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We propose that the electronic structure of twisted bilayer graphene (TBG) can be understood
as Dirac fermions coupled with opposite pseudo magnetic fields generated by the moiré pattern.
The two low-energy flat bands from each monolayer valley originate from the two zeroth pseudo
Landau levels of Dirac fermions under such opposite effective magnetic fields, which have opposite
sublattice polarizations and carry opposite Chern numbers ±1, giving rise to helical edge states in
the gaps below and above the low-energy bulk bands near the first magic angle. We argue that small
Coulomb interactions would split the eight-fold degeneracy (including valley and physical spin) of
these zeroth pseudo Landau levels, and may lead to insulating phases with non-vanishing Chern
numbers at integer fillings. Besides, we show that all the high-energy bands below or above the
flat bands are also topologically nontrivial in the sense that for each valley the sum of their Berry
phases is quantized as ±π. Such quantized Berry phases give rise to nearly flat edge states, which are
dependent on truncations on the moiré length scale. Our work provides a complete and clear picture
for the electronic structure and topological properties of TBG, and has significant implications on
the natrue of the correlated insulating phase observed in experiments.

Twisted bilayer graphene (TBG) is an engineered sys-
tem with one graphene layer stacked on top of the other
and rotated by a twisted angle θ, which exhibits various
interesting properties1–7. Around the so called “magic
angles” the low-energy electronic structures of TBG are
characterized by four nearly flat bands contributed by the
two monolayer valleys2, and these flat low-energy bands
are believed to be responsible for the correlated insulating
phases8–11 and unusual superconductivity12. Numerous
theoretical attempts have been made to understand the
electronic structures13–23, the structural properties24–26,
the correlated insulating phase13,27–36, and the mecha-
nism of superconductivity13,28,30,31,33,37–42. However, up
to now, the nature of the correlated insulating phase
and the superconductivity are still obscure. system thus
becomes a new platform to study the unconventional
physics driven by Coulomb correlations.

Besides many-body effects, the four low-energy bands
already exhibits interesting or even puzzling properties
at the single-particle level13–18. In particular recently
it has been shown that the four low-energy bands are
topologically nontrivial in the sense that they are char-
acterized by odd windings of Wilson loops. However,
despite the numerical evidence17 and the mathematical
classifications17,43, how to physically understand and de-
scribe the topological nature of the flat bands in TBG
is still an open question. On the other hands, so far
the topological properties of the high-energy bands have
been rarely discussed. To fully understand the unusual
electronic and topological properties of TBG, a clear and
complete physical picture is needed.

We address these issues in this work and reach the fol-
lowing conclusions. We find that in the small twist angle
limit, the low energy electronic structures of TBG can be
viewed as 2D Dirac models under pseudo magnetic fields
generated by the moiré pattern. The nontrivial topol-
ogy of the two low-energy bands for each valley origi-
nates from the two zeroth pseudo Landau levels (LLs)

of Dirac fermions with such opposite effective magnetic
fields. The two zeroth LLs (for each valley) carry oppo-
site Chern numbers ±1 and possess opposite sublattice
polarizations. They are decoupled from each other as a
result of an emergent chiral symmetry in the low-energy
subspace. This leads to two pairs of helical edge states in
the energy gaps below and above the low-energy bands of
TBG. As the four low-energy bands (of the two valleys)
in TBG are equivalent to four zeroth pseudo LLs, small
Coulomb interactions are expected to split the pseudo LL
degeneracy at integer fillings, and could lead to insulating
states with fully polarized zeroth pseudo LLs and non-
vanishing total Chern numbers, as possibly suggested by
the recent experiment on 7/8 filled TBG around the first
magic angle9,44. filling, only one out of the four zeroth
pseudo LLs would be occupied (empty), which would give
rise to an insulating state with non-vanishing Chern num-
ber ±1 per spin. This is supported by the recent experi-
ment on 3/4 filled magic-angle TBG9.

In addition to the low-energy bands, we show that for
each valley the high-energy bands below and above the
low-energy bands are also topologically nontrivial with
quantized Berry phases±π. Such quantized Berry phases
give rise to two nearly flat edge states in the gaps be-
tween the high-energy bands and the low-energy bands,
which are dependent on the truncations on the moiré
length scale. small twist angles can smoothly evolve to
the nearly flat edge states as the twist angle increases,
indicating the consistency between the low-energy and
high-energy band topology. Last, we find that the topo-
logical gaps between the high-energy bands and the low-
energy bands can be significantly enhanced by atomic
corrugations, and that changing the corrugation strength
may further drive transitions between insulating and
semimetallic phases.

The paper is organized as follows. In Sec. I we discuss
the lattice structure of TBG and introduce the contin-
uum model describing the electronic structures of TBG.
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FIG. 1: (a) Left: a top view of the moiré pattern of twisted
bilayer graphene for m=5 (θ≈6.01◦). The solid and dashed
lines represent lattice truncations through the AA regions and
the AB/BA regions respectively. The two arrows denote the
lattice vectors. Right: illustration of atomic corrugations. (b)
The Brillouin zones of the top monolayer, bottom monolayer,
and the moireé supercell are plotted in red, blue, and black
lines respectively.

In Sec. II we introduce the pseudo-Landau-level represen-
tation of TBG, which provides a clear physical picture
for the topological properties of the low-energy bands,
and has significant implications on the nature of the cor-
related insulating phases observed in experiments. In
Sec. III we discuss the topological properties of the high-
energy bands and the truncation dependence of the edge
states. In Sec. IV, we discuss in detail the effects of
atomic corrugations on the electronic structures of TBG.
In Sec. V we make a summary.

I. THE TBG SYSTEM AND THE CONTINUUM
MODEL

As shown in Fig. 1(a), the commensurate moiré pattern
is formed when the top-layer graphene is rotated with re-
spect to the bottom layer by certain angles {θ(m)}, where
m is an integer obeying the condition cos θ(m) = (3m2 +
3m+ 1/2)/(3m2 + 3m+ 1)45. The lattice vectors of the

moiré superlattice are expressed as t1 = (
√

3Ls/2, Ls/2),
and t2 = (0, Ls), where Ls = |t1| = a/(2 sin (θ/2)) is
the size of the moiré supercell, with a = 2.46 Å being
the lattice constant of monolayer graphene. The K (K ′)
points of the two monolayers K1 (K ′2) and K2 (K ′1) are
respectively mapped to Ks and K ′s points in the moiré
supercell Brillouin zone (BZ) as shown in Fig. 1(b).

Locally homogeneous regions are formed in the moiré

pattern of TBG. In some regions the A(B) sublattice of
the top layer is mostly on top of the same sublattice of
the bottom layer, and such regions are dubbed as the
“AA” region as shown in Fig. 1(a); while in some other
regions the B(A) sublattice of the top layer is on top of
A(B) sublattice of the bottom layer, which are marked as
“AB”(“BA”) regions. It worth to note that the interlayer
distance in TBG varies in real space46. In the AB(BA)
region the interlayer distance dAB ≈ 3.35 Å while in the
AA-stacked region the interlayer distance dAA≈3.6 Å47.
Such atomic corrugations may be modeled as15

dz(r) = d0 + 2d1

3∑
j=1

cos (bj ·δ(r) ) , (1)

where b1 = (2π/a, 2π/(
√

3a)), b2 = (−2π/a, 2π/(
√

3a)),
and b3 = b1 + b2 are three reciprocal lattice vectors
of monolayer graphene. δ(r) is a 2D vector indicating
the local in-plane shift between the carbon atoms in the
two layers around position r in the moiré supercell. In
the AA region δ ≈ (0, 0) while in the AB region δ ≈
(0, a/

√
3). We take d0 = 3.433 Å and d1 = 0.0278 Å

in order to reproduce the interlayer distances in AA- and
AB-stacked bilayer graphene.

The electronic structure of TBG can be described
by the Bloch states around the Dirac points in the
two graphene monolayers which mutually tunnel to each
other, and can be formulatted by a continuum model pro-
posed by Bistritzer and MacDonald2. Using such a con-
tinuum model of TBG, Bistritzer and MacDonald found
that for each monlayer valley (K orK ′) there are two low-
energy bands the bandwidths of which vanish recurrently
at a series of “magic angles” starting from ∼1.05◦2. The
states from the two monolayer valleys K and K ′ are
assumed to be decoupled from each other, because the
scattering amplitudes are negligbly small at small twist
angles2,45.

To be specific, the continuum model describing the
TBG system for the K valley is expressed as

H+(k̂) =

(
−~vF (k̂−K1) · σ Ue−i∆K·r

U†ei∆K·r −~vF (k̂−K2) · σ

)
(2)

where vF is the bare Fermi velocity of the Dirac cone in

gaphene, k̂ = −i∂r, and K1 and K2 are the K points of
the bottom and top layers as shown in Fig. 1(b). The
Pauli matrices σ = (−σx, σy) are defined in the space of
the A,B sublattices of graphene. The tunneling between
the Dirac states in the two layers is described by the 2×2
matrix U

U =

(
u0g(r) u′0g(r− rAB)

u′0g(r + rAB) u0g(r)

)
, (3)

where rAB = (
√

3Ls/3, 0), u′0 and u0 denote the inter-
sublattice and intrasublattice interlayer tunneling ampli-
tudes. u0 < u′0 if the effects of atomic corrugations are
taken into account15. ∆K = K2 −K1 = (0, 4π/3Ls) is
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the shift between the Dirac points of the two monolayers,
and the phase factor g(r) is defined as g(r) =

∑3
j=1 e

iqj ·r,

with q1 = (0, 4π/3Ls), q2 = (−2π/
√

3Ls,−2π/3Ls), and

q3 = (2π/
√

3Ls,−2π/3Ls).
The continuum model of each valley has the symmetry

generators C3z, C2zT , and C2x, where T is the time-
reversal operation for spinless fermions (i.e., complex
conjugation). The two valleys can be mapped to each
other by T , C2z, or C2y operations. Moreover, there is an
additional particle-hole-like symmetry which transforms

H+(k̂) to the Hamiltonian of the other valley H−(−k̂):

ΛH+(k̂)Λ−1 = −H−(−k̂) (4)

where Λ = iτyσx.

II. THE PSEUDO-LANDAU-LEVEL
REPRESENTATION OF TWISTED BILAYER

GRAPHENE

A. The pseudo-Landau-level representation and
the band topology

In this section we show that the two low-energy bands
(per valley) in TBG can be represented by the two zeroth
pseudo Landau levels carrying opposite Chern numbers.
We will focus on the K valley, i.e., the Hamiltonian in
Eq. (2). The Hamiltonian of the other valley can be
obtained by a time-reversal operation.

First we note that the constant wavevectors K1 and
K2 in Eq. (2) can be gauged by applying the following
transformations to the basis Bloch functions,

ψls(r)→ ψls(r)eiKl·r , (5)

where l = 1, 2 and s = A,B refer to the layer and sub-
lattice degrees of freedom respectively. Then Eq. (2) be-
comes

H+(k) =

(
−~vFk · σ U

U† −~vFk · σ

)
. (6)

Next we expand the phase factors g(r) and g(r±rAB) in
Eq. (3) to the linear order of r/Ls, and rewrite Eq. (6)
in the following form

H+(k) = −~vF (k− e

~
Aτy) · σ + 3u0τx. (7)

where the Pauli matrices τ and σ are defined in the space
of the two layers and the two sublattices respectively,
with σ = (−σx, σy). The effective vector potential A=
(2πu′0)/(LsevF ) (y ,−x ). In the end we transform to the
basis that diagonalizes τy, i.e.,

ψα,s(r) =
1√
2

(ψ1,s(r) + iψ2,s(r)) ,

ψβ,s(r) =
1√
2

(ψ1,s(r)− iψ2,s(r)) , (8)

where ψls(r) with layer index l = 1, 2 and sublattice in-
dex s = A,B is the Bloch function of the monolayer
graphene at Kl from the s sublattice. In this basis,
Eq. (2) eventually becomes

H+(k̂) =

(
−~vF (k̂− e

~A) · σ −3iu0

3iu0 −~vF (k̂ + e
~A) · σ

)
.

(9)
Again the gauge field A = (2πu′0)/(LsevF ) ( y ,−x ).
Without the off-diagonal term ±3iu0, Eq. (9) is noth-
ing but two Dirac fermions coupled to opposite effective
magnetic fields ±Bs = ±∇ × A with the magnitude
Bs = 3u′0∆K/(evF ), where ∆K = 4π/(3Ls) is the dis-
tance between the two Dirac points in the two layers. It
is known that u′0≈ 0.1 eV2,15, and ~vF ≈ 5.25 eVÅ, then
we estimate Bs≈120 T for θ≈1.08◦.

Let us first neglect the off-diagonal term ±3iu0, then
Eq. (9) becomes exactly solvable. The eigenenergies are

just the LLs of the Dirac fermions, E±Nk = ±~ωc
√
N ,

with N ≥ 0 being an integer. The corresponding cy-
clotron frequency ωc and the magnetic length lB are

~ωc =

√
8π~vFu′0

Ls
,

lB =

√
Ls~vF
4πu′0

. (10)

Eq. (9) can be readily obtained48. The eigenfunctions of
the upper (α) and lower (β) diagonal blocks of Eq. (9)
(in the Landau gauge) are expressed as

φα±Nk(x, y) =
1√

2LxlB
eikx

(
∓ΨN (ξ)
ΨN−1(ξ)

)
φβ±Nk(x, y) =

1√
2LxlB

e−ikx
(

ΨN−1(ξ)
±ΨN (ξ)

)
, (11)

where ξ = y/lB − lBk, and ΨN (ξ) =

1/(2N/2
√
N !π1/4)e−ξ

2/2HN (ξ) is the eigenfunction
of the 1D quantum Harmonic oscillator, with HN (ξ)
being the Hermite polynominal with N ≥ 0. The
wavevector k = 2πj/Lx is the index for the LL degener-
acy with the integer 0 ≤ j ≤ LxLy/(2πl2B), and Lx and
Ly denote the size of the system along the x and y di-
rections. These eigenstates have the interesting property
that the zeroth LLs in the upper and lower diagonal
blocks have exactly opposite sublattice polarizations.
The two zeroth pseudo LLs also carry opposite Chern
numbers ±148, which is the origin of the odd winding
pattern of the Wilson loops (see blue lines in Fig. 4(b)).

Now we consider the off-diagonal term ±3iu0 in Eq. (9)
(denoted as H+

T hereafter) that couples the pseudo LLs in
the upper and lower diagonal blocks. First, we note that
the coupling term H+

T is intrasublattice, but as discussed
above the two zeroth pseudo LLs have exactly opposite
sublattice polarizations. Therefore the direct coupling
within the subspace of zeroth pseudo LLs exactly van-
ishes. To be specific, in the pseudo-LL basis H+

T (after
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transforming to the Landau gauge) can be rewritten as

〈φαλ′N ′k′ |H+
T |φ

β
λNk〉

=
−3iu0lB

2Lx

(
− λ′ΨN ′(lBk)ΨN−1(lBk

′)

+ λΨN ′−1(lBk)ΨN (lBk
′)
)
, (12)

where λ, λ′ = ± denote the upper and lower branches
of the Landau levels, and N ≥ 0. Eq. (12) clearly in-
dicates that the direct coupling between the two zeroth
pseudo LL vanishes, and that the coupling are stronger
for higher pseudo LLs with larger N indices. This means
that the higher pseudo LLs would be strongly coupled
with each other and would lost their topological charac-
ter. The zeroth pseudo LL from the upper (lower) di-
agonal block could be coupled with the higher LLs from
the lower (upper) diagonal block, which would give rise
to a finite bandwidth (denoted by W ) to the otherwise
exactly flat zeroth pseudo LLs. However, a straightfor-
ward calculation using perturbation theory indicates the
leading-order energy correction to the zeroth pseudo LL
is on the order of u3

0/(~ωc)2. Therefore, the topological
character of the zeroth pseudo LLs is expected to be un-
changed as long as the pseudo LL spacing ~ωc is greater
than the bandwidth induced by u0. In Table I we show
the pseudo LL spacings ~ωc and the bandwidths W of
the low-energy bands at different twist angles in TBG,
which is calculated using the continuum model shown
in Eq. (2). Clearly ~ωc becomes much greater than the
low-energy bandwidth W when m'15 (θ/2.03◦). low-

TABLE I: Pseudo LL spacings (~ωc) and the low-energy band-
widths (W ) at different twist angles (in units of eV)

m 15 20 25 30 31 32 33
~ωc 0.441 0.384 0.344 0.315 0.310 0.305 0.300
W 0.274 0.125 0.041 0.007 0.014 0.020 0.025

energy subspace of the two zeroth Landau levels. The
two zeroth LLs may be interpreted as the two decoupled
zero modes with opposite chiralities. andssome further
discussions.

B. The edge states of the pseudo Landau levels

Neglecting the off-diagonal term ±3iu0, the two zeroth
pseudo LLs of opposite Chern numbers would give rise
to a pair of helical gapless edge states. However, the two
zeroth pseudo LLs could be coupled indirectly by tunnel-
ing to the higher LLs with the amplitude ∼ u3

0/(~ωc)2.
Thus such high-order couplings will open a gap in the
edge states ∼ u3

0/(~ωc)2 ≈ 5 meV at θ ≈ 1.08◦. On the
other hand, the pseudo-LL picture discussed above is
valid for the leading-order expansion of (r/Ls). At a
non-vanishing twist angle θ, the O(r/Ls)

2 term would
also (weakly) couple the two zeroth pseudo LLs, which
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FIG. 2: The band structure of twisted bilayer graphene at θ≈
1.08◦ in a ribbon geometry with the open boundary condition.
The red and black lines represent the edge states from the two
edges of the ribbon, and blue lines represent the bulk states.

would open a gap in the otherwise gapless edge states.
Therefore, one expects to see two pairs of slightly gapped
helical edge states in the energy gaps below and/or above
the bulk low-energy bands, which are contributed by the
two monolayer valleys.

In Fig. 2 we show the band structure of TBG at the
first magic angle θ ≈ 1.08◦, which is calculated using a
microscopic Slater-Koster-type tight-binding model49,50.
To be specific, the hopping integral between two pz or-
bitals at different carbon sites i and j (in either of the
two layers) is expressed in the Slater-Koster form

t(d) = Vσ (
d · ẑ
d

)2 + Vπ ( 1− (
d · ẑ
d

)2 ) (13)

where Vσ = V 0
σ e
−(r−dc)/δ0 , and Vπ = V 0

π e
−(r−a0)/δ0 .

d = (dx, dy, dz) is the displacement vector between the

two carbon sites. a0 = a/
√

3 = 1.42 Å, dc = 3.35 Å is
the interlayer distance in AB-stacked bilayer graphene,
and δ0 = 0.184 a. V 0

σ = 0.48 eV and V 0
π = −2.7 eV. The

atomic corrugations are modeled by Eq. (1), and their ef-
fects can be taken into account in the tight-binding model
by plugging Eq. (1) into Eq. (13).

We have constructed a ribbon of TBG at the first magic
angle using the above Slater-Koster tight-binding model.
The ribbon has translation symmetry along the y direc-
tion, and has a finite width ∼ 68 nm (6 moiré cells) along
the x direction. The red and black lines in Fig. 2 denote
the states localized at the two edges, while the blue lines
represent the bulk bands. Clearly at each edge there are
two pairs of slightly gapped helical edge states in the two
bulk energy gaps below and above the low-energy bands.
The gaps in the edge states are due to the couplings be-
tween the LLs in the two blocks, and the magnitudes of
the gaps ∼ 3-10 meV, in agreement with the previous ar-
gument. As a comparison, the bulk band structure at
θ≈ 1.08◦ calculated using the same tight-binding model
is shown in Fig. 4(a) in blue lines.
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C. Robustness of the Wilson loops at finite twist
angles

1. Symmetry analysis of the Wilson-loop operators

At finite twist angles the O(r/Ls)
2 terms become non-

negligible, which would directly couple the two zeroth
pseudo LLs. However, numerically the Wilson loops of
the flat bands in TBG retain the their topological char-
acter even at large twist angles48. It turns out that
the odd winding pattern of the Wilson loops (see the
blue circles in Fig. 4(b)) is protected C2zT 17,43 and C2x

symmetries17.
To be explicit, denoting the Wilson loop of the two flat

bands at k2 (integrated along k1) by a 2×2 matrix ŵ(k2),
we find that they obey the following relationship due to
the constriants from the C2zT and C2x symmetries

wmn(k2) = −ξmξnw∗mn(k2)− jnδmn ,
wmn(k2) = wmn(−k2)− j′nδmn ,

(14)

where wmn(k2) is the matrix element of ŵ(k2), jn and
j′n are arbitrary integers, and m, n are the band indices.
ξm, ξn = ±1 are the eigenvalues of the C2zT operator
for the energy bands m and n. The first line of Eq. (14)
is from the C2zT symmetry, which indicates that the
diagonal element of the Wilson loop operator wnn(k2)=
jn. Moreover, for ξmξn = ±1 the off-diagonal element
wmn(k2) = ∓w∗mn(k2) for m 6= n. Therefore, for a 2-
band system there is only one parameter describing the
variation of ŵ(k2) with respect to k2

ŵ(k2) =

(
j1 0
0 j2

)
+

{
dy(k2)σy, if ξ1ξ2 = 1

dx(k2)σx, if ξ1ξ2 = −1
, (15)

where j1 and j2 are two arbitrary integers and σx and
σy are the Pauli matrices in the space of the two bands.
Eq. (15) guarantees that a band touching point in the
Wilson-loop spectrum is topologically stable, which can-
not be gapped out unless two touching points meet each
other and get annihilated. This is consistent with the
conclusion in Ref. 17 and 43. Moreover, Eq. (15) also
suggests that the sum of the Wilson-loop eigenvalues of
the two flat bands can only take integer values. The sec-
ond line of Eq. (14) is from the C2x symmetry, which dic-
tates that the Wilson loop at k2 equals to that at −k2

17

with some integer ambiguity in the trace. Such a cons-
triant requires that the degeneracy points in the Wilson
loop have to either occur in pairs at k2 and −k2 or at
the high-symmetry points k2 = 0 and/or 0.5 (in reduced
coordinates). This is why the Wilson-loop spectra retain
their topological character even at finite twist angles.

crossing point in the Wilson-loop spectrum is topolog-
ically stable: they cannot be removed unless they get an-
nihilated in pairs. The C2zT symmetry also requires that
the two Wilson-loop eigenvalues w±(k2) at the crossing
point must be 0 or ±0.5. either in pairs at (k2,−k2) or at

the high-symmetry points k2 =0 and k2 =0.5. Therefore
C2x symmetry further pins the crossing point exactly to
k2 =0, i.e., w±(0)=0 (see Sec. VI of Supp. Info. for the
full derivations48).

2. Robustness of the Wilson loops against microscopic
perturbations

D
6

D
3

+V
s
/2

-V
s
/2

+V
e
/2

-V
e
/2

(a)

(m,r)=(15,1)

D
6
D
3
D
3
,V
s
=0.04

C
3
,V
e
=0.04

(b)

FIG. 3: (a) The Wilson loops of the four low-energy bands of
twisted bilayer graphene at m=15 (θ≈2.13◦). The blue cir-
cles, squares, diamonds, and plus signs represent the micro-
scopic configurations with D6 symmetry, D3 symmetry, D3

symmetry with staggered sublattice potential Vs = 0.04 eV,
and D3 symmetry with vertical electric field Ve = 0.04 eV re-
spectively. (b) A schematic illustration of the different micro-
scopic configurations.

The microscopic symmetry group of twisted bilayer
graphene depends on the stacking pattern and the choice
of the rotation center. For example, if before the rota-
tion the top layer is exactly stacked on top of the bot-
tom layer, and one takes the center of the hexagon as
the rotation center, then the resulted moiré superlattice
has the highest symmetry D6 as considered by Song et
al.17. If the rotation center is chosen at one of the car-
bon atoms, then the resulted moiré structure has a D3

symmetry, which is the case considered in most of the
previous literatures. If the rotation center is chosen at
an arbitrary point then the only symmetry the system
has is C2y where the “y” axis is along one of the morie
lattice vectors. On the other hand, the two flat bands
from each valley at small twist angles have been shown
to be equivalent to two zeroth Landau levels with oppo-
site Chern numbers. The pseudo magnetic fields would
lead to a new magnetic length scale lB given by Eq. (10).
Clearly lB is much greater than the microscopic lattice
constant for small twist angles, thus one expects that the
topological properties of the zeroth pseudo LLs should be
robust regardless the perturbations on the microscopic
scale.

Using the microscopic tight-binding model introduced
in Eq. (13), we would like to explicitly demonstrate that
the topological character of the Wilson loops of the four
low-energy bands remains robust regardless the micro-
scopic details. In particular we have considered differ-
ent microscopic symmetries in the tight-binding model
as schematically shown in Fig. 3(b): (i) the D6 symme-
try where the two layers are first stacked exactly on top of
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each other then rotated about the center of the hexagon;
(ii) the D3 symmetry where the rotation center is at one
of the carbon atoms instead of at the hexagon center;
(iii) based on the D3 configuration we apply a staggered
potential Vs = 0.04 eV on A and B sublattices in both
layers; (iv) still based on the D3 configuration we apply
a vertical electric field with energy Ve = 0.04 eV, which
breaks the D3 symmetry to C3 symmetry. The Wilson
loops of the four low-energy bands at m = 15 with these
four different microscopic configurations are presented in
Fig. 3(a), and are represented by blue circles, squares,
diamonds and plus signs respectively. Clearly the Wil-
son loops with different microscopic symmetries almost
exactly overlap with each other, indicating that the topo-
logical character of the four low-energy bands is robust
against perturbations on the microscopic scale.

D. The implications on the correlated insulating
phases

The pseudo-LL representation of TBG has significant
implications on the correlated insulating phases observed
at 1/4, 1/2, and 7/8 fillings8–11,44. We have shown that
the flat bands around the magic angles in TBG are equiv-
alent to four zeroth Landau levels of Dirac fermions con-
tributed by the two valleys K and K ′. The direct cou-
plings between the two zeroth LLs (in each valley) van-
ish due to an emergent chiral symmetry in the zeroth LL
subspace. These four zeroth LLs carry different Chern
numbers (C) and sublattice polarizations (s). In partic-
ular, from the monolayer K valley the two zeroth LLs
are {C= +1, s=A}, and {C=−1, s =B}; while for the
K ′ valley, the two zeoroth LLs have {C = +1, s = B},
{C =−1, s =A}. Since the kinetic energy is completely
quenched in the LL, any Coulomb interactions are ex-
pected to split the eight-fold (including physical spin)
degenerate zeroth pseudo LLs, which would possibly lead
to insulating phases at any filling factor that could com-
pletely fill up an integer number of LLs, namely at
1/8,2/8,3/8,4/8,5/8,6/8 and 7/8 fillings of the low-energy
bands. Since each pseudo LL carries non-vanishing Chern
number ±1, it is then quite natural that many of these
phases could have nonzero total Chern number as sug-
gested by the recent experiment on the possible quantum
anomalous Hall effect in TBG9.

In realistic situations, the Coulomb interaction is de-
pendent on the layer and sublattice degrees of freedom in
graphene. Transforming to the zeroth pseudo LL basis
(Eq. (11)), it means that the interaction would become
dependent on the Chern number (C) and sublattice (s)
polarizations of the zeroth pseudo LLs. The {C, s} de-
pendence of the Coulomb interaction would break the
degeneracy of the insulating states at the integer fillings.
The unambiguous determination of the correlated insu-
lating ground states at the different fillings requires a
microscopic and self-consistent calculation, which is be-
yond the scope of the present paper and we will leave it

(m,r)=(30,1)

(a)

(b)

(m,r)=(30,1)

FIG. 4: (a) Bulk band structure of TBG at (m, r) = (30, 1)
calculated from the microscopic tight-binding model (blue)
and the continuum model (red) including effects of atomic
corrugations. (b) The total Berry phases of all the bands
below (above) the four flat bands at (m, r) = (30, 1) are de-
noted by βo(k2) (βu(k2)), and the Wilson loops of the four
flat bands at (m, r) = (30, 1) denoted by w(k2).

for future study.

III. TOPOLOGY OF THE HIGH-ENERGY
BANDS

A. Berry phases of the high-energy bands

We continue to discuss the topological properties of
the high-energy bands. We first introduce the bulk
band structures before demonstrating the topology of
the high-energy bands. The bulk band structures at
m = 30 (θ ≈ 1.08◦) including effects of atomic corruga-
tions are shown in Fig. (4)(a). The blue and red lines
indicate the band structures calculated using the micro-
scopic tight-binding model (Eq. (13)) and the continuum
model (Eq. (2)) respectively. The calculated gaps at Γs
above and below the four flat bands (denoted as ∆1 and
∆2 in Fig. 2(a)) are around 25 meV which are in qual-
itative agreement with the experimental data8 and the
theoretical calculations with fully relaxed structures24,51.

Such large band gaps actually originate from the
atomic corrugations: the intersublattice interlayer tun-
neling u′0 generates opposite effective magnetic fields
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which tend to create the topological gaps; while the in-
trasublattice interlayer tunneling u0 tend to couple the
zeroth pseudo LL in one diagonal block to the higher
pseudo LLs of the other diagonal block, which reduces
the topological gaps. Therefore the gaps between the
low-energy bands and high-energy bands would increase
due to the atomic corrugations, because the ratio u0/u

′
0

decreases as a result of the atomic corrugations15. This
also implies that the topological properties and electronic
structures of TBG can be significantly engineered using
atomic corrugations, which we will discuss in details in
Sec. IV. at different twist angles, as well as the numeri-
cal calculations about the engineering of the topological
phases using atomic corrugations48.

For clarity’s sake we divide all the energy bands in
TBG into three groups: all the bands below and above
the four low-energy bands are denoted by {E±n,o} and

{E±n,u} respectively, and the four low energy bands are

denoted by {E±n,f}, where the superscripts “+” and “-

” are indices for the two monolayer valleys K and K ′.
In addition to the four low energy bands, we find that
the high energy bands {E±n,o} and {E±n,u} are also topo-
logically nontrivial. To be specific, if the Berry phase
integrated along the k1 direction for the nth band in the
group of {E±n,o(u)} is denoted by β±n,o(u)(k2), then

β±o (k2) ≡
∑
n

β±n,o(k2) = ∓π ,

β±u (k2) ≡
∑
n

β±n,u(k2) = ±π . (16)

The quantization of the total Berry phases shown in
Eq. (16) is guaranteed by the C2zT symmetry of the
continuum model. Eq. (16) has been numerically veri-
fied by implementing the continuum model of TBG in
the plane-wave basis48, and are plotted in Fig. (4)(b) for
m=30 (θ = 1.08◦), where the red diamonds and squares
represent β+

o (k2) and β+
u (k2) respectively. For complete-

ness, in Fig. 4(b) we also plot the Wilson loops of the two
flat bands (for one valley) as marked by the blue circles.
Thus Fig. 4(b) presents the complete band topology of
TBG.

valley there would be an edge state extending through
the 1D edge Brillouin zone. This is because at each k2 the
system may be interpreted as a 1D Su-Schrieffer-Heeger
chain with the end mode in the bulk gap52. These end
modes at different k2 would be connected and form edge
states, which have interesting truncation dependence on
the moiré scale48.

B. Truncation dependence of the edge states

The nontrivial Berry phase of the high-energy bands
implies that for each valley there would be an edge state
extending through the 1D edge Brillouin zone. Moreover,
because the + and − valleys are mapped to each other
by the particle-hole-like operation as shown in Eq. (4),

(m,r)=(15,1)

(b)(
a
)

(c)

E
ne

rg
y(

eV
)

E
ne

rg
y(

eV
)

(a)

(d)

k (in units of 2π/L
s
) k (in units of 2π/L

s
)

FIG. 5: Edge states in twist bilayer graphene at m=15: (a)-
(b) the edge states below the four low-energy bands, and (c)-
(d) above the four low-energy bands. (a) and (c), the system
truncated through the AA region; (b) and (d)), the system
truncated through the BA and AB regions. The inset shows
the bulk band structure for (m, r) = (15, 1), where energy
windows for the edge states are marked in light blue shadow.

the two edge states contributed by the two valleys may
occur in the gaps below and above the four low-energy
bands respectively. In Fig. 4(a) and (c) we plot the spec-
tral functions at the edge of TBG at m= 15 (θ≈ 2.13◦)
in the band gaps below and above the four low-energy
bands. Clearly there are two nearly flat edge states in
the gaps above and below the four low-energy bands con-
tributed by the two valleys. The edge states shown in
Fig. 4(a) and (c) are calculated when the system is trun-
cated through the AA region. If instead the system is
truncated through the BA and AB region, then the two
nearly flat edge states in the charge gaps disappear, as
shown in Fig. 4(b) and (d). The truncation dependence
of the edge states is reminiscent of the property of the 1D
Su-Schrieffer-Heeger (SSH) chain with quantized Berry
phase ±π52,53. The difference is that the truncation de-
pendence of the edge states of the TBG system occurs
on the moiré length scale (instead of of the microscopic
lattice scale), and the edge states are present when the
system is truncated through the AA region regardless
of the orientation of the edge. For comparison we also
plot the corresponding bulk bandstructure in the inset of
Fig. 4 where the shaded regions mark the energy windows
for the edge-state calculations. It worth to note that the
edge states at θ≈1.08◦ shown in Fig. 2 would smoothly
evolve to those shown in Fig. 4(a) and (c) (θ≈ 2.13◦) if
one of the two helical edge states gets merged into the
bulk bands, leaving the other one in the bulk gap. This
indicates the consistency between the high-energy and
low-energy band topology.
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∆
1
=0

semimetal

∆
1
>0

topological

topological
(a)

Insulator
Metal

Insulator

(m,r)=(30,1)

(b)

FIG. 6: (a)Color map of the indirect gap above the four flat
bands in TBG, in units of eV. The horizontal axis is the cor-
rugation strength parameterized by d1 (see Eq. (1)), and the
vertical axis is the integer m characterizing the rotation an-
gle. (b) Color map of the direct gap above the four flat bands
at Γs. The dashed black lines in (a) and (b) mark the actual
atomic corrugation strength.

IV. CORRUGATION-ENHANCED
TOPOLOGICAL GAPS AND TOPOLOGICAL

TRANSITIONS

In this section we study in detail how atomic corru-
gations affect the electronic structures and topological
properties of TBG. We have numerically checked that
once the atomic corrugations are taken into account, the
four low-energy bands are separated from the other bands
by non-vanishing direct gaps from m= 5 all the way to
m= 3348. It implies that the system remains topologi-
cally nontrivial for all these twist angles. The edge states
predicted above thus may be a strong evidence of the
nontrivial band topology in TBG.

We further explore how the topological gaps are de-
pendent on the corrugation strength parameterized by
d1 (see Eq. (1)) and the twist angle θ(m). In Fig. 6(a)
we plot the the indirect gap between {E±n,f} and {E±n,u}
in the parameter space spanned by d1 and the integer
m. The horizontal axis is d1 ranging from -0.05 Å to
0.05 Å, and the vertical axis is m, where m = 5 corre-
sponds to θ≈6.01◦ and m=33 corresponds to θ≈1.02◦.
When m ≤ 11 (θ ≥ 2.88◦) the system is always metal-
lic for −0.05 Å ≤ d1 ≤ 0.05 Å. When m ≥ 12 a global
gap opens up as d1 increases from −0.05 Å, indicating
a transition from a metallic to a topologically nontrivial
insulating phase. When m≈ 30 (θ ≈ 1.08◦), the system
is mostly insulating and only becomes (semi)metallic in
a small window of d1.

In Fig. 6(b) we plot the direct gap above the four low-
energy bands at Γs as denoted by ∆1 in Fig. 4(a). We
see that when m / 26 ∆1 is almost exactly zero for
−0.05 Å ≤ d1 / 0; when m ' 26 ∆1 gradually dimin-
ishes as d1 decreases from 0.05 Å, vanishes at some criti-
cal value d1c, then reopens at another critical value d∗1c.
It is interesting to note that the topological character
of both the four low-energy bands and the high-energy
bands are unchanged after such band-touching events at

Γs. This is because there is (approximate) particle-hole
symmetry in the low energy spectrum at Γs, such that the
band touchings almost occur simultaneously for ∆1 and
∆2, but the band topology is not expected to be changed
after an even number of band-touching events. This is
clearly shown in the inset of Fig. 6(a), where we plot ∆1

(red diamonds) and ∆2 (blue circles) as a function of d1

for m=30.

V. SUMMARY

To summarize, in this paper we have proved that the
two flat bands (per valley) near the magic angles in TBG
originate from the two zeroth Landau levels of Dirac
fermions threaded by opposite effective magnetic fields
generated by the moiré pattern. The direct coupling
between the two zeroth LLs is forbidden by an emer-
gent chiral symmetry in the low-energy subspace. As a
consequence, the two flat bands possess opposite Chern
numbers ±1 and exhibit the odd winding pattern in the
Wilson loops. This gives rise to two pairs of helical edge
states in the bulk gaps between the low-energy and the
high-energy bands at the first magic angle. The pseudo
Landau-level representation of the flat bands in TBG
have significant implications on the correlated insulat-
ing phase observed in experiments. We have argued that
Coulomb interactions may split the eight-fold degenerate
(including physical spin) zeroth pseudo LLs, and possibly
lead to insulating states with polarized pseudo LLs with
non-vanishing Chern numbers when an integer number
of the pseudo LLs are filled up. states may have non-
vanishing Chern numbers ±1 per spin, consistent with
the recent experimental observation at 3/4 fillings9.

We have further shown that the high-energy bands of
TBG are topologically nontrivial which are characterized
by constant and quantized Berry phases ±π, and pro-
tected by C2zT symmetry. The quantized Berry phases
give rise to a pair of nearly flat edge states in the energy
gaps below and above the four low-energy bands. These
edge states are robust regardless of the orientation of the
edge but are dependent on the truncations on the moiré
length scale. We also find that the topologically non-
trivial gaps between the flat bands and the high-energy
bands are significantly enhanced due to atomic corruga-
tions. Our work is a step forward in understanding the
electronic properties of TBG, and have significant impli-
cations on the correlated insulating phase and supercon-
ductivity observed in TBG.

and give rise to a pair of nearly flat edge states in the
charge gaps below and above the four low-energy bands
at relatively large twist angles. These edge states are
robust regardless of the orientation of the edge but are
dependent on the truncations on the moiré scale.

against Coulomb interactions, and may lead to the
fractional quantum Hall states54,55. numbers, it is ex-
pected that unusual many-body ground states such as
the fractional Z2 topological insulating states56–58 may
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emerge when the two flat bands in TBG are partially
filled. Therefore, the TBG system may be a natural plat-
form to study the long sought Z2 fractional topological
phase. Second, the nontrivial band topology in TBG may
lead to topological superconductivity even with topo-
logically trivial pairing potentials59–61. Our work thus
implies that the superconductivity observed in TBG is
likely to have nontrivial topological properties. topologi-
cal properties of TBG, and may stimulate future research
in the field of twisted bilayer Dirac materials.
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