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Abstract

In field emission plasmas, electrons that initiate plasma formation come from the surface of

a metallic electrode, or wall, with emission controlled by the electron-work function of the wall,

and can be computed via the Fowler-Nordheim formula. Impinging ions modify the rate at which

electrons leave the surface, and are accounted via the coefficient of secondary electron emission.

However, in the case of dielectric surfaces, the microscopic mechanism by which electrons are

emitted is not as well understood. While simulations of dielectric barrier discharge plasmas assume

an initial density of electrons in a time-dependent simulation, whether the presence of electrons is a

necessary ambient condition or whether it is a result of emission from a surface is not clear. This is

particularly relevant in the context of micro and nanoscale plasma generators when surface-related

effects become more important. Here we consider electron emission from dielectric surfaces in the

context of dielectric barrier discharges. The configuration of interest consists of two parallel-plate

metallic electrodes, each covered by a dielectric layer. Assuming that the initial electrons for plasma

formation arise from the surface, we compute the rate of charge transfer from surfaces, which is

a necessary, but not sufficient, condition for plasma formation. The novelty of this work is the

application of the theory of nonadiabatic transitions (dynamical level-crossing) to the problem of

electron emission from dielectric surfaces in dielectric barrier discharges. The microscopic model

of electron transfer described here has potential applications in the design of micro and nano-scale

plasma generators.

I. INTRODUCTION

Dielectric barrier discharges (DBDs) have been used since the 19th century[1], and have

applications in materials processing, ozone synthesis, plasma displays, combustion, and aero-

dynamic flow control [2–6]. A typical set up consists of an external AC voltage, and at least

one dielectric barrier between metallic electrodes. The configuration of interest in this paper

is the symmetric planar DBD where both metallic electrodes are covered by a layer of dielec-

tric material like quartz, such that the gaseous region lies between the dielectric surfaces[7].

Electron emission of primary and secondary electrons from surface walls, and electron-impact
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ionization in the gaseous region are requisite mechanisms for plasma generation[8–10]. In the

simplest lumped element model or circuit model[11–14] used to investigate current-voltage

behavior in dielectric barrier discharges at the device level, the dielectric-gas-dielectric sys-

tem is modeled as a series of capacitors in the absence of plasma, and the formation of

plasma in the gaseous region is denoted by a switch which adds a resistor to the previously

capacitive circuit.

Alternatively, more detailed numerical models consisting of direct simulation Monte Carlo

(DSMC) and particle-in-cell (PIC) methods [15, 16] have been developed to predict plasma

generation in various operational regimes. These models solve the Boltzmann transport

equation, and thus take the volumetric effect of electron-impact ionizations and diffusive

loss mechanisms into consideration, but require an initial electron density and coefficient of

electron emission from surfaces for closure[17]. The role of surfaces becomes more important

as devices are miniaturized; already, micro and nano scale plasma generators have found a

wide variety of applications[18], and micro-combustion applications of asymmetric dielectric

barrier discharge plasmas, with one metallic and one dielectric surface, have been recently

investigated[19]. In the case of direct-current field-emission plasmas, the connection between

metallic electrodes and gaseous regions is well-established – electron emission from surfaces

has been investigated in the context of field and thermionic emission, and understood in

terms of the Fowler-Nordheim formula[20, 21], while the coefficient of secondary electron

emission, γse, quantifies the effect of impinging ions on electron emission. In AC symmetric

dielectric barrier discharges, however, metallic electrodes are each covered by a layer of

insulating dielectric material, and the Fowler-Nordheim picture is complicated by the higher

work function, large bandgap, and localization of electronic states of dielectric materials like

α−quartz.

In this work, semi-empirical tight-binding is used to obtain the electronic structure of

the dielectric layers. Energies of gaseous atoms are obtained using density functional theory

(DFT) but they are used as quasi-particle states that can be occupied or unoccupied, as in

tight-binding. Given an electronic structure method of choice, one way to investigate the

effects of a time-dependent external potential on electron emission would be to study the

evolution of the many-particle wave function or density matrix[22, 23]; while ideal, these

methods are expensive for simulations of systems with thousands of states for hundreds

of microseconds. Alternatively, the theory of nonadiabatic transitions (or Landau-Zener-
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Stückelberg[24–26] model) can be used to construct initial models of electron transfer during

chemical reactions[27], and more recently has been used to investigate time-dependent elec-

tron transfer between quantum dots[28, 29], as well as ionization of Rydberg atoms[30, 31].

The novelty of this work is the application of the theory of nonadiabatic transitions to in-

vestigate electron transfer between dielectrics and gases under AC voltage in the context

of plasma generation. Our intuition behind this model of electron emission from dielec-

tric surfaces is that in the absence of an external photon or phonon, degeneracies between

occupied and empty states are required for electron transfer via tunneling. In the case of

field-emission from metallic surfaces, the presence of an external DC field creates the degen-

eracy required for tunneling between conducting states inside the metal and free electron

states outside, by bending the potential barrier faced by an electron at the metallic surface.

In the case of dielectric-gas-dielectric systems under AC voltage, degeneracies between lo-

calized states within and outside the dielectric surface appear due to time-dependent energy

level crossing, leading to the possibility of time-dependent electron transfer. The temporal

profile of current-voltage phase lag, as well as surface charge accumulation and depletion ob-

tained from our computations using simple energy level crossing arguments, are consistent

with experimental observations in the literature[32–35], but quantitative agreement with

experiments requires more detailed computations coupling electron transfer from dielectric

surfaces with the kinetics of plasma formation, and are beyond the scope of this work.

Figure 1 presents a schematic diagram of the dielectric barrier discharge device, in terms

of the material components of the device. The metallic electrodes which are reservoirs of

charge carriers, and the gaseous region where charge carriers are necessary to initiate plasma

formation, are separated by a dielectric layer of α−quartz. When an external potential

difference is applied, a linear potential drop is expected across various insulating parts of

the device, according to their relative permittivity εr, and we are interested in the time-

dependent transfer of electrons from the dielectric into the gaseous argon under a time-

dependent potential Vext(t). The part of the system isolated by a dashed-box is of interest

in this work – it consists of the argon region as well as thin layers of the dielectric material

in contact with the gaseous region; we will use electronic structure calculations to obtain

the quasi-particle states of this system.

Figure 2 shows the isolated system of interest both during plasma generation from the

perspective of plasma physics (Figure 2a), and also before plasma generation from the per-
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FIG. 1. The dielectric barrier discharge device in terms of its material components, and the

expected potential drops across the system (metal-dielectric-gas-dielectric-metal) as an time-

dependent external potential difference Vext(t) is applied. The reservoirs of charge carriers (metallic

electrodes) and the gaseous argon are separated by dielectric material (SiO2). The region isolated

by a dashed box is the system investigated in this paper, and contains the surface regions of di-

electric walls with gaseous argon in between. In the gaseous region, argon atoms are assumed to

be stationary; the dissipative effects of the motion of argon atoms, denoted here in terms of a

collisional heat bath, are not considered but are briefly discussed in Section II D.

spective of electronic structure theory (Figure 2b). First, Figure 2a shows a schematic of

surface-supported plasma during operation, where the horizontal axis represents the gap

distance between the walls. In case of dielectric barrier discharge plasmas, the metallic

electrodes are covered by layers of dielectric material, which serve as the walls facing the

gaseous region. The vertical axis represents the electrostatic potential, V (r), experienced by

the electrons and ions. Before plasma formation, the electrostatic potential V (r) is linear;

after plasma formation, the conducting plasma channel does not support a voltage drop, and

the potential difference applied between the walls results in the formation of a sheath region

with a large potential drop near the walls. Figure 2b shows a schematic representation of

energy levels in the dielectric-gas-dielectric system that exist before plasma formation. The
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FIG. 2. (a) Schematic of surface-supported plasma with the plasma sheath and quasi-neutral

conducting channel shown. The horizontal axis represents the z-distance along which the external

field is applied; the vertical axis denotes the electrostatic potential experienced by electrons and

positive ions respectively. (b) Simple model of electronic states, where the y axis denotes the

individual energy levels of the effective quantum mechanical system. The wall is mapped onto

the energy levels associated with the dielectric, which is represented by dense bands; energy levels

associated with gaseous atoms in the intermediate region are shown as discrete lines.

horizontal axis represents the same distance as in Figure 2a but the vertical axis represents

the energy-levels of the dielectric and gaseous materials in the absence of an external field.

The valence and conduction bands of the dielectric form a continuum of states, and are

represented by filled blocks, while the effective single particle states of the gaseous atoms

are shown by discrete lines. Gray or lightly filled smaller blocks in the dielectric region

represent surface states that appear due to surface-termination.

Finally, we note that the total number of electrons in the isolated system is held constant –

as such, electron transfers result in charge depletion (holes) and accumulation (electrons) on

the dielectric surfaces. The computation of charge depletion and accumulation complements

recent phenomenological and experimental investigations of surface effects such as surface

charge accumulation and depletion, memory effects on microdischarge formation, and surface

charge transport[32, 34, 35]. However, surface charges can also be transported towards

metallic contacts, and recent works have investigated electron absorption and subsequent

transport in dielectric materials, and the associated effects of phonons and impurities[36–39].

This transport of charge carriers away from the isolated dielectric-gas-dielectric system can

be coupled to charge transport within the isolated system, but is not the focus of this work.
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The outline of this paper is as follows: Section II presents an atomistic description of

the methods used and materials considered. The electronic structure parameterizations,

multi-state energy level-crossings within the theory of nonadiabatic transitions, and approx-

imations that allow us to compute the rate of charge transfer in our system of interest,

are discussed. Next, results of our calculations are presented in Section III, where we first

present the density of states of the dielectric layers, followed by the predicted charge transfers

in the limit that the system varies infinitely slowly, within the adiabatic approximation. In

the same section, multi-state energy level-crossings are presented, and the rates of electron

transfer are computed by using the theory of nonadiabatic transitions. Finally, conclusions

are presented in Section IV.

II. METHODS AND MATERIALS

A. Description of the system

The atomistic system of interest consists of two dielectric layers separated by a gaseous

region as shown in Figure 3, where atomic layers of α−quartz represent only a small fraction

of the dielectric material near the surface facing gaseous argon along the gap distance be-

tween dielectric walls. The extent of the dielectric material is limited to a 3×3×3 lattice of

right-handed α−quartz with Si and O termination in the 0001 direction, and with periodic

boundary conditions in the x and y directions. Next to the gaseous region, the surfaces

facing the argon gas and the resulting plasma are represented by the O-terminated quartz

stabilized by hydrogenation. Away from the gaseous region, the dielectric layers extend to

metallic electrodes as shown in Figure 1, which drives the system by applying the total

voltage Vtotal(t). Between metallic contacts, the voltage drops linearly along the z−direction

based on the relative permittivity, εr of the medium. A part of this potential difference

occurs between the dielectric layers, and is taken as the external potential difference for the

system shown in Figure 3, V (t) = V0 sinωt along the z−direction. Finally, ∆ = 17Å in

Figure 3 denotes the thickness of the dielectric layer considered, and the gap between walls,

dgap, is set to at least 100∆.
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FIG. 3. Atomistic description of the system of interest showing dielectric layers(α−quartz) and

the gaseous region(Ar atoms) in between. The 0001 surface with -OH termination is exposed to

the gaseous region. Away from the gaseous region, the dielectric layer extends beyond the few

atomic layers shown here to metallic contacts. Periodic boundary conditions are used in the x and

y directions. Here, ∆ denotes the thickness of the dielectric layer considered. The gap-distance

between walls is on the order of 100∆ or more.

B. Electronic structure

A collisionless non-reactive model for gaseous argon is used, with single-particle elec-

tron energy levels, ε0i , set equal to the Kohn-Sham energies from density functional the-

ory, obtained using the ATOM code distributed with SIESTA[40, 41], using the local den-

sity approximation[42]. Energies corresponding to the closed-shell configuration with an

sp3(4s, 3d, 5p) basis are used for the Ar atoms. The electronic structure of α−quartz is

computed using semi-empirical tight-binding parameterized[43, 44] for silicon, oxygen, and

hydrogen atoms. The sp3 orbital set is used for Si and O atoms, and a 1s orbital is used to

characterize H. Inter-orbital interactions between argon orbitals and quartz are set to zero.

The following total Hamiltonian, in the absence of other external potentials and inter-state

coupling, is used:

H0 =


H tb 0 0

0 HAr 0

0 0 H tb

 (1)

where H tb denotes the tight-binding Hamiltonian for α−quartz, and HAr denotes the di-

agonal Hamiltonian containing single-particle energies of Ar. Single-particle states, ψi, are

expressed as linear combinations of atomic orbitals, or

ψi(~x) =
N∑
m=1

cimφm(~x−RA) (2)
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where φm are atomic orbital bases centered around atoms A, while cim are the coefficients

of linear expansion corresponding to state ψi and atomic orbitals φm. N denotes the total

number of orbital bases used or the size of the Hamiltonian. Elements of the tight-binding

H tb are of the two-center Slater-Koster[45] form,

H tb
mn =

∫
φ∗m(r)

(−∇2

2
+ V (r −RA) + V (r −RB)

)
φn(r)d3r (3)

where m and n denote orbital-indices, A and B denote atoms, and φm(r) and φn(r) denote

the respective atomic orbitals. Orthogonality of the basis set, 〈φm|φn〉 = δmn, is assumed.

Electronic structure is computed only at the Γ−point in reciprocal space. Thus, the elec-

tronic structure of the system can be obtained by solving the eigensystem:

H0~ci = Ei~ci (4)

where Ei and ~ci denote the energies, and linear expansion coefficients of the single-particle

eigenstates ψi respectively. The lowest Nel

2
of these eigenstates are assumed to be occupied,

where Nel denotes the number of electrons, and 2 accounts for spin degeneracy.

In the presence of a driving external voltage, the electrostatic potential is assumed to

have a linear spatial profile, so that the external potential shifts energies on the left and

right dielectric states by eVleft, and eVright respectively, and shifts the energy of the argon

atoms by eV (RAr). AC and DC Stark-shift of atomic states[46], and other modifications of

energy levels are not considered. In the atomic basis, the resulting Hamiltonian is:

H total = H0 + ef(t)


Vleft 0 0

0 V (RAr) 0

0 0 Vright

 (5)

where f(t) takes the time-dependent nature of the potential difference into account, and e

accounts for electronic charge.

C. Adiabatic approximation

Assuming the time-dependent part of the external voltage, f(t), to be infinitely slow, the

adiabatic approximation is used to compute the rate of electron transfer at the simplest level.

The instantaneous eigenstates of the time-dependent Hamiltonian, H total of Equation 5, and
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the ground state density matrix, P(t), and the charge density on the left dielectric, nleft(t),

are computed according toH0 + ef(t)


Vleft 0 0

0 V (RAr) 0

0 0 Vright


~ci(t) = εi~ci(t)

P(t) =

Nel/2∑
i=1

~ci(t)~c
T
i (t)

nleft(t) =
∑
α∈left

P(t)α,α (6)

where ~ci(t) and ~c T
i (t) denote the i−th eigenvector and eigenvector-transpose of the total

Hamiltonian at time t. The number of electrons on the left and right dielectric layers, as

well as the argon region, are obtained by taking partial traces of the density matrix. The

change in total charge (and corresponding effective current) on the left dielectric surface is

computed from

I(t) =
∆nleft

∆t
≈ n(t+ ∆t)− n(t−∆t)

2∆t
(7)

D. Theory of nonadiabatic transitions

Next, the theory of nonadiabatic transitions[24–26, 30, 47] is used to compute the rate of

electron transfer under a time-dependent external voltage. The eigenstates of the zero-field

Hamiltonian in Equation 4 are used as the diabatic states, and a sinusoidal potential with

frequency of 20kHz is used for time-dependence. In the simplest two-state form, eigenvectors

of a time-independent 2× 2 Hamiltonian ĥ0 can be computed and labeled |1〉 and |2〉, with

energies E1 and E2. If a time-dependent shift ±F (t)
2

is applied to these eigenstates such that:

ε1(t) = E1 +
F (t)

2
(8a)

ε2(t) = E2 −
F (t)

2
(8b)

then the time-dependent diabatic energies ε1(t) and ε2(t) can cross at time t12 as observed

in Figure 4, where the diabatic energy levels ε1(t) and ε2(t) are represented by dashed-

lines that are expected to cross at time t12. Solid lines of Figure 4 present the actual
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time-dependent energy-levels of the interacting, time-dependent Hamiltonian, where level

crossing is avoided due to the interaction between single-particle states, V12. Moving from

left to right in Figure 4, the solid lines show the adiabatic evolution of the system in the

infinitely slow limit: |1〉 → |2′〉 and |2〉 → |1′〉. The dashed lines show diabatic evolution of

the system in the infinitely fast limit: |1〉 → |1′〉, and |2〉 → |2′〉.

|1〉 |2′〉

|2〉 |1′〉

t

E
[e
V
]

V12

FIG. 4. Energy level crossing of two states due to a time-dependent parameter. |1〉 and |2〉 denote

diabatic states, and their energy levels are represented by dashed-lines that are expected to cross at

time t12. Direct intersection, or level-crossing, is avoided when a coupling term, V12, exists. If the

time-dependent parameter is varied sufficiently slowly, the system undergoes adiabatic transitions

given by |1〉 → |2′〉, and |2〉 → |1′〉.

The dynamics of time-evolution depend on the coupling strength, V12, and the slew rate

defined as the rate of variation of the time-dependent Hamiltonian, ∂F (t)
∂t

, via the dimension-

less ratio[30]:

Γ =
|V12|2

~
∣∣∣∂F (t)

∂t

∣∣∣ =

∣∣∣∣ e2

4πε0r12

∣∣∣∣2 1

~|ωeV0 cosωt| (9)

, where e denotes electronic charge, and ε0 is the dielectric constant. The slew rate, ∂F (t)
∂t

, is

computed at the expected level crossing of diabatic energy levels (t12), and the inter-state

coupling V12 = 1
|r1−r2| = 1

r12
, is used.

In the limit tinitial = −∞ and tfinal = +∞, and assuming F (t) is linear near the energy

level crossing, the probability of diabatic transitions is given by[30]

D = P|1〉→|1′〉 = P|2〉→|2′〉 = e−2πΓ (10a)

and the probability for adiabatic transition is computed according to

A = P|1〉→|2′〉 = P|2〉→|1′〉 = 1−D = 1− e−2πΓ (10b)

11



E. Generalization to multiple states

|l1〉 |r′3〉

|r3〉 |l′1〉

|l2〉 |r′2〉

|r2〉 |l′2〉

|l3〉 |r′1〉

|r1〉 |l′3〉

|l1〉 |r′3〉

|r3〉 |l′1〉

|l2〉 |r′2〉

|r2〉 |l′2〉

|l3〉 |r′1〉

|r1〉 |l′3〉

(a) All adiabatic transitions (b) All diabatic transitions

FIG. 5. Generalization of the two-state level crossing problem to multi-state level-crossing, with

six diabatic states: three localized on the left and denoted by |l1〉 , |l2〉 , |l3〉, and three on the right

denoted by |r1〉 , |r2〉 , |r3〉. Initially the three states on the left are occupied. (a) The system evolves

fully adiabatically, leading to the system evolution {|l1〉 , |l2〉 , |l3〉} → {|r′1〉 , |r′2〉 , |r′3〉}. All electrons

on the left and transferred to the states localized on the right. (b) All transitions are diabatic,

leading to the system evolution {|l1〉 , |l2〉 , |l3〉} → {|l′1〉 , |l′2〉 , |l′3〉}, with no electrons transferred.

Figure 5 shows one example of generalization of level-crossing to systems with multi-

ple states: the system consists of six diabatic states and their level-crossings, with three

states localized on the left |l1〉 , |l2〉 , |l3〉, and three on the right |r1〉 , |r2〉 , |r3〉. Solid straight

lines show the diabatic energy levels under an external potential. In Figure 5a, all tran-

sitions are adiabatic and electrons previously on the left are transferred to states on the

right, {|l1〉 , |l2〉 , |l3〉} → {|r′1〉 , |r′2〉 , |r′3〉}. On the other hand, Figure 5b shows the evo-

lution of the system when all transitions are diabatic, resulting in no electron transfer as

{|l1〉 , |l2〉 , |l3〉} → {|l′1〉 , |l′2〉 , |l′3〉}. The exact computation of the density matrix (or many

electron wavefunction) and integration over long timescales is an active area of investigation,

under various limiting conditions[31, 48–55].

In this work, the Landau-Zener problem is generalized to multiple states in the incoher-

ent limit[31], where interference effects between two level-crossing events are ignored. This

is a semi-classical approximation where a superposition of states is replaced by a classi-

cal ensemble of trajectories, so that time-evolution is modeled as a series of independent

level-crossings. While not exact, it can be justified by observing that the AC voltage has

frequencies of ∼ kHz while oscillations of electronic states correspond to frequencies of
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∼ THz. Even in the semi-classical limit, however, the number of possible paths scales

exponentially with the number of level-crossings, and instead of computing a distribution

of all possible trajectories, the ensemble average is used. Thus, our computation can be

summarized as follows: first, the times for all possible level-crossing events are obtained by

setting εi(tij) = εj(tij), and are time-ordered. Then, at each tij, the occupation of states,

[f 0
i , f

0
j ]T , is updated according to the following equation:fi

fj

 =

D A

A D

f 0
i

f 0
j

 (11)

Finally, random atomic motion is ignored, although the effects of dissipation and temper-

ature have been investigated in other systems[48, 56]. The interplay between finite tempera-

ture and dissipation may result in non-monotonic deviations from the idealized Landau-Zener

case[56]. In our case, however, the gaseous region itself may undergo plasma formation, so

that more consideration is necessary to define a heat-bath appropriately. As such, the effects

of temperature and dissipation are important but beyond the scope of this work.

III. RESULTS

In this section we present the density of states of α−quartz, along with the effects of

surface termination and hydrogenation. The shift in the density of states of two dielectric

regions separated by an external voltage is also presented. Next, we present the rates of

electron transfer assuming that the dielectric-gas-dielectric system evolves adiabatically and

reversibly in the infinitely slow limit. The time-dependent variation of diabatic energy levels

under a finite AC voltage is then investigated in Section III C. Finally, the evolution of the

dielectric-gas-dielectric system is computed within the theory of nonadiabatic transitions,

and Sections III D-III F present the rates of electron transfer as well as charge accumulation

or depletion from the dielectric layer of interest under a variety of operating conditions.

A. Density of states of the α−quartz surface

Figure 6 presents the density of states of α−quartz terminated along the 0001 direction

(z direction), with periodic boundary conditions in the x and y directions. The unit cell,

shown in Figure 6a consists of 5 × 5 × 5 nine atom primitive unit cells of α−quartz, with
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FIG. 6. Appearance of surface states due to termination of bulk α-quartz along the 0001 direction.

(a) The unit cell has periodic boundary conditions in the x and y directions, while along the z

direction, the surface is terminated. (b) The projected density of states in the bulk, Si-exposed, and

O-exposed surfaces, show features consistent with surface states. (c) The surface of interest in this

work has exposed oxygen atoms bonded to hydrogen, leading to a less reactive, -OH terminated

surface. (d) The resulting density of states of the system shows the effect of H termination.

corresponding density of states shown in Figure 6b. The bandgap obtained is ∼ 6.3 eV,

which is within the range of values reported in the literature [57–59]. In addition to the bulk

density of states, Figure 6b also shows the projected density of states on the exposed atomic

layers, where we note the appearance of surface states due to the O-terminated surface and
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the Si-terminated surface, at different parts of the energy spectrum. EF denotes the highest

energy level occupied at zero temperature. The surface states in the O-terminated region are

below EF , and are expected to be occupied, indicating surface charge. The Si-terminated

surface is assumed to be far away from the gaseous region, and expected to connect to

metallic electrodes.

Figure 6c shows the dielectric layer after the O-terminated surface has been stabilized

by hydrogenation. Here, we have assumed that every dangling O- bond absorbs a hydrogen

atom to form an -OH terminated surface. The effect of -OH termination is then observed

in the density of states, shown in Figure 6d, where the presence of hydrogen coverage has

changed the density of states of the -OH surface such that the effect of surface termination is

not concentrated in one region of the energy spectrum. This hydrogen-covered 0001 surface

interfaces with the gaseous regions in our simulations.
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FIG. 7. Expected shift in energies of the left and right dielectric layers due to the external potential

difference. In case of a time-dependent potential difference, the instantaneous ground state of the

system results in different occupations of states localized on the left and right dielectrics, indicating

the possibility of time-dependent electron transfer.

Figure 7 presents an intuitive picture of the ground state of the system in the presence

of a potential difference between the left and right walls, with relative shifts in energies of

the left and right dielectric walls due to the potential difference between the left and right

dielectric. If the number of electrons is conserved, and the system is allowed to relax to the

ground state, the charge distribution between the left and right walls is unequal. Under a

slow (allowing for the system to relax to the ground state) but time-dependent potential
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difference, the number of electrons on the left and right dielectrics varies with time, with

electrons being transferred between the two regions at different times.

B. Adiabatic approximation

The results of Section III A suggest that time-dependent electron transfer could be quan-

tified from the occupation of electronic states at the instantaneous ground states. Figure 8

shows the results of that computation, where the instantaneous ground state density ma-

trix of the time-dependent Hamiltonian is computed; the time-dependent nature of electron

transfer is evident in the phase lag between the observed current I(t), and applied voltage

V (t). A sinusoidal potential difference with V0 = Emaxdgap is applied, with a fixed maxi-

mum electric field, Emax = 1.04× 106 V/cm, to avoid the effects of dielectric breakdown in

microgaps. In addition to the temporal profile of current and voltage, a first-order approxi-

mation of the electrostatic potential is also plotted in Figure 8a-d, where (a) and (d) denote

two points near zero-field in the AC cycle. Localized regions of variation in electrostatic

potential in Figure 8b denote electron transfer from the left dielectric surface into the argon

region, while Figure 8c shows the electrostatic potential as the electrons are transported to

the right dielectric. Despite the simplicity of the model, the spatial profile of V (r) obtained

is qualitatively similar to the expected electric field (cf. Figure 2a).

C. Diabatic energy levels under time-dependent V (t)

Next, Figure 9 shows the variation of diabatic energy levels under AC voltage, with the

frequency set to 20 kHz. First, Figures 9a and 9b show the variation of diabatic energy

levels of the left and right dielectric layers, absent intermediate argon atoms, for V0 = 20V

and V0 = 20 kV respectively. In the case of V0 = 20V , diabatic energy levels of states on

the left and right intersect at a wide range of times, while for V0 = 20 kV , all level-crossings

appear concentrated near the half-cycles. Next, Figure 9c shows the diabatic energy levels

of the system, now with intermediate argon atoms: the dielectric layers are separated by

dgap = 1 cm, and the number of argon atoms is determined by using the ideal gas law at

pressure P = 20Pa and temperature T = 300K. An external sinusoidal AC voltage with

V0 = 400V is applied. The argon atoms are placed at random within the gap, and assumed
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FIG. 8. Results of electronic structure calculations in the adiabatic limit. The topmost panel

shows the effective rates of electron transfer obtained from direct computation of instantaneous

ground state of the time-dependent Hamiltonian, where ∆ ≈ 17Å, the thickness of the atomistic

dielectric layer. Next, for the case of dgap = 100∆, subfigures (a)−(d) show the spatial profile of the

electrostatic potential at various points in the AC cycle, at phases corresponding to {0, 6π
100 ,

π
2 , π}.

(a) and (d) correspond to the beginning and end of the half-cycle near zero-field, while in (b),

localized regions with high electric field indicate the presence of additional electrons in the gaseous

region. In (c), the electrostatic potential is in agreement with the expected spatial profile during

plasma formation in Figure 2a.
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(a) V0 = 20V , vacuum (b) V0 = 20 kV , vacuum (c) V0 = 400V , 20Pa

FIG. 9. Diabatic energy level-crossings under AC voltages at frequency, f = 20 kHz. (a) Di-

abatic energy levels of states localized on the left and right dielectric layers under AC voltage

corresponding to V0 = 20V . (b) Diabatic energy levels under V0 = 20 kV . (c) V0 = 400V , and

with intermediate argon atoms between dielectric surfaces. Comparing (a) and (b), note that level-

crossings occur at a broad range of times under lower voltage V0 = 20V , while under V0 = 20 kV ,

all level-crossings occur near half-cycles of V (t). In (c), the presence of intermediate argon atoms

increases the number of level-crossings as well as broadens the times at which level-crossings, and

corresponding electron transfer, can occur.

to be stationary, with each atom contributing 14 orbitals. As a result, while the diabatic

states on the left and right dielectric layers vary sinusoidally with opposing slopes ∂E(t)
∂t

,

additional discrete energy levels can be found in the energetic gap between energies of the

left and right dielectric layers. Figure 9c suggests that the presence of argon atoms increases

the number of, and broadens the times at which, level-crossings (and electron transfer) can

occur.

D. Electron transfer at constant maximum electric field

Given the time-dependent diabatic energy levels of the previous section, the probabilities

of diabatic and adiabatic transitions, and the rates of electron transfer can be computed.

This section presents the rates of electron transfer when the maximum electric field V0/dgap

is held constant, to 1.04×106 V/cm, for various gap distances; the frequency of AC voltage is

set to 20 kHz. Electron transfer is computed, both for vacuum separation between dielectric

surfaces, and in the presence of a fixed number of intermediate argon atoms, Nar = 180.

Figures 10a-10c present the results of our computation, where gap distances are set to

(a) dgap = 10µm, (b) dgap = 100µm, and (c) dgap = 1 cm. In each plot, electron emission
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FIG. 10. Time-dependent electron transfer between dielectric surfaces under fixed V0/dgap, as the

gap distance, dgap, is set to (a) 10µm, (b) 100µm, and (c) 1cm, with corresponding change in the AC

voltage, V (t), on the right y-axis of each plot. On the left y-axis, ∆nL denotes the rate of electron

transfer from the left dielectric. In each plot, the rates of electron emission are presented in the case

of vacuum separation, and in the presence of a fixed number of intermediate argon atoms, which

corresponds to pressures of (a) 104 Pa, (b) 103 Pa, and (c) 10Pa, respectively. The rate of electron

transfer in case of vacuum separation is multiplied by a factor of (×10) for comparison. Comparing

the magnitudes of electron transfer for various gap distances in different plots, we note that as the

gap distance is increased, the magnitudes of ∆nL decreases, as the distance between diabatic states,

r12, adversely affects the probability of adiabatic transition (and corresponding electron transfer).

In particular, when (c) dgap = 1cm, and under vacuum separation, electron transfer is negligible

despite large values of V (t). Secondly, the presence of intermediate argon atoms increases the rate

of electron transfer; this is because intermediate argon atoms not only lead to additional level-

crossings, but these level-crossings also correspond to smaller distances between diabatic states,

r12, leading to an overall increase in electron emission. Finally, we note that electron emission from

surface walls is a necessary but insufficient condition for plasma formation. As such, the computed

temporal profiles of electron transfer are consistent with, and provide partial predictions for, the

observed temporal profiles of plasma formation in the literature[32–35].

is presented in the case of vacuum separation (×10 for visibility) and in the presence of

intermediate argon atoms. Assuming T = 300K and using the ideal gas law, Nar = 180

atoms in the intermediate region correspond to pressures of (a) 1.01 × 104 Pa, (b) 1.01 ×
103 Pa, and (c) 10.1Pa. Since the maximum electric field, V0/dgap, is held fixed, increase

in the gap distance also corresponds to voltages of (a) V0 = 1.04 × 104 V , (b) V0 = 1.04 ×
103 V , and (c) V0 = 1.04 × 106 V . In each plot, the left y-axis presents the rate of electron
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transfer from the left dielectric, ∆nL, while the right y-axis presents the applied AC voltage.

Comparing the magnitudes of electron emission (scales in the left y-axes) in different plots of

Figure 10, we note that increase in the gap distance decreases the rate of electron transfer –

this is because increase in the distance between diabatic states, r12, in general leads to lower

probabilities of adiabatic transitions (and corresponding electron transfer). Importantly, we

note in Figure 10c, that for a gap distance of 1 cm and vacuum separation, electron transfer

is negligible despite the large AC voltage, V (t), applied.

In addition, scaling of ×10 used to plot electron emission under vacuum separation in

Figure 10 indicates that the presence of intermediate argon atoms increases the rate of elec-

tron emission, for all operating conditions that were investigated. Intermediate argon atoms

not only lead to additional level-crossings events, but these level-crossings also correspond

to shorter distances between diabatic states, r12, which are favorable to adiabatic transitions

(and electron transfer). Thus, the overall effect of the presence of intermediate argon atoms

is a consistent increase in the rate of electron emission, for a variety of operating conditions.

Finally, we note that the temporal profiles of electron emission computed in this section

are qualitatively consistent with the observed temporal profiles of plasma formation reported

in the literature[32–35]. We have shown that electron transfer from the dielectric to the argon

region under an AC voltage is time-dependent, and that the dielectric region can provide

electrons for plasma generation. Although electric fields in micro-scale plasmas can approach

values around 106 V/cm, the operating conditions for plasma devices are provided in terms

of the applied voltage regardless of the gap distance, and are in the kV range[7]. Therefore,

the next section investigates electron transfer when the AC voltage and gap distance are

varied separately.

E. Electron transfer at constant maximum voltage

In this section, we investigate the rates of electron transfer when the external voltage

and gap distance are varied independently. In particular, AC voltages corresponding to

V0 = {40V, 4000V }, and gap distances dgap = {1µm, 1cm}, are investigated with and with-

out intermediate argon atoms. Figure 11 presents the results of our computation. The first

column, Figure 11a, and the second column, Figure 11b, present results for V0 = 40V and

V0 = 4000V respectively, while the first and second rows of Figure 11 represent configura-
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(a) V0 = 40V (b) V0 = 4000V

FIG. 11. Electron transfer for gap distances of 1µm (first row) and 1 cm (second row), under

AC voltages (a) V0 = 40V and (b) V0 = 4000V . As expected, electron transfer is negligible for

vacuum separation when dgap = 1 cm, while the presence of intermediate argon atoms increases

the rate of electron transfer. In agreement with results of the previous section, electron transfer

for dgap = 1µm (first row) is greater than that for dgap = 1cm (second row), due to the effect of

distance between diabatic states, r12, on the probability of adiabatic transition. Comparing the

temporal profiles of (a) and (b), we note that for V0 = 40V and vacuum separation, the temporal

profile of electron emission is broadened. More importantly, we observe in (a) that under V0 = 40V

and in the presence of intermediate argon atoms (P = 105 Pa and P = 10Pa), the temporal profile

of electron emission undergoes a qualitative shift, resulting in significant electron transfers near

the maximum V (t). This behavior provides a partial microscopic explanation to experimental

observations of delayed plasma formation when the AC voltage is lowered[60, cf. Figures 5 and 13

therein].
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tions with dgap = 1µm and dgap = 1 cm respectively. The magnitudes and temporal profiles

of electron transfer under AC voltage of V0 = 4000V agree with experimental profiles[32–35],

as well as conclusions of the previous section.

However, reducing the AC voltage to V0 = 40V , in Figure 11a, appears to have two

effects. First, in the case of vacuum separation, the temporal profile of electron transfer is

broader under V0 = 40V than under V0 = 4000V . This is consistent with our discussion in

Section III C, where it was observed that level-crossing events are more broadly distributed

in time for smaller V0. Secondly, in the presence of intermediate argon atoms, electron

transfers also occur near the maximum value of V (t) = V0. Since electron transfer to the

gaseous region is a necessary but insufficient condition for plasma generation, this qualitative

change in time-dependent electron emission provides a partial microscopic explanation for

the observation that decreasing the maximum AC voltage also delays breakdown[60, cf.

Figures 5 and 13 therein]. This qualitative shift in the temporal behavior of electron emission

is more pronounced in the intermediate case of dgap = 100µm, P = 103Pa for V0 = 40V ,

shown in Figure 12.
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FIG. 12. Qualitative change in the time-dependence of electron emission at low AC voltage with

intermediate argon atoms present. Under high voltages (V0 = 4000V ) or under vacuum separation,

the temporal profile of electron emission is similar to the vacuum case (solid red line). However,

when the AC voltage is lowered and intermediate argon atoms are present, the temporal profile

of electron emission shifts (dashed blue line). This observation is consistent with, and provides

a partial explanation for, experimentally observed delay in plasma formation under reduced AC

voltage[60, cf. Figures 5 and 13 therein].
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The results of this subsection demonstrate that both the magnitudes and time-dependence

of electron transfer are affected by a combination of gaseous pressure, AC voltage, and gap

distance between dielectric surfaces. The magnitude of the AC voltage, V0 can change the

temporal profile of electron transfer by changing the times at which energy level-crossings

occur; the number of intermediate argon atoms can also change the number of energy level-

crossings, and also lead to higher probabilities of electron transfer, due to the decreased

distance between diabatic states, r12. Although under-explored in this work, the probability

of electron transfer at level crossing is also affected by the magnitude and frequency of AC

voltage via the slew term, ∂V (t)
∂t

. We anticipate future studies that explore the parameter

space consisting of pressure, operating voltage and gap distance, and their effects on electron

transfer from dielectric surfaces.

F. Q− V profile or Lissajous plots

Results of the previous subsections showed the effect of the applied voltage, gap distance

and ambient pressure on the magnitude and temporal profile of electron transfer. Next,

we consider a single gap distance of dgap = 100µm, and look at charge accumulation and

charge depletion, and the corresponding Lissajous plots in Figure 13. Of the computationally

feasible systems considered in this work so far, the system with dgap = 100µm, Natoms =

180, and V0 = 4000V is closest to the general operating conditions of symmetric dielectric

barrier discharges in terms of the pressure, gap distance, and AC voltage between dielectric

surfaces[7].

Figure 13a presents the rate of electron transfer from the left dielectric layer, while Fig-

ure 13b shows the total charge on the left dielectric as a function of time. Peaks in electron

transfer in Figure 13a correspond to sudden transitions in the number of electrons in Fig-

ure 13b. Figure 13b shows the depletion and accumulation of electrons on the dielectric

layer; measurements of surface charge[61, 62] qualitatively agree with our results. Fig-

ure 13c presents the corresponding Lissajous plot showing instantaneous charge-vs.-voltage

on the left dielectric. First we note that if the time-evolution of the system were reversible

(e.g. if all transitions were adiabatic), the values of ne(t) would overlap for the same V (t).

Figure 13d presents the Lissajous plot corresponding to a single AC cycle, zoomed in to

show the convex area in the Lissajous plot.
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FIG. 13. (a) The temporal profile of electron transfer for dgap = 100µm and P = 1.01 × 103 Pa

(b) The total charge on the left dielectric as a function of time, ne(t), on the left y-axis, with

the AC voltage V (t) on the right y-axis. (c) The corresponding Lissajous plot obtained by using

(x, y) = (V (t), ne(t)), where ti and tf denote the initial and final times of the simulation. (d)

Zoomed-in Lissajous plot showing one complete AC cycle between the phases {π2 , 2π + π
2 }. Note

the scales on the x and y axes due to the zoom-in.

Compared to experimental measurements[35, 62], we note two key differences made ev-

ident by the Lissajous plots in Figures 13c and 13d. First, in general, the area inside a

Lissajous plot is associated with energy consumption due to various irreversible processes

– electron transfer between dielectric and gaseous regions, electron-impact ionization and

plasma formation, as well as heat loss due to the motion of atoms. The area inside the com-

puted Lissajous plots shown in Figures 13c and 13d, is underestimated because this present
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work does not include the dissipative effects of electron-impact ionizations, atomic motion,

and plasma evolution. In addition, inclusion of a macroscopic dielectric layer would allow us

to incorporate the effects of a voltage drop and energy dissipation in the dielectric system,

increasing the magnitude of the threshold V (t) at which the Lissajous plot in Figures 13d

opens to convexity. Secondly, in Figure 13c, horizontal lines away from the transition re-

gion denote near constant charge ne for varying voltage or near-zero capacitance. A more

expensive but accurate self-consistent charge tight-binding calculation, and measurement

of surface charge on a predetermined surface instead of a volumetric integral over a thin

dielectric slab as in the present work, can improve these results.

IV. CONCLUSION AND FUTURE WORK

In this work, we present a time-dependent model of electron emission from dielectric

surfaces under AC voltage, that is based on electronic structure theory and dynamical level-

crossing. This model is motivated by the necessity of predicting electron emission from

dielectric surfaces in dielectric barrier discharge (DBD) plasma generators; as such, it pre-

dicts time-dependent electron emission that is qualitatively consistent with the observed

temporal profile of plasma formation reported in the literature[32–35]. Previously, the time-

dependence of experimentally measured current in DBDs was explained primarily via a

circuit model containing resistive and capacitive elements, and a switch controlling plasma

formation. At the microscopic level, gaseous breakdown could be modeled as an avalanche

of electron-impact ionization events – electron emission from dielectric surface walls was

assumed, but a theoretical model was missing.

A semi-empirical tight-binding parameterization for a thin layer of dielectric α−quartz,

and a quasi-particle, occupation-based model for argon atoms are used to investigate the

charge transfer mechanism. Exact time-integration of the density matrix over timescales in

the microseconds regime remains computationally infeasible, and charge transfer is modeled

in the incoherent limit of the multi-state Landau-Zener problem, as a series of independent

level-crossings. We find that both the magnitude and time-dependence of electron emission

vary as a function of the gaseous pressure, applied voltage, and gap distance between di-

electric surfaces. The computation and tabulation of time-dependent coefficients of electron

emission under various operating conditions will be a direct extension of this work, eventu-
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ally allowing for the integration of these surface-based initial and boundary conditions with

plasma simulations[15, 16, 63].

Random atomic motion in the gaseous region is set to zero, and future work is necessary

to incorporate the effects of temperature and dissipation[48, 56]. Within DBD devices,

temperature and dissipation not only affect the rate of electron transfer, but also contribute

to plasma formation in the gaseous region. Thus, more work is necessary to appropriately

couple a heat bath with the possibility of a phase transition, and will be considered in the

future.
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