-time value given by the di-
agonal ensemble Od =

∑
n |cn|2〈En|O|En〉 after quench-

ing from |ψ0〉 =
∑
α cn|En〉 due to dephasing [16]. In

thermalizing systems, Od agrees with its thermal Gibbs
ensemble value OGE at a temperature set by the energy
of |ψ0〉 as L → ∞. In integrable systems, Od instead
agrees with a Generalized Gibbs ensemble (GGE), which
is parameterized by an additional O(L) initial state de-
pendent chemical potentials for each of the additional
conservation laws [42–44]. Thus, in the L → ∞ limit,
|Od −OGE| can remain non-zero in an integrable system
for initial states with non-zero chemical potentials.

Fig. 3(b) shows the diagonal ensemble value of the
domain wall density converging rapidly with L to the
thermal Gibbs value for Hth, but not at all for Hint at
accessible sizes. This is consistent with Hth being ther-
malizing and Hint being very close to integrable. We note
that the trend in the scale of fluctuations around the late
time value seen in Fig. 3(a) is also consistent with these
ensembles (finite-size scaling analysis not shown).

The difference between Od and OGE converges slowly
with L for H0, which can be understood by proximity
to integrability. For L < `(ε), the conservation laws at
the parent model approximately hold even for infinite
time so that Od differs from OGE. For L > `(ε), this
difference crosses over toward zero as the different sectors
starting mixing, as visible in Fig. 3(b) for the largest
sizes. We note that we expect a similar decay for Hint

at larger L than shown, as it is not exactly integrable
either. Finally, even as L→∞, the finite-time dynamics
up to a crossover time scale τ(ε) are still governed by the
parent model, as is well known in the study of prethermal
phenomena [16, 45, 46] [47].

A detailed description of the early time oscillatory be-
havior in H0 is still an outstanding challenge. In in-
tegrable systems which have quasiparticle descriptions
even at infinite temperature, long-lived quench oscilla-
tions can arise due to heavy, slowly dispersing quasipar-
ticles. More exotic integrable models could even exhibit
exactly periodic modes. Understanding this in analytic
detail, however, will require a more complete solution
of the parent model. This would also permit analytic
control of the time and length scales generated by the
deformation back to H0.

Discussion— We have presented evidence that a parent
non-ergodic model with strong signatures of integrability
controls the properties of the Rydberg-blockaded chain
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Hamiltonian H0. The entire many-body spectrum of H0

violates finite-size ETH scaling in a manner consistent
with proximity to integrability. Strikingly, the coherent
post-quench oscillations observed experimentally [12] are
enhanced by deformation toward the parent model. A
consistent explanation for the “scar states” observed in
Ref. [24] is that these are the finite-size shadow of low
entropy conserved sectors of the parent model. Unless
we are exactly at the integrable point, we expect these
special states to disappear with increasing system size —
even though finite time properties continue to be gov-
erned by the parent Hamiltonian.

Our work raises a number of interesting questions.
First, what is the exact parent Hamiltonian? Likely, we
have only found the first terms in a quasilocal expansion
of a previously unknown exactly integrable Hamiltonian
with direct experimental implications. Finding this exact
integrable-looking point and understanding its properties
is an important direction for future study. Second, is the
integrability “conventional” for one dimensional chains?
Intriguingly, the sign of hXZ is consistent with having a
classical two-dimensional statistical description without
a sign problem [48]. On the other hand, state-dependent,
long-lived quench oscillations have not been reported in
known integrable models. Understanding their analytic
origin will reveal either a new class of integrability or new
dynamical regimes within existing models.
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Note Added— During the completion of this
manuscript, we became aware of two complementary
works [40, 49] that study the parent model H0, partic-
ularly in relation to its connection with quantum scars;
the first uses a forward scattering approach to construct
low-entanglement eigenstates of H0 [40], while the latter
uses a matrix product state approach to derive closed
periodic orbits [49].

Appendix A: Deformations up to Range 4

The number of independent operators acting on the
constrained space grows asymptotically as φ2L, where
φ = (1 +

√
5)/2 is the Golden ratio. Up to range

four, there are 11 independent operators: (1)
∑
i Zi,

(2)
∑
i ZiZi+2, (3)

∑
i ZiZi+3, (4)

∑
i Pi−1XiPi+1,

(5)
∑
i Pi−1YiPi+1, (6)

∑
i Pi−1XiPi+1Zi+2,

(7)
∑
i Zi−2Pi−1XiPi+1, (8)

∑
i Pi−1YiPi+1Zi+2,

(9)
∑
i Zi−2Pi−1YiPi+1, (10)

∑
i Pi−1S

+
i S
−
i+1Pi+2,

(11)
∑
i Pi−1S

−
i S

+
i+1Pi+2. Deformations of H0 that are

diagonal in the z-basis such as (1) and (2) have been
studied before in Ref. [27]. ‘Hopping’ deformations (10)
and (11) have also been previously studied [50]. All of
these deformations contain integrable manifolds in pa-
rameter space. However, they do not anticommute with
P and we have numerically observed that breaking P
rapidly leads to thermalization in models perturbatively
adjacent to H0.

The minimal deformations of H0 at this range which
respect all of the symmetries described in the main text
are captured by:

H1 = H0 +
∑
i

hXZ(Pi−1XiPi+1Zi+2 + Zi−2Pi−1XiPi+1)

(4)

In the main text, we have also included terms (8) and
(9) which break time reversal in order to illustrate the
crossover from GOE to GUE in the level statistics for
comparison. We note that term (5) can be absorbed into
H0 by a rotation about the Z-axis.
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