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We propose a hierarchical architecture for building “logical” Majorana zero modes using “physi-
cal” Majorana zero modes at the Y-junctions of a hexagonal network of semiconductor nanowires.
Each Y-junction contains three “physical” Majoranas, which hybridize when placed in close prox-
imity, yielding a single effective Majorana mode near zero energy. The hybridization of effective
Majorana modes on neighboring Y-junctions is controlled by applied gate voltages on the links of
the honeycomb network. This gives rise to a tunable tight-binding model of effective Majorana
modes. We show that selecting the gate voltages that generate a Kekulé vortex pattern in the set
of hybridization amplitudes yields an emergent “logical” Majorana zero mode bound to the vortex
core. The position of a logical Majorana can be tuned adiabatically, without moving any of the
“physical” Majoranas or closing any energy gaps, by programming the values of the gate voltages
to change as functions of time. A nanowire network supporting multiple such “logical” Majorana
zero modes provides a physical platform for performing adiabatic non-Abelian braiding operations
in a fully controllable manner.
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I. INTRODUCTION

Topological qubits offer stronger resistance to de-
coherence by storing quantum information non-locally.
This property is a driving motivation behind theoretical
studies of topological quantum computation.1 Majorana
zero modes (MZMs), for instance, make up half-a-qubit,
thereby allowing the coding of qubits non-locally in two
far-away Majoranas. There has been a number of exper-
imental setups proposed to realize MZMs in condensed
matter systems.2,3 One approach aims at engineering
Hamiltonians with effective p-wave superconductivity by
proximitizing an s-wave superconductor to a semicon-
ductor nanowire with strong spin-orbit coupling,4–10 or
a topological insulator.11–14 Such hybrid systems typi-
cally host MZMs at the endpoints or boundaries of the
system. Recently, the theoretically predicted quantized
zero-bias conductance peak at 2e2/h in the presence of
MZMs has been observed in indium antimonide semicon-
ductor nanowires covered with an aluminium supercon-
ducting shell.15

Despite this progress, there remains the question of
how to braid MZMs once they are realized experimen-
tally. For example, many proposals for braiding MZMs
involve gradually moving microscopic MZMs by apply-
ing an array of gates to a single nanowire16. There also
exists alternative braiding protocols such as coupling to
magnetic fluxes17 and measurement-only approaches18.
In this work, we shall propose a scheme where braiding
of MZMs can be implemented without violating the adi-
abatic hypothesis. The building blocks of our proposal
are Majorana nanowires, i.e., semiconductor nanowires
supporting Majorana modes bound to their endpoints
at sufficiently low temperatures. However, the “logical”
MZMs that are braided are not these elementary Majo-
rana modes residing at the endpoints of the nanowires.
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FIG. 1. (a) Hierarchy of Majorana zero modes (MZMs). We start from an array of Majorana nanowires, depicted as the
black links of a honeycomb lattice. Each nanowire furnishes three “physical” QMZMs (green circles in the inset) that hybridize
locally, leaving one QMZM at each Y -junction (blue circle in the inset). The resulting effective QMZMs reside on the sites
of a honeycomb lattice (blue and red circles). An array of gates (grey “plungers”) provides tunable hybridization amplitudes
for the effective QMZMs. Writing a particular pattern of gate voltages gives rise to a Kekulé vortex that binds an emergent
“logical” MZM (purple density profile). The position R(t) of the emergent MZM is arbitrary and can be tuned continuously
as a function of time, so that multiple “logical” MZMs can be braided adiabatically. Inset: Definition of the hexagonal lattice
in terms of the two triangular sublattices ΛA and ΛB , with the nearest-neighbor vectors sα, α = x, y, z. (b) Controlling the
overlap between adjacent effective QMZMs with a gate voltage Vg. The Majorana wavefunctions (purple) decay exponentially
across the length of the nanowire with a decay length that scales inversely with the topological nanowire gap ∆nw. Increasing
Vg from Vg,1 to Vg,2 > Vg,1 decreases the nanowire gap, thereby increasing the wavefunction decay length, and with it the
overlap between the two effective QMZMs (compare solid and dashed curves).

Rather, they are emergent zero modes bound to point
topological defects that can be programmed by gating
the nanowires. These emergent zero modes live in two
spatial dimensions, in contrast to 1D wires where the
braiding statistics is intrinsically ill-defined. The “logi-
cal” MZMs are hierarchical, in the sense that they emerge
by coupling together a set of Majorana modes that are
themselves the result of the topological state of matter re-
alized in each nanowire. The hierarchy of Majorana zero
modes that are used in this work is depicted schemati-
cally in Fig. 1(a).

The hierarchical construction of the “logical” MZMs
starts from a set of Majorana nanowires. Since each
nanowire is of finite size, the Majorana modes at its
endpoints hybridize weakly and split from zero energy.
We call such a Majorana mode a quasi-Majorana zero
mode (QMZM). Imagine placing one of the Majorana
nanowires on each bond of a honeycomb lattice. At each
vertex of the honeycomb lattice, where three nanowires
form a Y-junction, three QMZMs hybridize strongly as
their wavefunctions have large overlaps. This hybridiza-

tion results in two QMZMs splitting away from zero en-
ergy by an amount much larger than the energy split-
ting of the QMZMs bound to the endpoints of a single
nanowire, leaving a single effective QMZM at each site of
the honeycomb lattice. This is the next level of the hier-
archy. Now, imagine reducing the length of the Majorana
nanowires making up the bonds of the honeycomb lat-
tice. The increase of the overlap between these effective
QMZMs will then be captured by a tight-binding model
for Majorana modes hopping on the honeycomb lattice.
If we assume translation invariant nearest-neighbor hop-
ping amplitudes, there arises a gapped liquid with two
massive Majorana cones very much as one finds in Ki-
taev’s honeycomb model in the presence of a magnetic
field,19 or in other lattices in the presence of quartic Ma-
jorana interactions.20

Another gap, which allows for the formation and ma-
nipulation of “logical” MZMs, can then be opened by giv-
ing the hopping amplitudes a Kekulé pattern. In prac-
tice, this can be done by applying voltages on the in-
dividual Majorana nanowires, which modulates the hy-
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bridization of nearest-neighbor effective QMZMs. To see
how, recall that the topological gap ∆nw in a Majorana
nanowire decreases when a gate voltage Vg is applied,

thereby increasing the hybridization.4–7 Decreasing the
size of the topological gap increases the decay length
of the QMZMs, thereby increasing the overlap of their
wavefunctions, see Fig. 1(b). Thus, by programming the
set of gate voltages applied to every bond, one can exer-

cise control over every hopping amplitude in the effective
tight-binding model.

Furthermore, one can program these hopping ampli-
tudes in a position-dependent manner so as to “write”
an arbitrary number v of Kekulé vortices into the sys-
tem. This is achieved by modulating the gate voltages as
Vg → Vg + δVg r,α, where

δVg r,α ..= V0 cos

(
K+ · sα + (K+ −K−) · r +

v∑
n=1

qn arg (r −Rn)

)
. (1.1)

Here, r is a point in one of the triangular sublattices of
the honeycomb lattice, sα (α = x, y, z) are the nearest-
neighbor vectors connecting to the other sublattice (see
Fig. 1), K+ = −K− are the corners of the Brillouin
zone of the honeycomb lattice. The vorticities qn = ±1
(n = 1, . . . , v) and positions Rn are here merely param-
eters that can be tuned at will. Kekulé vortices have
been shown to bind zero-energy modes in graphene,21,22

analogs of which also appear in photonic crystals.23 Sim-
ilar physics arises here, with the crucial distinction that
the zero modes are now of Majorana nature, owing to
the fact that the underlying tight-binding model is one
of Majoranas. It is the MZMs localized near the core
of each vortex that we shall call the “logical” MZMs,
which constitute the final level of the hierarchy. Because
the positions Rn of the vortices are merely parameters,
they can be tuned simply by changing the voltages on
each wire as a function of time, like addressing pixels on
a screen. Therefore, in a system with multiple vortices,
this scheme would allow one to move and braid the logical
MZMs adiabatically.

The rest of the paper is organized as follows. We
present the realization with Majorana nanowires in Sec.
II of an analogue of a p+ ip superconductor belonging to
the symmetry class D. We determine the conditions un-
der which the Kekulé dimerization controls the gap. We
define a scaling limit that allows one to derive a simple
model of free Majoranas with nearest-neighbor hopping
amplitudes on a honeycomb lattice in Sec. III. In this
scaling limit, the low-energy effective theory has higher
symmetry, belonging to symmetry class BDI. We explic-
itly solve for the MZM bound to a Kekulé vortex. We
further show that the Kekulé vortices indeed have the
braiding statistics of MZMs. In Sec. IV, we demonstrate
numerically the emergence of an MZM bound to the core
of a Kekulé vortex away from the scaling limit. Section
V discusses possible experimental measurement schemes
for the emergent MZMs and demonstrates the feasibility
of our setup using realistic experimental parameters. We
conclude with a summary and outlook for future direc-
tions in Sec. VI.
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FIG. 2. A Y-junction built from Majorana nanowires. The
QMZMs are depicted as green dots. Effectively, there are
three flavors of QMZMs on each lattice site. We label the
operators creating QMZMs by γ̂αS,j , where α = x, y, z denotes
the bond to which the QMZM belongs, while S = A,B de-
notes the sublattices, and j is the label for the lattice sites.

II. REALIZATION WITH MAJORANA
NANOWIRES

The building block that we shall use in this paper is
a nanowire which at low temperatures supports a topo-
logical superconducting gap ∆nw. Because of the topo-
logical gap ∆nw, the nanowire hosts a pair of QMZMs at
its endpoints when superconducting. We shall call such
a nanowire a “Majorana nanowire.”

The main idea of this paper is to imagine that each
nearest-neighbor bond of the honeycomb lattice is re-
alized by a Majorana nanowire. There are two energy
scales in the problem: a hybridization U and a hopping
amplitude t, as we now explain.

On the one hand, three Majorana nanowires must meet
at the sites of the honeycomb lattice, thereby realizing a
Y-junction of Majorana nanowires, as shown in Fig. 2.
Effectively (i.e., below the energy gap ∆nw of an isolated
Majorana nanowire), we have three flavors of QMZMs
on each site of the honeycomb lattice. The pairwise
hybridization among the three QMZMs will split their
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U

U

FIG. 3. Representation of the trimer limit defined by the
ground state of Hamiltonian (2.2). The MZMs at each Y-
junction are represented by green dots. Their pairwise hy-
bridization U is represented by directed bonds arranged along
the edges of a triangle. The blue and red triangles encircles
sites from sublattices ΛA and ΛB , respectively. The hybridiza-
tion energy scale for blue and red triangles is U . The pattern
of arrows along the edges of each triangle defines the order in
which two Majorana operators are to be multiplied with the
convention that U is positive for this order of multiplication.

quasidegeneracy by an energy scale |U |. Then, only one
QMZM remains below the energy scale |U | on any given
Y-junction (site of the honeycomb lattice). Thus, each
Y-junction effectively contributes a single emergent Ma-
jorana mode.

On the other hand, the pair of QMZMs bound to
the two ends of a Majorana nanowire are split away
from zero energy by the energy scale t that results from
the overlap of their wavefunctions. This hybridization
increases as each Majorana nanowire is shortened, in-
ducing a nearest-neighbor hopping amplitude t for the
three pairs of QMZMs localized on nearest-neighbor Y-
junctions of Majorana nanowires.

Hence, working at energies below the topological gap
∆nw of a Majorana nanowire, we have outlined the con-
struction of an effective six-band tight-binding model on
the honeycomb lattice using Majorana nanowires. Below
we shall discuss this construction in more detail.

A. Trimer limit (U 6= 0, t = 0)

Consider a honeycomb lattice Λ made of two interpene-
trating triangular lattices ΛA and ΛB . We shall label the
bonds of the honeycomb lattice by α = x, y, z depending
on their orientations, as shown in Fig. 2. Each bond of
the honeycomb lattice realizes a Majorana nanowire. We
shall thus associate to each bond of the honeycomb lat-
tice a pair of Majorana operators as depicted in Fig. 2. If
the label S = A,B distinguishes between the triangular

sublattices ΛA and ΛB , and if the label j stands for a
site from ΛS , then the Majorana algebra reads{

γ̂αS,j , γ̂
α′

S′,j′

}
= 2δα,α′δS,S′δj,j′ (2.1a)

with the Majorana reality condition

γ̂α†S,j = γ̂αS,j . (2.1b)

These Majorana operators stand at the first level of the
hierarchy.

The trimer limit occurs for t = 0. The Hamiltonian
describing this limit is

Ĥtrimer ..=
∑

S=A,B

∑
j∈ΛS

iU
(
γ̂xS,j γ̂

y
S,j+γ̂

y
S,j γ̂

z
S,j+γ̂

z
S,j γ̂

x
S,j

)
.

(2.2)

We represent in Fig. 3 the trimer limit as a decorated hon-
eycomb lattice. Hybridization within each Y-junction is
represented by a directed arrow relating a pair of MZMs.
The direction of the arrows along the edges of each tri-
angle defines the order in which two Majorana operators
are to be multiplied. It fixes the sign of the hybridization
U to be positive along the arrow. Reversing the chirality
of the red or blue triangles thus amounts to reversing the
sign of U .

Hamiltonian (2.2) is the sum over S = A,B and j ∈ ΛS
of the pairwise commuting operators

iU
(
γ̂xS,j γ̂

y
S,j + γ̂yS,j γ̂

z
S,j + γ̂zS,j γ̂

x
S,j

)
. (2.3a)

As each one of these operators has the three single-
particle eigenvalues

−
√

3U, 0, +
√

3U, (2.3b)

with the Majorana zero mode

η̂ ..=
1√
3

(
γ̂xS,j + γ̂yS,j + γ̂zS,j

)
, (2.3c)

Hamiltonian (2.2) supports three doubly-degenerate flat
bands with the single-particle energies (2.3b), respec-
tively.

B. Dimer limit (t 6= 0, U = 0)

The dimer limit occurs for U = 0. The Hamiltonian
describing this limit is

Ĥdimer ..=
∑
j∈ΛA

∑
α=x,y,z

it γ̂αA,j γ̂
α
B,j+sα

. (2.4a)
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t

FIG. 4. Representation of the dimer limit defined by the
ground state of Hamiltonian (2.4a). The arrows specify the
order in which Majorana operators (the green dots) enter
Hamiltonian (2.4a), with the convention that operators on
sublattice ΛA are to the left of operators from sublattice ΛB
along an arrow. With this convention, the hopping amplitude
t is positive along an arrow.

Here, sα are the unit vectors connecting the three sites
in ΛB that are nearest-neighbor to a site in ΛA, i.e.,

sz ..=

(
0
−1

)
, sx ..=

(
+
√

3/2
1/2

)
, sy ..=

(
−
√

3/2
1/2

)
.

(2.4b)
One may represent this Hamiltonian as is done in Fig. 4.
The energy scale t results from the finite lengths of Majo-
rana nanowires, which allows the pair of wavefunctions of
the QMZMs bound to the two ends of the semiconductor
nanowire to have a nonvanishing overlap. This overlap
leads to a splitting of their energies away from 0 by the
amount ±|t|.

Hamiltonian (2.4a) is the sum over j ∈ ΛA and α =
x, y, z of the pairwise commuting operators

it γ̂αA,j γ̂
α
B,j+sα

. (2.5a)

As each one of these operators has the two single-particle
eigenvalues

− |t|, +|t| (2.5b)

Hamiltonian (2.4a) supports two triply-degenerate flat
bands with the single-particle energies (2.5b), respec-

tively. The single-particle energies (2.5b) correspond to
the fermionic state

ĉα†j |0〉 ..=
1

2

(
γ̂αA,j − i γ̂αB,j+sα

)
|0〉, ĉαj |0〉 ..= 0,

(2.6)
being empty or occupied, respectively. There is no zero
mode in the dimer limit.

C. Reversal of time

We shall define the action of time reversal by the rules

i 7→ −i, γ̂αA,j 7→ +γ̂αA,j , γ̂αB,j+sα
7→ −γ̂αB,j+sα

.

(2.7)
The motivation for this definition is that we would like
to interpret

ĉαA,j ..=
1

2

(
γ̂αA,j + i γ̂αB,j+sα

)
(2.8)

as a fermion operator localized on the directed bond 〈j ∈
ΛA, j + sα ∈ ΛB〉 of the honeycomb lattices that is left
invariant by the operation of time reversal.

One verifies that Hamiltonian (2.4a) is even under re-
versal of time while Hamiltonian (2.2) is odd under re-
versal of time, i.e.,

Ĥdimer 7→ +Ĥdimer, Ĥtrimer 7→ −Ĥtrimer. (2.9)

Although Ĥtrimer is odd under time reversal, the zero-
energy flat band transforms trivially whereas the finite-
energy bands are interchanged.

D. Hamiltonian for the nanowire network

When both U 6= 0 and t 6= 0, we can write the nonin-
teracting Hamiltonian in momentum space as

Ĥwire ..= Ĥtrimer + Ĥdimer =

∫
ΩK

BZ

d3k Ψ̂†kHwire Ψ̂k,

(2.10a)

with the spinor

Ψ̂†k =
(
γ̂xA,k γ̂

y
A,k γ̂zA,k γ̂xB,k γ̂

y
B,k γ̂zB,k

)
(2.10b)

and the single-particle Hamiltonian

Hwire =


0 +iU/2 −iU/2 + it

2 e
ik·sx 0 0

−iU/2 0 +iU/2 0 + it
2 e

ik·sy 0
+iU/2 −iU/2 0 0 0 + it

2 e
ik·sz

− it
2 e
−ik·sx 0 0 0 +iU/2 −iU/2
0 − it

2 e
−ik·sy 0 −iU/2 0 +iU/2

0 0 − it
2 e
−ik·sz +iU/2 −iU/2 0

 . (2.10c)
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The single-particle Hamiltonian (2.10c) is of
Bogoliubov-de Gennes (BdG) form. This is to say
that out of its six Majorana bands, three have positive
single-particle energies, three have negative single
single-particle energies, and there exists an antiunitary
transformation such that the six bands can be organized
into three pairs such that for any one of these three
pairs the Majorana band with positive single-particle
energy maps to the Majorana band with negative single-
particle energy and vice versa under the antiunitary
transformation.

When |U/t| � 1, the two flat bands of Ĥdimer acquire
a dispersion with a bandwidth that is controlled by |U |.
Both bands are topologially trivial. We will not consider
this limit anymore in the paper.

When |t/U | � 1, the zero-energy modes (2.3c) of

Ĥtrimer that are localized on the sites of the honeycomb

lattice get hybridized by Ĥdimer. More precisely, the
twofold degenerate flat band in the Brillouin zone ΩBZ
arising from the zero mode η̂ defined in Eq. (2.3c) when
t/U = 0 turns into two bands related by particle-hole
symmetry. The bandwidth for this pair of Majorana
bands is of order |t|. These emergent low-energy Ma-
jorana modes realize the second level of the hierarchy of
Majoranas. The limit |U | � |t| enforces the first hier-
archical reduction in the number of effective Majorana
modes. We now turn to a quantitative analysis of the
band structure of the Hamiltonian (2.10c) in this limit.

In Fig. 5, we plot the band structure for t/U = 0.1 with
U > t > 0. We find that a gap opens at the corners of the
Brillouin zone. We shall call this gap the Haldane gap.
This terminology will be explained when we introduce
the single-particle Hamiltonian (3.5) and show that it
opens a spectral gap and endows Majorana bands with
non-vanishing Chern numbers. A direct calculation of
the eigenvalues at K± shows that the energies of the two
bands at K± are given by

ε±(K+) = ε±(K−)

= ± 1

4

(√
3U −

√
3U2 + 4t2

)
≈ ± t2

2
√

3U
+O

(
t4

U3

)
. (2.11)

We thus find that the Haldane gap is of order t2/U and,
as such, can be explained within second-order pertur-
bation theory. Upon linearization of the single-particle
Hamiltonian in the vicinity of K±, this gap can be in-
terpreted as a Haldane mass that implements the micro-
scopic breaking of time-reversal symmetry.24. The coun-
terpart of this phase in the Kitaev’s honeycomb model
is the non-Abelian topologically ordered phase stabilized
by a magnetic field.19

When the system is perturbed by a Kekulé dimeriza-

-0.5

0

2 3

0.5

20 10-1-2 -2-3

FIG. 5. The pair of particle-hole symmetric bands with
the lowest energies for Hamiltonian (2.10a) when U/t = 10
with U > t > 0. A Haldane gap appears at the corners of the
Brillouin zone ΩBZ (depicted in light blue). The magnitude of

the Haldane gap follows from ε±(K+) = ε±(K−) ≈ ± t2

2
√
3U

+

O(t4/U3). The energies are plotted in units of t.

tion defined by

δĤdimer ..= i
∑
j∈ΛA

∑
α=x,y,z

δtj,α γ̂
α
A,j γ̂

α
B,j+sα

(2.12a)

with the dimerization pattern25

δtj,α ..= ∆ eiK+·sα eiG·rj + c.c., (2.12b)

where the Kekulé amplitude

∆ ..= ∆0 e
iϕ, ∆0 ..= |∆|, ϕ ∈ [0, 2π), (2.12c)

and

G ..= K+ −K− ≡ 2K+ ≡ −2K− (2.12d)

is the momentum connecting the two valleys, such that
0 < ∆0 � t2/U , the band gap decreases until it van-
ishes when ∆0 ∼ t2/U . When the Kekulé amplitude
∆0 & t2/U , the gap is of Kekulé character21. This case
is illustrated in Fig. 6. We stress that the Haldane and
Kekulé gaps compete against each other, so they realize
two distinct gapped phases separated by a gap-closing
transition.26 When the gap is of Haldane character, the
bottom band has a Chern number C = −1 and there
is a chiral mode propagating along the edge of a system
with boundary. On the other hand, the Chern number
vanishes across the phase transition when the gap is dom-
inated by Kekulé dimerization, as shown in Fig. 6(e). In
this phase, there is no chiral edge mode at the boundary
of the system27.



7

-0.4

-0.2

0

0.2

1

0.4

10 0-1 -1

-0.4

-0.2

0

0.2

1

0.4

10 0-1 -1

Haldane gap critical point Kekule gap

(a) (b) (c)

(d)

-0.4

-0.2

0

0.2

1

0.4

10 0-1 -1

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

G
ap

0.02 0.04 0.06 0.08 0.1 0.12

-1

-0.8

-0.6

-0.4

-0.2

0

C
he

rn
 n

um
be

r

(e)

FIG. 6. Upper panels: the pair of particle-hole symmetric bands with the lowest energies for Hamiltonian (2.10a) when
U/t = 10 with U > t > 0 in the reduced Brillouin zone ΩK

BZ (depicted in light blue). The energies are plotted in units of t. (a)
Haldane gap at the corners of the original Brillouin zone ΩBZ in the absence of Kekulé dimerization is folded to the Γ point of
ΩK

BZ. (b) The critical point where the gap closes when ∆0/t ≈ 0.06. (c) A Kekulé gap is present at the Γ point in the reduced
Brillouin zone for ∆0/t = 0.12. Lower panel: (d) the single-particle spectral gap as a function of ∆0/t. Upon increasing ∆0/t,
the gap first closes and then reopens, indicating a phase transition separating two distinct gapped phases in which either the
Haldane gap or the Kekulé gap dominates; (e) Chern number of the bottom band as a function of ∆0/t. Across the phase
transition, the Chern number jumps from C = −1 to C = 0.

E. Scaling limits

There is an interesting scaling limit of (2.10) consisting
in taking the limit U →∞ holding t fixed. In this limit,
the hierarchy

U > t >
t

U
t (2.13a)

becomes

∞ > t > 0. (2.13b)

This limit sends to infinite energy the two pairs of
particle-hole symmetric Majorana bands that are sepa-
rated by an energy of order 2U [see Eqs. (2.3)]. It leaves
a gapless pair of particle-hole symmetric Majorana bands
with conical band crossing at the corners K+ and K− of
the Brillouin zone ΩBZ. In this limit, time-reversal sym-
metry, as measured by the vanishing of the Haldane gap,
is restored. This limit is useful as it allows one to treat in
closed analytical form the effect of a Kekulé modulation

of t – in particular the effect of a vortex in the Kekulé
modulation of t – on the single-particle spectrum.

III. FREE MAJORANAS ON A HONEYCOMB
LATTICE WITH KEKULÉ DIMERIZATION

We start by reviewing the properties of a tight-binding
model for Majoranas hopping on the honeycomb lattice
with nearest-neighbor hopping amplitudes. This model
is motivated by the scaling limit U → ∞ holding t
fixed that turns the hierarchy (2.13a) into the hierarchy
(2.13b).

A. Gapless liquid phase with uniform hopping
amplitudes

Consider a honeycomb lattice Λ made of two interpen-
etrating triangular lattices ΛA and ΛB . We start with the
operator âr that either creates or annihilates a Majorana
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mode on the lattice site r, i.e.,

{âr, âr′} = 2δr,r′ , â†r = âr, (3.1a)

for any pair of sites r and r′. We endow these Majo-
rana modes with the quantum dynamics specified by the
single-particle Hamiltonian

Ĥ ..=
∑
r∈ΛA

∑
α=x,y,z

t iâr âr+sα
. (3.1b)

Without loss of generality, we choose the hopping am-
plitudes to be positive, t > 0. We have set the lattice
spacing a of the honeycomb lattice to unity, a = 1.

We observe that Majorana operators localized on sub-
lattice ΛA always appear to the left of Majorana opera-
tors localized on sublattice ΛB in the Hamiltonian (3.1b).
If we define the operation of time reversal by the rule

i 7→ −i, âr 7→ +âr, âr+sα
7→ −âr+sα

, (3.2)

we conclude that the Hamiltonian (3.1b) is invariant un-
der reversal of time.

Hamiltonian (3.1b) is invariant under the translations
that map the honeycomb lattice onto itself. Hence, we
perform the Fourier transformation

âr =..
1√
N

∑
k∈ΩBZ

eik·râA,k, (3.3a)

âr+sα
=..

1√
N

∑
k∈ΩBZ

eik·(r+sα)âB,k, (3.3b)

where ΩBZ denotes the Brillouin zone of the triangular
sublattice. Notice that since âr is a Majorana operator,

â†k and âk are not independent,

â†A,k = âA,−k, â†B,k = âB,−k. (3.3c)

If we introduce the two-component spinor

γ̂†k ..=
(
â†A,k â†B,k

)
, (3.4a)

Hamiltonian (3.1b) turns into

Ĥ =
∑

k∈ΩBZ

γ̂†k iAk γ̂k, (3.4b)

where

Hk ≡ iAk

..=
i

2

 0 +t
∑

α=x,y,z
e−ik·sα

−t ∑
α=x,y,z

e+ik·sα 0

 .
(3.4c)

We observe that the symmetry under reversal of time
defined by Eq. (3.2) is broken by adding to the single-
particle Hamiltonian (3.4c) the traceless diagonal matrix

HHal
k ..=

(
+∆Hal

k 0
0 −∆Hal

k

)
, (3.5a)

where we demand that the so-called Haldane amplitude
satisfies

∆Hal
−k = −∆Hal

+k (3.5b)

for any k in the Brillouin zone ΩBZ.

Solving for ∑
α=x,y,z

e+ik·sα = 0 (3.6a)

yields the two nodal points

K± ..=
4π

3
√

3

(
±1
0

)
(3.6b)

at the corners K± of the Brillouin zone. Hence, the
single-particle spectrum of the single-particle Hamilto-
nian (3.4c) is identical to that of graphene for spinless
fermions at vanishing chemical potential by virtue of the
Majorana representation in the second-quantized Hamil-
tonian (3.4b).

Adding the Haldane term (3.5) to the single-particle
Hamiltonian (3.4c) opens a gap 2|∆K+

| > 0, the so-called

Haldane gap, at the corners K± of the Brillouin zone.
The upper and lower bands carry opposite Chern num-
bers of magnitude 1 when 2|∆K+

| > 0. This Haldane

gap is the counterpart to the gap (2.11).

If we focus on the low-energy physics near the two
Majorana cones, we can write k = K±+p in the vicinity
of K± and expand to leading order in p. The linearized
Hamiltonian (3.1b) now takes the form

Ĥ ≈ 1

2

∫
ΩBZ

d2p

(2π)2
Υ̂†(p) iÃ(p) Υ̂(p), (3.7a)

H̃(p) ≡ iÃ(p) = vF

(
−p · σ 0

0 +p · σ

)
, (3.7b)

where vF
..= 3t/2 and σ are Pauli matrices acting on the

two sublattice degrees of freedom. We have introduced
the four-component spinor

Υ̂†(p) =
(
â†A,+(p) −iâ†B,+(p) −iâ†B,−(p) â†A,−(p)

)
,

(3.7c)
where the subscript ± labels the two valleys centered
about the nodal points (3.6b). If we introduce another
set of Pauli matrices τ acting on these valley degrees
of freedom, the constraint from the reality condition be-
comes

Υ̂†(p) = [−σ2 ⊗ τ2Υ̂(−p)]T. (3.7d)
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If we do the rescaling

Υ̂†(p) =..
√

2 Ψ̂†(p), Υ̂ (p) =..
√

2 Ψ̂ (p), (3.8a)

one may verify that the components of Ψ̂†(p) obey
the standard algebra of complex fermions in momentum
space within each valley subspace. Finally, we arrive at
the representation

Ĥ ≈
∫

d2p

(2π)2
Ψ̂†(p) H̃(p)Ψ̂(p), (3.8b)

H̃(p) ≡ −vF p · σ ⊗ τ3, (3.8c)

Ψ̂†(p) = [−σ2 ⊗ τ2Ψ̂(−p)]T. (3.8d)

This is the same Hamiltonian as the one governing the
vortex-free sector of Kitaev’s honeycomb model.19 The

spinors Ψ̂(p) and Ψ̂†(p) are not independent due to the
constraint (3.8d), which is essentially a particle-hole con-
straint that relates the operators at one valley to the
other valley. Therefore, the single-particle Hamiltonian
(3.8c) has a BdG form.

B. Gapped phase with Kekulé dimerization

We consider the effect of a Kekulé modulation of the
hopping amplitudes along the bonds of the honeycomb
lattice. As we will see, the Kekulé dimerization will

open a gap near K±. The Hamiltonian describing the
Kekulé modulation can be represented by [compare with
Eq. (2.12)]

δĤ ..= i
∑
r∈ΛA

∑
α=x,y,z

δtr,α âr âr+sα
(3.9a)

with the dimerization pattern25

δtr,α ..=
∆

3
eiK+·sα eiG·r + c.c., (3.9b)

where the Kekulé amplitude

∆ ..= ∆0 e
iϕ, ∆0 ..= |∆|, ϕ ∈ [0, 2π), (3.9c)

will be shown to be associated to a single-particle gap
that opens up at the nodal points (3.6b). The Kekulé
term (3.9b) modulates the magnitudes of the hopping
amplitudes along the bonds in an alternating fashion as
shown in Fig. 7(a). Such a dimerization pattern breaks
the space group symmetry of the original Bravais lattice
by enlarging the original unit cell. In Fig. 7(a), we label
the inequivalent plaquettes by A, B, and C. By inspec-
tion of Fig. 7(a), one observes that the enlarged unit cell
is made of three original ones. As a result, we now have a
smaller Brillouin zone ΩK

BZ corresponding to the enlarged
unit cell, see Fig. 7(b). There are 3 × 2 = 6 Majorana
bands with all momenta from the original Brillouin zone
ΩBZ folded into ΩK

BZ. Applying the Fourier transforma-
tion (3.3), the Kekulé modulation (3.9) takes the form

δĤ = i
∑

k∈ΩBZ

[( ∑
α=x,y,z

2∆

3
ei(K++k)·sα

)
â†A,[k+G] âB,[k] +

( ∑
α=x,y,z

2∆

3
ei(K−+k)·sα

)
â†A,[k−G] âB,[k]

]
, (3.10)

where we have used the reality condition (3.3c) and defined [q] as the wave vector in the union of the three colored
hexagonal cells in Fig. 7(b) that differs from q by a reciprocal wave vector. Expanding Eq. (3.10) near K

±
and the

Γ point, we obtain

δĤ = i

 ∑
p∈ΩK

BZ

( ∑
α=x,y,z

2∆

3
ei(2K++p)·sα

)
â†A,[3K++p] âB,[K++p] +

∑
p∈ΩK

BZ

( ∑
α=x,y,z

2∆

3
eip·sα

)
â†A,[K−+p] âB,[K++p]

+
∑

p∈ΩK
BZ

( ∑
α=x,y,z

2∆

3
eip·sα

)
â†A,[K++p] âB,[K−+p] +

∑
p∈ΩK

BZ

( ∑
α=x,y,z

2∆

3
ei(2K−+p)·sα

)
â†A,[3K−+p] âB,[K−+p]

+
∑

p∈ΩK
BZ

( ∑
α=x,y,z

2∆

3
ei(K++p)·sα

)
â†A,[K−+p] âB,[p] +

∑
p∈ΩK

BZ

( ∑
α=x,y,z

2∆

3
ei(K−+p)·sα

)
â†A,[K++p] âB,[p]

 .
(3.11)

The modes at the Γ point must also be taken into account, since the expansion near K± already involves 3K±, which
can be identified as the Γ point. However, the hybridization between the nodal modes and the modes at the Γ point
occurs at much higher energies. In the low energy physics, we may neglect terms involving the modes at the Γ point
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FIG. 7. (a) The Kekulé modulation of the coupling strengths along the bonds. The black (grey) color denotes hopping
amplitudes that are strong (weak). Such a dimerization pattern breaks the space group symmetry of the original Bravais lattice
by enlarging the original unit cell. We label the inequivalent plaquettes by A, B, and C, and the enlarged unit cell is made of
three original unit cells. (b) Folding the Brillouin zone ΩBZ of the honeycomb lattice into the Kekulé Brillouin zone ΩK

BZ. The
three colored Brillouin zones are equivalent up to translation by reciprocal lattice vectors of the folded Brillouin zone.

in Eq. (3.11) and keep only hybridized modes between the nodal points [K±]. To leading order in p, we thus obtain

δĤ ≈ i

∫
d2p

(2π)2

{[
∆ â†A,+(p) âB,−(p) + ∆ â†A,−(p) âB,+(p)

]
−
[
∆ â†B,+(p) âA,−(p) + ∆ â†B,−(p) âA,+(p)

]}
, (3.12a)

where we have made the identifications

â†S,[K++p] → â†S,+(p), â†S,[K−+p] → â†S,−(p), S = A,B. (3.12b)

Combining with Eq. (3.8b), the low-energy effective
Hamiltonian in the presence of a Kekulé modulation can
be written in the continuum as

ĤKek ..= Ĥ + δĤ ≡
∫

d2p

(2π)2
Ψ̂†(p) H̃Kek(p)Ψ̂(p),

(3.13a)

where

H̃Kek(p) ..=

(
−p · σ ∆σ0

∆σ0 +p · σ

)
, (3.13b)

and we have set vF = 1. We remark that the particle-
hole symmetry was never broken on the way to Eq. (3.13),
so that the single-particle Hamiltonian (3.13b) is still of
the BdG type. As advertised, the Kekulé dimerization
opens a gap 2|∆| in the single-particle spectrum due to
scattering with the amplitude ∆ between the two nodal
points.

C. Symmetry class

We now consider the symmetries of the BdG Hamil-

tonian (3.13). We shall drop the tilde and denote H̃(p)
simply as H(p) from now on.

First, the reality condition (3.7d) imposes the spectral
particle-hole symmetry

C H̃Kek(p) C−1 = −H̃∗Kek(−p), C ..= −σ2 ⊗ τ2 K,
(3.14)

where K denotes complex conjugation. Hamiltonian
(3.13) also possesses the time-reversal symmetry

T H̃Kek(p) T −1 = H̃∗Kek(−p), T ..= σ1 ⊗ τ1 K.
(3.15)

Finally, composition of C and T yields the chiral symme-
try

S ..= T C = σ3 ⊗ τ3, (3.16)

under which

âA 7→ âA, âB 7→ −âB , (3.17)
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and

S H̃Kek(p)S−1 = −H̃Kek(p). (3.18)

Notice that the symmetry transformation satisfies

C2 = 1, T 2 = 1, (3.19)

so that Hamiltonian (3.13) belongs to the symmetry class
BDI. In the presence of point topological defects (vor-
tices), the Hamiltonian supports zero-energy chiral Ma-
jorana modes classified by Z.28–31 As we will see explicitly
in the next section, zero modes with positive and nega-
tive chiral eigenvalues have nonvanishing amplitudes on
sublattice ΛA and ΛB , respectively.

D. Majorana zero modes bound to Kekulé vortices

The Kekulé distortion enters (3.13) as a complex-
valued amplitude. As such the Kekulé distortion sup-
ports point-like static defects in the form of vortices

∆vtx(r) ..= ∆0(r)ei(ϕ+nθ), r = |r|
(

cos θ
sin θ

)
,

(3.20a)
where n ∈ Z is the vorticity that measures the winding of
the phase of the Kekulé order parameter, while ∆0(r) ..=
|∆vtx(r)| defines the profile of its magnitude. This static
function must vanish at the origin and saturate to some
prescribed nonvanishing but finite value as r →∞, say

∆0(r) ..= ∆0 tanh

( |r|
`0

)
(3.20b)

with ∆0 > 0 and `0 > 0.

We seek any qualitative change induced in the single-
particle spectrum of Hamiltonian (3.13b) when the
Kekulé order parameter is given by Eq. (3.20) instead
of being a constant complex number. To this end, we
represent Hamiltonian (3.13) in two-dimensional position
space. We thus have

H̃Kek(r) ..=


0 2i∂z ∆vtx(r) 0

2i∂z̄ 0 0 ∆vtx(r)
∆vtx(r) 0 0 −2i∂z

0 ∆vtx(r) −2i∂z̄ 0

 ,

(3.21a)
where we have chosen the basis

Ψ̂†(r) ..=
1√
2

(
â†A,+(r) −iâ†B,+(r) −iâ†B,−(r) â†A,−(r)

)
(3.21b)

obeying the reality condition

Ψ̂†(r) ..=
[
−σ2 ⊗ τ2Ψ̂(r)

]T
(3.21c)

and used the complex coordinates

z ..= x+ iy,

z̄ ..= x− iy,

∂z = 1
2

(
∂x − i∂y

)
,

∂z̄ ..= 1
2

(
∂x + i∂y

)
.

(3.21d)

We seek normalizable solutions to the eigenvalue prob-
lem

HKek(r) Ψ0(r) = 0. (3.22)

If a normalizable solution Ψ0(r) exists, we shall call it
a zero mode. This problem was first studied by Jackiw
and Rossi in a different context where ∆(r) is the vor-
tex in the superconducting order parameter.29 Here, the
origin of the gap is instead the bond density wave due to
the Kekulé modulation.21 Nevertheless, the mathemat-
ical structure of the Hamiltonian (3.21) is identical to
that studied by Jackiw and Rossi. As a consequence of
the spectral chiral symmetry (3.16), the single-particle
Hamiltonian (3.21) is block off diagonal. Hence, any zero-
mode solution must take one of two forms, namely

ΨA,0(r) =

uA(r)
0
0

vA(r)

 , ΨB,0(r) =

 0
uB(r)
vB(r)

0

 .

(3.23)

As is implied by the notation, ΨS,0(r) has support on
sublattice S = A,B only. For simplicity, we shall focus
below only on cases where |n| = 1.

When n = −1, only ΨA,0(r) is normalizable. It is
given by

uA(r) = N ei(π4 +ϕ
2 ) e
−
r∫
0

dr′∆0(r′)
, (3.24a)

uB(r) = 0, (3.24b)

vB(r) = 0, (3.24c)

vA(r) = uB(r), (3.24d)

where N is the normalization constant. The wavefunc-
tion (3.24) is exponentially localized about the vortex
core, for it decays exponentially fast with the distance r
away from the vortex core with the characteristic decay
length ∼ 1/∆0 set by the asymptotic magnitude ∆0 of
the Kekulé order parameter. There follows the “logical”
MZM operator

γ̂A ..=

∫
d2r

[
uA(r) âA,+(r) + uA(r) âA,−(r)

]
.

(3.24e)
The reality condition

γ†A = γA (3.24f)

follows from Eq. (3.21c).

Similarly, when n = +1, it is only ΨB,0(r) that is
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normalizable. The wavefunction is then given by

uA(r) = 0, (3.25a)

uB(r) = N ei(π4 +ϕ
2 ) e
−
r∫
0

dr′∆0(r′)
, (3.25b)

vB(r) = uA(r), (3.25c)

vA(r) = 0, (3.25d)

where N is the normalization constant. There follows
the “logical” MZM operator

γ̂B ..=

∫
d2r

[
uB(r) âB,+(r) + uB(r) âB,−(r)

]
.

(3.25e)
The reality condition

γ̂†B = γ̂B (3.25f)

follows from Eq. (3.21c).
In summary, far-separated Kekulé vortices with |n| = 1

bind MZMs localized around their vortex cores, with non-
vanishing amplitude on either sublattice ΛA or ΛB , re-
spectively. For |n| > 1, the index theorem guarantees
that there are |n| mutually orthogonal normalizable zero
modes, with support on sublattice ΛA or ΛB depending
on sgn(n).29 All n zero modes are robust to any pertur-
bation that respects the BDI symmetry.28–31 Thus, in
general, Kekulé vortices in class BDI can harbor mul-
tiple protected MZMs, unlike vortices in the traditional
(2+1)-dimensional p + i p superconductor.32,33 The rea-
son for this is that vortices in the latter case carry a Z2

index, owing to the fact that the parent Hamiltonian is
in class D rather than BDI, so that only the parity of
the number of MZMs is conserved. The model studied
in Sec. II turns out to be in class D, and consequently is
more similar to the usual p+ i p superconductor, despite
the fact that its vortices also stem from the presence of
a Kekulé distortion.

If we drop the reality condition (3.21c), the fermion
number becomes a good quantum number. This situta-
tion applies to the case of complex fermions hopping on
the honeycomb lattice as was considered in Refs. 21 and
22. The filled Fermi sea with the zero mode occupied
or empty, respectively, can then be assigned the fermion
number ±1/2. In the presence of the reality condition
(3.21c), the zero mode becomes a logical MZM of indefi-
nite fermion number. The logical MZMs obey an exotic
braiding statistics, as we now explain.

E. Braiding statistics of Kekulé vortices

In this section, we review the fact that the form of the
zero-mode solutions (3.24e) and (3.25e) implies that their
corresponding MZM operators obey non-Abelian braid-
ing statistics, just like the half-vortices of p+ ip topolog-
ical superconductors.32,33

Instead of one vortex, we shall consider v vortices

all sharing the same vorticity centered at the positions
R1, · · · ,Rv on the two-dimensional Euclidean plane
through the Ansatz

∆(r;R1, · · · ,Rv) ..= ∆0

v∏
j=1

tanh

( |r −Rj |
l0

)
× ei[ϕj−arg(r−Rj)].

(3.26)

We assume that the vortices are kept far enough away
from each other that their pairwise hybridization can be
ignored, i.e.,

|Ri −Rj | � 1/∆0 (3.27)

must always hold for any 1 ≤ i < j ≤ v. Suppose that
Rj moves adiabatically anticlockwise once along a closed
path in two-dimensional Euclidean space. Furthermore,
suppose that this path encircles one and only one vortex,
say the vortex located at Ri without loss of generality. If
r is sufficiently close to Ri, arg(r −Rj) changes by 2π,
a change that can be absorbed by taking ϕi → ϕi + 2π.
However, due to the presence of the phase ϕi/2 in the zero
mode solutions (3.24) and (3.25), we find that γ̂i → −γ̂i
after moving rj a full circle around ri. Repeating the
same analysis by interchanging the role of rj and ri, one
finds that γ̂j → −γ̂j as well.

The appearance of the additional minus sign due to the
multi-valuedness of the zero mode solutions parallels that
of the p + i p topological superconductor. Namely, the
MZM operator changes sign as the vortex phase winds
by 2π. To keep track of the signs, it is convenient to
take ϕi ∈ [0, 2π) and introduce branch cuts so that ϕi
jumps by 2π each time the vortex ri crosses a branch
cut. In this way, one can derive the following property
of the Majorana zero modes under a counterclockwise
exchange of vortices j and j + 1,

γ̂j 7→ +γ̂j+1, γ̂j+1 7→ −γ̂j , (3.28)

which is precisely the braiding statistics of MZMs.32,33

IV. ZERO MODES BOUND TO KEKULÉ
VORTICES IN THE NETWORK OF MAJORANA

NANOWIRES

We now return to the Hamiltonian (2.10) describing
the network of quantum nanowires in the presence of a
Kekulé gap larger than the Haldane gap. We shall impose
a Kekule vortex of vorticity one in magnitude and verify
numerically that it binds a “logical” Majorana zero mode.

To this end, we imprint a Kekulé vortex with vorticity
q = ±1 that is centered at the origin, R = 0, by replacing
the uniform t in the dimer Hamiltonian (2.4a) with t +
δtr,α where [compare with Eq. (1.1)]

δtr,α ..= ∆0 cos
(
K+ · sα +G · r + q arg (r)

)
(4.1)
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(b)(a)

FIG. 8. Wavefunctions of the zero mode bound to a single Kekulé vortex at the origin for ∆0/U = 0.02 with U > t > 0 and
vorticity q = 1. The numerics are carried out on a diamond shaped geometry with 61 sites on each edge. (a) ∆0/t = 0.2; (b)
∆0/t = 0.125. The zero mode amplitude decreases upon decreasing ∆0/t and the profile broadens. For a system with open
boundary, there is an additional zero mode localized near the boundary which is not shown in the plot.

and α = x, y, z. In the continuum limit, this expression
yields a Kekulé order parameter with a vortex profile
similar to that in Eq. (3.20).

When|∆0| & t2/U , we find a zero mode bound to the
Kekulé vortex, as shown in Fig. 8. The amplitude of this
zero mode decays exponentially away from the vortex
core. The amplitudes are nonvanishing on sublattices ΛA
and ΛB , respectively, depending on the sign of the vor-
ticity, sgn(q) = ±1. Upon increasing t/U , the band gap
decreases as the Kekulé gap competes with the Haldane
gap. Consequently, the exponential decay of the zero
mode is less pronounced, and the zero mode spreads out
further, until the zero mode is eaten by the continuum of
single-particle states when the band gap vanishes. When
t2/U & |∆0|, the Haldane gap dominates over the Kekulé
gap and no zero mode can bind to a Kekulé vortex.26

V. EXPERIMENTAL CONSIDERATIONS

A. Measurement scheme

We now discuss the possibility of measuring the emer-
gent MZMs and verifying their braiding properties within
the nanowire network proposed in this paper. The exis-
tence of the “logical” MZMs can be probed via scan-
ning tunneling microscopy (STM), where they manifest
themselves as zero-bias peaks in the tunneling differential
conductance. In addition, by employing high-resolution
STM conductance mapping techniques, it is possible to
probe the spatial profile of the MZMs, thereby verifying
their localized nature.34–37

However, the verification of the existence of the “log-
ical” MZMs is not complete unless one can also verify

that braiding the “logical” MZMs acts on the low-energy
Hilbert space of the system in the manner characteristic
of true MZMs. We now make this idea more precise. For
a system with 2N “logical” MZMs, each pair of MZMs
constitutes a fermionic state that can be either empty
or filled. The fermion parity (even or odd, respectively)
of each pair then specifies the state of a qubit. Thus,
the dimension of the Hilbert space spanned by the quan-
tum states of these qubits grows as 2N−1 once the total
fermion parity of the 2N MZMs has been fixed. Braid-
ing “logical” MZMs performs unitary transformations on
this Hilbert space. Thus, in order to verify that braiding
the “logical” MZMs acts in the desired way, one needs
a means of measuring the fermion parity of any pair of
MZMs. Here, we can again exploit the fact that the
“logical” MZMs can be moved adiabatically by adjusting
the array of gate voltages. Bringing a pair of “logical”
MZMs together by merging two Kekulé vortices effec-
tively “fuses” the two MZMs. Then, in order to deter-
mine whether the pair of MZMs were in an even- or odd-
fermion-parity state, one can measure the local charge
distribution in the vicinity of the fused pair: if there is a
finite charge density where the two zero modes were fused
together, then they were in an odd-fermion-parity state;
if not, then they were in an even-fermion-parity state.
Such a measurement can potentially be achieved with
scanning single-electron transistor microscopy (SSETM),
which can resolve local charge density on the length scale
of nanometers.38,39 Therefore, in principle, the existence
of MZMs and their braiding and fusion properties can be
measured by interfacing STM and SSETM probes with
the nanowire network.

We remark that in practice there are additional practi-
cal subtleties when performing measurements with STM
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or SSETM on our setup. For example, the nanowires
used in current experiments are covered by a supercon-
ducting shell, which may potentially pose a problem for
electron tunneling from STM tips. However, in real ex-
periments the superconducting shell does not cover the
entire nanowire, but only on the side of the wire3,15. In
this way, one can avoid direct contact of the supercon-
ducting shell with the STM tip. Similarly, at the Y-
junction where three wires meet, one could leave a short
segment on each wire uncoated by the superconducting
shell. As long as the MZMs at the endpoints have a finite
extent, their existence could still potentially be detected
by STM/SSETM. In summary, measuring the emergent
MZMs experimentally would likely require careful con-
siderations and improvements in experimental techniques
but is feasible in principle.

B. Experimental parameters

Let a be the length of a Majorana nanowire that we are
using as a nearest-neighbor bond of the honeycomb lat-
tice (i.e., the lattice spacing of the honeycomb network).
We assume that the trimer energy scale U that enters in
Eq. (2.10) is U ∼ ∆nw, so that the physical Majoranas
are almost on top of one another. We seek to express the
hopping amplitude t and the Kekulé gap ∆0 that enter

in Ĥdimer + δĤdimer [see Eqs. (2.10) and (2.12)] in terms
of the energy scales entering a single Majorana nanowire.

A single Majorana nanowire wire is modeled as a one-
dimensional gas of non-interacting electrons at the chem-
ical potential Vg in proximity to an s-wave superconduc-
tor, whereby the electronic kinetic energy competes with
Zeeman, Rashba spin-orbit, and s-wave superconducting
pairing contributions to the Hamiltonian.6,7,16

The expression for the topological gap ∆nw of a single
Majorana nanowire is6,7,16

∆nw ..=
g µB |Bz|

2
−
√

∆2
sc + V 2

g > 0, (5.1a)

where g is the effective g-factor in the wire, µB is the Bohr
magneton, |Bz| is the strength of the applied magnetic
field along the Cartesian axis z that is perpendicular to
the plane in which the Majorana nanowires lie, ∆sc is the
proximity-induced superconducting gap of the Majorana
nanowire, and the gate potential Vg sets the chemical
potential in the Majorana nanowire. Physical MZMs are
bound to the end points of this Majorana nanowire if and
only if

gµB |Bz|
2

>
√

∆2
sc + V 2

g . (5.1b)

As the decay length for a physical MZM bound to the
end points of a Majorana nanowire is

ξphysical =
~ vF,nw

∆nw

, (5.2)

where vF,nw is the Fermi velocity of the Majorana

nanowire (which is equal to the spin-orbit coupling in the
limit when the Zeeman energy is much smaller than the
effective electron mass times the spin-orbit coupling in
suitable units), the overlap between two physical MZMs
is then approximately given by

t ∼
~ vF,nw

a
κ e−κ, κ ..=

a∆nw

~ vF,nw

, (5.3)

when measured in units of energy. This overlap is con-
trolled by the dimensionless ratio

κ =
a

ξsc

∆nw

∆sc

, (5.4a)

where we have introduced the proximity-induced super-
conducting coherence length

ξsc ..=
~ vF,nw

∆sc

. (5.4b)

The overlap t is thus exponentially suppressed by either
increasing the ratio between the length of the Majorana
nanowire and the proximity-induced superconducting co-
herence length or the ratio between the topological gap
and the proximity-induced superconducting gap.

When estimating the size of the Kekulé gap ∆0, we
assume that we can vary the gate voltages Vg along the
nearest-neighbor bonds on the honeycomb lattice by the
amount δVg. To leading order in δVg, the topological gap
(5.1a) changes by ∆nw → ∆nw + δ∆nw with

δ∆nw → −
Vg√

∆2
sc + V 2

g

δVg. (5.5)

Substituting this expression into (5.3) and expanding to
leading order in δVg, we obtain t→ t+ δt, where

δt

t
≈ κ− 1

κ
δκ, δκ ..=

a

~ vF,nw

V 2
g√

∆2
sc + V 2

g

δVg

Vg

.

(5.6)

When expressed in units of the uniform hopping ampli-
tude t, we arrive at the final expressions

δt

t
≈ κ− 1

κ

a

ξsc

V 2
g /∆

2
sc√

1 + V 2
g /∆

2
sc

δVg

Vg

(5.7a)

for the Kekulé perturbation (2.12) with the non-uniform
hopping amplitude δt,

∆0

t
∼ δt

t
(5.7b)
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for the Kekulé gap in Eq. (3.9), and

ξlogical ..=
t

δt
a (5.7c)

for the decay length of a logical MZM.
Let us now show that a great deal of control over the

size of the logical MZMs is attainable using the same ma-
terial parameters as in current experimental setups. We
focus on the InSb/Al systems reviewd in3. The prox-
imity induced superconducting gap is ∆sc ∼ 0.2 meV,
while the Fermi velocity can be estimated from the
quoted range of values of the spin-orbit coupling, i.e.,
vF,nw ∼ 0.2− 1.0 eV × Å. Hence, the proximity-induced
superconducting correlation length is in the range ξsc ∼
100 − 500 nm. For wires of length a ∼ 1µm, one thus
have ratios in the range a/ξsc ∼ 2− 10.

We proceed by choosing to work with κ ≈ 2, which
yields significant overlap between the zero modes at
the endpoints of the wires (and can be selected via
the magnetic field, as we clarify below). According to
Eq. (5.4a), this choice gives a hopping amplitude t ∼
0.27 ~ vF,nw/a = 0.27 (ξsc/a) ∆sc ∼ 0.027 ∆sc − 0.14 ∆sc.
The choice of working with κ ≈ 2 corresponds to a mag-
netic field such that ∆nw ≈ κ (ξsc/a) ∆sc ∼ 0.2 ∆sc −
1.0 ∆sc according to Eq. (5.4a).

With the choice of κ ≈ 2, the Kekulé gap (5.7b) is
approximately given by

∆0

t
≈ 1

2

a

ξsc

V 2
g /∆

2
sc√

1 + V 2
g /∆

2
sc

δVg

Vg

. (5.8)

The prefactor in front of δVg/Vg on the right-hand side
can be chosen to be of order one by choosing the ratio
V 2

g /∆
2
sc in the expression above so as to compensate the

factor a/(2ξsc) ∼ 1.0 − 5.0. (The corresponding bias Vg

should thus be of roughly the same order as ∆sc.) If
so, the ratio ∆0/t ≈ δVg/Vg. Consequently, by using
modulations with δVg of the same order as Vg, one can
make the Kekulé gap of the order of t, and hence the size
of the logical MZMs as small as the length scale of the
wire size a.

We remark that for the scheme that we propose, the
shorter the wires the larger the energy scales of the ef-
fective model. The hopping amplitude t would roughly
double (if one chooses to operate at the same κ ≈ 2) if one
uses wires that are half as long. (This energy scale is set
by ~ vF,nw/a.) So for a 500 nm (300 nm) wire, the energy

scale of t ∼ 0.054 ∆sc− 0.27 ∆sc (t ∼ 0.09 ∆sc− 0.45 ∆sc)
follows.

One potential cause for concern about the hexago-
nal network geometry depicted in Fig. 1 is the magnetic
field alignment: the standard models for the low-energy
physics in proximitized nanowires require a component
of the applied magnetic field to be perpendicular to the
spin-orbit coupling vector5–7, which may be problem-
atic to achieve in a hexagonal network. However, while
the honeycomb-lattice arrangement of the nanowires de-

picted in Fig. 1 simplifies our theoretical calculations and
makes the idea transparent, this geometry is not strictly
necessary in reality. For example, to simplify the mag-
netic field alignment in an experimental setup, one could
deform the lattice into a “brick wall” structure, with all
nanowires placed either horizontally or vertically. Then,
by applying a magnetic field to the entire system at a
45◦ angle, there is a nonzero component of magnetic field
along each individual wire. On the other hand, one neces-
sarily needs to optimize the position where the supercon-
ducting shell is coated on each wire, so as to avoid driv-
ing the shell normal. Finding the optimal arrangement of
the nanowire, magnetic field and superconducting shell in
experiments is crucial to all applications involving Y-and
T-junctions.16

Another parameter relevant to experiments is the time
scale on which a braiding operation can be performed
such that the system remains in its ground state. One
can estimate this time scale from the adiabatic theorem.
The probability of transitioning to excited states when
moving a single vortex a distance of a few lattice spacings
can be estimated as:

pn 6=0 ∼
~2

∆4
0

〈0|Ḣ2|0〉c

∼ ~2

∆4
0

Ṙ2

(
∆0

a

)2

∼ ~2

∆2
0a

2
Ṙ2, (5.9)

where the dot denotes a derivative with respect to time.
The adiabatic condition requires pn 6=0 � 1, which leads

to |Ṙ| � ∆0a/~. Physically this means that the rate at
which the vortex cores can be moved in an experiment is
limited by the Kekulé gap.

VI. SUMMARY

In this paper, we presented a hierarchical architecture
for building logical Majorana zero modes using physical
Majorana zero modes at the Y-junctions of a hexagonal
network of semiconductor nanowires. In a nutshell, the
essence of our approach is that one can build Majoranas
out of Majoranas that are, in turn, built of Majoranas
(see Fig. 1). The “emergent” or “logical” Majoranas
can be moved adiabatically and are not restricted to be
centered at sites of a lattice, although their microscopic
or “physical” constituents are. What this construction
provides is the ability to program where one wants to
place the “logical” Majoranas by controlling applied gate
biases on the nanowires within the hexagonal network.
We present in Eq. (1.1) a simple expression for the bias
voltages that would place v Majoranas at the centers of
Kekulé vortices at locations Rn(t), n = 1, · · · , v, which
can be varied as functions of time in a prescribed way.

Within the hierarchical construction of quantum Hall
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states, novel quasiparticles appear as a result of conden-
sation of other types of quasiparticles. Such a hierarchy
can be viewed within the broader context of emergence,
where novel excitations appear at different scales. Our
scheme is a form of engineered emergence, where one can,
by design, create novel excitations starting from simple
building blocks. In our case, we have a meta-circular re-
alization of Majoranas, for the emergent particles at the
top of the hierarchy coincide with those used as building
blocks (those at the bottom level of the hierarchy). The
distinction between the Majoranas at the different lev-
els of the hierarchy is the fact that the ones on top are
movable, while the ones on the bottom are static. This is
an important difference, as the ability to move the Majo-
ranas in the plane in a programmable way should permit
one to braid them, providing a direct means to probe

their non-Abelian statistics.
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