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Some interfaces between two different topologically ordered systems can be gapped. In earlier
work it has been shown that such gapped interfaces can themselves be effective one dimensional
topological systems that possess localized topological modes in open boundary geometries. Here
we focus on how this occurs in the context of an interface between two, single-component Laughlin
states of opposite chirality, and with filling fractions ν1 = 1/p and ν2 = 1/pn2. While one type of
interface in such systems has been previously studied, we show that allowing for edge reconstruction
effects opens up a wide variety of possible gapped interfaces depending on the number of divisors
of n. We apply a complementary description of the ν2 = 1/pn2 system in terms of Laughlin states
coupled to a discrete gauge Zn field. This enables us to identify possible interfaces to the ν1 system
based on complete or partial confinement of this gauge field. We determine the tunneling properties,
ground state degeneracy, and the nature of the non-Abelian zero modes of each interface in order
to physically distinguish them.

I. INTRODUCTION

Topological phases of matter in two dimensions are of-
ten characterized by a gapped bulk interior in addition
to gapless edge modes. Phases with topological order can
exhibit a number of interesting properties such as quasi-
particles with fractional statistics, topological ground
state degeneracy on manifolds with non-zero genus, and
chiral edge modes1. However, having gapless edge or in-
terface modes is not a necessary requirement for topolog-
ical order, and some systems can support gapped edges
with the vacuum or, in general, gapped interfaces to
a system with a different topological order2–7. Indeed,
some recent work has explored heterogeneous interfaces
between two topologically ordered phases and illustrated
that the interface can support non-Abelian bound states,
and unusual entanglement properties8–19.

In this article we focus on interfaces in systems with
intrinsic Abelian topological order described within the
K-matrix formalism20. We revisit the work carried out in
Ref. 16 that described heterogeneous interfaces between
two one-component topological phases, and uncover new
types of gapped, topological interfaces that were not dis-
cussed earlier. We consider each interface type in turn,
focusing on tunneling properties, ground state degen-
eracy, and the existence of non-Abelian bound states.
These properties are consistent with the perspective that
the gapped interfaces we are studying can be inter-
preted as 1d topological systems similar to parafermion
wires21–27 as was previously discussed in Refs. 16 and
19.

Within the K-matrix formalism it is straightforward
to determine the families of gapped edges of a topologi-
cal phase using one of two equivalent methods: the null
vector criteria2 or the Lagrangian subgroup criteria6,28.
These methods can also be applied to gapped interfaces
between two topologically ordered materials, since we can
imagine folding the heterogeneous interface to form a sin-
gle edge with multiple components. Here we will con-
sider a particularly simple interface between two, one-

component Laughlin states. The ideas presented here
could be generalized to other interfaces, although the
details may be more complicated. The one-component
Laughlin states have a single chiral/anti-chiral edge chan-
nel and we will focus on interfaces between 1/p and 1/pn2

states; the fractions are chosen precisely so the interface
can be gapped6. It has been shown that these two states
are related by gauging a Zn symmetry of the 1/p state, or,
conversely, by confinement of the Zn charged particles of
the 1/pn2 state17,29, and we will exploit this relationship
below. Despite the simplicity of the topological orders
at the interface, we will show that there are actually a
variety of possible interfaces and phenomena which can
occur here.

Our article is organized as follows. We first describe
three inequivalent, gapped interfaces between the two
topological orders in terms of the (bulk) K-matrix and
(edge) Luttinger liquid formalisms. We then heuristi-
cally discuss the types of anyon transmission and reflec-
tion processes that occur at the various interfaces. From
there we move on to discuss the ground state degeneracy
of the folded interfaces in disk and cylinder geometries.
Finally, we classify the types of non-Abelian modes that
appear when a gapped interface intersects a boundary to
the vacuum.

II. SINGLE COMPONENT INTERFACE

We will begin with a short introduction to the formal-
ism that will describe the two, one-component Laughlin
states, and a review of the gapped interface discussed
in Ref. 16. Let us start with the K-matrix theory for
the Laughlin 1/p (1/pn2) state. For single-component
states, the K-matrix of each state is given by the single
integer p (pn2). This integer determines the statistics
of the p (pn2) types of anyon quasiparticles, as well as
the ground state degeneracy |p| (|pn2|) on a torus. From
this bulk K-matrix we can construct a Lagrangian for
the edge modes, say along the y-direction, of an Abelian



2

topological order described by K:

L =
1

4π
∂tφ

TK∂yφ−
1

4π
∂yφ

TV ∂yφ (1)

where V is the velocity matrix, and and φ is a vector of
bosonic fields. The anyons are given by eir·φ, where r is
an integer valued vector. The anyons are indistinguish-

able upon attachment of local particles given by eiR
TKφ,

where R is an integer valued vector. The anyons thereby
form a discrete lattice15,30–32. The K matrix descrip-
tion is invariant under transformations K → WTKW ,
φ → W−1φ, where W is integer valued, has unit deter-
minant, and is the same dimension as K, i.e., W is a
basis change that leaves the lattice of quasiparticles un-
changed.

For the 1/p and 1/pn2 states respectively we will use
the K matrices1

Kp = p (2)

Kpn2 = pn2. (3)

For the interface, where we have an anti-chiral 1/p state
abutting a chiral 1/pn2 state, we will use the representa-
tion

Kt = K−p ⊕Kpn2 =

[
−p 0
0 pn2

]
, (4)

with bosonic fields φt = (φt,1, φt,2). The field φt,1 corre-
sponds to the edge excitations of the anti-chiral 1/p state,
and φt,2 corresponds to the edge excitations of the chiral
1/pn2 state. The overall chirality of the interface is de-
termined by the signature of K, which is vanishing in our
case, so we have the possibility of gapping the interface.
To find terms that can be added to Eq. 1 to introduce a
gap on the edge, we will use the null vector criteria. For
a 2N × 2N K matrix, we must find N 2N -dimensional
vectors Λi such that ΛTi KΛj = 0, for all i and j2. To pre-
vent any spurious degeneracy occurring at the interface
due to spontaneous symmetry breaking, we also require
that the null vectors are primitive. This means that the
greatest common denominator of all N×N minors of the
N × 2N matrix M = [Λ1...ΛN ], is 133. From these null
vectors we can construct backscattering interactions that
entirely gap out the edge:

HI =
∑
i

λ cos
(
ΛTi Kφ

)
. (5)

The null vector criteria guarantees that these backscat-
tering terms commute with each other, and hence can
simultaneously gap all the edge channels.

For our particular choice of interface given by Kt, the
null vector criteria and primitivity condition for this sys-
tem are satisfied by Λt = (n, 1). We could have chosen
Λt = (±n,±1), but for our purposes this difference is
not consequential. This null vector gives the following
backscattering term

HI = λ cos(ΛtKtφt)

= λ cos
(
pnφt,1 − pn2φt,2

)
. (6)

Here (and for all future terms we will consider), we imag-
ine the scenario where the velocities and forward scatter-
ing interactions contained in V in our Lagrangian are
tuned such that this interaction is relevant34; this can
always be done35. As such we will consider the λ = −∞
fixed point here, and for all future interactions. We can
interpret Eq. 6 as a tunneling term or a condensation
term. From the tunneling point of view, we can see that
only processes that remove a eiφt,1 particle and add n
eiφt,2 particles (or vice versa) commute with Eq. 6. From
the condensation point of view, this term generates an
expectation value for φt,1 − nφt,2 when λ → −∞. From
here on, we will refer to the specific interface given by
Eq. 6, and its associated null-vector, as the “traditional”
interface, as it is the simplest and most well-studied.

III. STABLY EQUIVALENT INTERFACES

While the traditional interface is the simplest, there
are other natural interfaces to consider if we allow for
edge “reconstruction” effects35,36. We will now consider
a situation where an unprotected, non-chiral pair of local
particle channels, e.g., free electron channels on the edge
of a fermionic Laughlin state, interact with our system.
These states are not required by the topology, but can
be generated by physical mechanisms on the edge of a
system. One can think of this as either adding an addi-
tional quasi-1D layer with non-chiral local edge modes to
the edge of our system, or perhaps weakening/removing
gapping terms which have gapped out some pre-existing
local edge modes in our system. Allowing for these chan-
nels puts us in a position to explore topological orders
that are stably equivalent to one another35,37, since they
only differ by the addition of extra trivial sectors.

Confined interface– Let us add a single set of non-chiral
channels to the 1/pn2 edge. For the 1/pn2 state this
scenario can realized by using the K matrix

K̄pn2 = pn2 ⊕ Σ (7)

where Σ is a Pauli matrix. As a check for consis-
tency, note that the ground state degeneracy on a torus
det
(
K̄pn2

)
= det

(
Kpn2

)
= pn2 is unchanged by the addi-

tion of Σ; the quasiparticle statistics are also unchanged.
We will consider the cases where we use σx (describing lo-
cal bosons) for p even, and σz (describing local fermions)
for p odd. Using

Weven =

 0 0 −1
−1 0 n
−q 1 −nq

 (8)

Wodd =

 0 0 1
1 + q −1 nq
q −1 nq + n

 (9)

for p = 2q even and p = 2q+1 odd respectively, we recast
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K̄pn2 as

Kp,n2 = WT K̄pn2W =

 p −1 0
−1 0 n
0 n 0

 . (10)

In Eq. 10 it is manifest that the 1/pn2 state with local
particles can be interpreted as a 1/p Laughlin state cou-
pled to a Zn gauge theory given by nσx, and where the
1/p state is sensitive to the discrete gauge flux.

Physically, this state can be interpreted as follows.
Consider a situation where interactions cause electrons
to form bound states of n particles, which we can heuris-
tically think of as a “superconductor formed from n-
electron composite particles. Since these composite par-
ticles have charge n, there is a corresponding Zn gauge
symmetry, under which the phase of the original electrons
changes by ei2π/n. If these composite particles form a
Laughlin 1/p state we generate a Laughin 1/p state cou-
pled to a Zn gauge field.

Using this form, it is natural to consider a new interface
which involves confining the emergent Zn gauge field of
the 1/pn2 Laughlin state. As we shall see, the quasipar-
ticles that remain free after this will describe an effective
Laughlin 1/p state. A completely gapped interface can
then be created by coupling the anti-chiral 1/p state to
the newly created effective chiral 1/p state. Because of
the confinement of the Zn gauge field, we will call this
the “confined” interface.

Formally, this is done as follows. The full interface is
given by

Kc = K−p ⊕Kp,n2 =

−p 0 0 0
0 p −1 0
0 −1 0 n
0 0 n 0

 , (11)

with bosonic fields φc = (φc,1, φc,2, φc,3, φc,4). The field
φc,1 corresponds to edge excitations of the anti-chiral 1/p
state. As mentioned, Kp,n2 describes an effective chiral
1/p state coupled to a Zn gauge field, hence φc,2 cor-
responds to the edge excitations of the chiral 1/p state,
φc,3 corresponds to the charge excitations of the Zn gauge
field, and φc,4 corresponds the conjugate fluxes of the Zn
gauge field. To confine the Zn gauge field, the charge ex-
citations can be condensed. This is done with the local
term

HC = λ cos(nφc,3), (12)

which corresponds to a null vector Λc,1 = (0, 0, 0, 1).
After the charge condensation, the free excitations will

be those that have unchanged self statistics after fusion
with the condensed charged boson38. A general exci-
tation is given by eir·φc , where r is an integer valued
vector. Let the charged boson be given by eib·φc where
b = (0, 0, 1, 0). A free excitation will have r such that
(r + b)K−1c (r + b) = rK−1pn2r. Solving for r gives that

the free quasiparticles are generated by eiφc,1 and eiφc,2

(modulo fusion with eib·φc). These are the quasiparticle

excitations of the anti-chiral 1/p edge and the effective
chiral 1/p edge respectively. Explicit calculation of the
self and mutual statistics of these quasiparticles confirms
this. In terms of the original anyons of the 1/pn2 Laugh-
lin state, the quasipartices of the effective chiral 1/p state
are bound states composed of n 1/pn2 anyons.

The interface can be completely gapped by adding
an additional back-scattering between the anti-chiral 1/p
edge and the effective chiral 1/p state. This is done with
the term

HI = λ cos(pφc,1 − pφc,2 + φc,3), (13)

corresponding to the null vector Λc,2 = (1, 1, 0, 0). The
effect of Eq. 12, is to produce an expectation value for
φc,3, so Eq. 13 is equivalent to the effective tunneling
term

HI = λ cos(pφc,1 − pφc,2 + 〈φc,3〉). (14)

Since 〈φc,3〉 only corresponds to a shift in the phase of
in the tunneling term, it will be ignored (as will similar
contributions) from now on. As a check for consistency,
the null vectors Λc,1 and Λc,2 from Eqs. 12 and 13 sat-
isfy the null vector criteria and primitivity conditions for
Kc = K−p ⊕Kp,n2

39. Eqs. 12 and 13 thereby fully gap
the interface and produce what we have called the con-
fined interface.

Partially confined interface– Following the same
method as before, it is also possible to confine a Zn/m
gauge field if n is divisible by m, i.e., n/m ∈ Z. This
can be thought of as confining a subgroup of the Zn
gauge field. This is done through the same procedure
as confining the Zn, gauge field but with the identifica-
tion p → pm2, n → n/m. Recasting the K-matrix in an
analogous fashion to before we arrive at

Kpm2,n/m2 = WTKpn2W =

pm2 −1 0
−1 0 n

m
0 n

m 0

 . (15)

The 1/pn2 state is thereby also equivalent to an effective
1/pm2 state coupled to a Zn/m gauge field. An inter-
face can be created by confining the Zn/m gauge field,
and then gapping out the anti-chiral 1/p state with the
effective chiral 1/pm2 state with a traditional interface.

This interface is described by the K matrix

Kpc = K−p ⊕Kpm2,n/m2 =

−p 0 0 0
0 pm2 −1 0
0 −1 0 n

m
0 0 n

m 0

 ,(16)

with bosonic fields φpc = (φpc,1, φpc,2, φpc,3, φpc,4). φpc,1
corresponds to edge excitations of the anti-chiral 1/p
state, φpc,2 corresponds to the edge excitations of the ef-
fective chiral 1/pm2 state, φpc,3 corresponds to the charge
excitations of the Zn/m gauge field, and φpc,4 corresponds
to the fluxes of the Zn/m gauge field.
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The Zn/m gauge field is confined by the null vector
Λpc,1 = (0, 0, 0, 1), which generates the term

HC = λ cos
( n
m
φpc,3

)
. (17)

Using the same reasoning as for the confined interface,
the free quasiparticles are generated by eiφpc,1 and eiφpc,2 ,
which are the quasiparticles of the 1/p and effective
1/pm2 states respectively. In terms of the original anyons
of the 1/pn2 state, the quasiparticles of the effective
1/pm2 state are given by bound states of n/m 1/pn2

anyons.
The interface can be completely gapped by inducing

back-scattering between the 1/p state and the effective
1/pm2 state. This is done with

HI = λ cos
(
pmφpc,1 − pm2φpc,2 + φpc,3

)
→ λ cos

(
pmφpc,1 − pm2φpc,2 + 〈φpc,3〉

)
, (18)

which corresponds to the null vector Λpc,2 = (m, 1, 0, 0).
Λpc,1 and Λpc,2 satisfy the null vector criteria and the
primitivity condition, so the interface has been com-
pletely gapped. Because only part of the Zn gauge field is
confined, we shall refer to this interface as the “partially
confined” interface. The partially confined interface can
be seen as intermediate between the confined (m = 1),
and traditional (m = n) interfaces.

Currently we have identified three types of interfaces
which satisfy the null vector criteria and the primitivity
condition. The traditional interface, the confined inter-
face, and the partially confined interface. Besides their
varied mathematical constructions we aim to find dis-
tinguishing physical characteristics. Below we will dis-
cuss the similarities and differences of these interfaces in
regards to quasiparticle tunneling, ground state degen-
eracy, and parafermion zero modes where the interface
intersects the vacuum.

IV. TUNNELING PROPERTIES

The tunneling properties for the three interfaces we
are considering are summarized in Fig. 1. As we shall
show, these tunneling processes provide a physical way
to differentiate these interfaces.

The traditional interface has previously been shown to
act as an anyonic Andreev reflector16. This is because the
tunneling process involves n eiφt,2 quasiparticle and a sin-
gle eiφt,1 quasiparticle (see Fig. 1 and Eq. 6). As a result,
moving a single eiφt,2 quasiparticle across the interface
will result in a single eiφt,1 quasiparticle being transmit-
ted to the 1/p side and n− 1 e−iφt,2 (anti-)quasiparticles
being reflected to the 1/pn2 side. Because of this the
interface is a mod(n) anyonic Andreev reflector.

For the confined interface, the tunneling process in-
volves a single eiφc,2 quasiparticle a single eiφc,1 quasi-
particle (see Eq. 14). The other possible quasiparticles

are given by eiφ
2
c,3 and eiφc,4 . Due to the condensate gen-

erated by Eq. 12, the eiφc,3 quasiparticles are absorbed

into the condensate at the edge. Additionally, since φc,3
and φc,4 do not commute, the eiφc,4 quasiparticles are
no longer well defined excitations at the interface, and
thereby cannot tunnel to the other side. Hence, both the
eiφc,3 and eiφc,4 quasiparticles are incapable of tunneling
through the interface. Since the only tunneling process
involves a single eiφc,2 quasiparticle a single eiφc,1 quasi-
particle, it is clear that the confined interface is not a
anyonic Andreev reflector. The absence of anyonic An-
dreev reflection provides a clear distinction between the
confined interface and the traditional interface.

For the partially confined interface, the tunneling pro-
cess involves m eiφpc,2 quasiparticle and a single eiφpc,1

quasiparticle (see Eq. 18). Moving a single eiφpc,2 quasi-
particle across the interface thereby results in a single
eiφpc,1 quasiparticle being transmitted to the 1/p side and
m − 1 eiφpc,2 (anti-)quasiparticles being reflected to the
1/pn2 side. For the same reasons as in the confined in-
terface, all other excitations cannot tunnel into the 1/p
edge. So the partially confined interface is a mod(m)
anyonic Andreev reflector. We can conclude that the
possible tunneling mechanisms across the interface can
help distinguish the interface types for a given fixed set
of topologically ordered states on either side of the inter-
face.

V. GROUND STATE DEGENERACY

In order to characterize the interfaces using ground
state degeneracy (GSD) we will take our system and fold
it at the interface to create a bi-layer system where the
interface is now a single (bi-layer) edge. The interface
terms will then gap this edge. This bi-layer can then be
put on a manifold with boundary and the GSD can be
calculated for the various types of gapped boundaries.

First we consider the case where the topological order
(K-matrix) is put on a disk, and the boundary of the disk
is gapped by one of the previously determined interfaces.
For a general 2N ×2N K-matrix on a disk, which has its
edge gapped by a backscattering term of the form of Eq.
5, the GSD is given by gcd(N ×N minors of Md), where
Md = [Λ1...ΛN ]40. Due to the primitivity condition, we
have applied for our null vectors, the GSD on a disk must
be 1 for all of the interfaces we constructed. Explicitly,
for the traditional interface Md = (n, 1)T , and gcd(1 ×
1 minors of Md) = 1. So the ground state on a disk
is indeed unique. Thus, a disk geometry does not help
distinguish the interfaces.

Now, we will now consider the more interesting case
where we put the bilayer on a cylinder and use a given
gapping term on both edges. In this case the GSD is
gcd(2N × 2N minors of Mc), where40

Mc =

[
KΛ1 ... KΛN 0 ... 0
Λ1 ... ΛN Λ1 ... ΛN

]
. (19)

For the traditional interface on both edges of the cylinder
there are pn ground states. Using either the confined or
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Figure 1: Anyon tunneling between a chiral Laughlin 1/p (green) and an anti-chiral Laughlin 1/pn2 (red) state for
different interfaces. In the diagrams we have chosen p = 3, n = 4, and m = 2 as an explicit example.

partially confined interfaces on both edges the GSD is
also pn. At first sight we find that the GSD is identical
for all three interfaces, but we can look more closely to
find some distinguishing characteristics.

Let us consider a helpful perspective for the GSD.
The ground state degeneracy can be understood by ex-
amining the edge physics on the cylinder. Consider a
cylinder where both edges are gapped using a tradi-
tional interface. At each end φt,1 − nφt,2 will have an
expectation value corresponding to a minimum of Eq.
6. There is a conserved anyon charge density given by
ρt = ∂x(φt,1 − nφt,2)/2π. The total anyon charge on the
cylinder is then

Qt = (〈φt,1 − nφt,2〉L + 〈φt,1 − nφt,2〉R)/2π (20)

where 〈...〉L/R is the expectation value on the left and
right edges of the cylinder. In a physical system there
should be no net anyon charge, i.e., no net fractionalized
particles in the system. As a result the ground state
must satisfy 〈φt,1 − nφt,2〉L = −〈φt,1 − nφt,2〉R. Since
〈φt,1−nφt,2〉L/R are bound to the minima of Eq. 6, there
are pn unique possible ways to satisfy this constraint.
These are the pn ground states we calculated earlier. The
ground states are thereby identified with the different
minima of the term Eq. 6 which gaps the edges. This
agrees with earlier work on ground state degeneracy in
systems with gapped boundaries5.

Using this identification, we can consider the pro-
cess of moving between different ground states. Physi-
cally, this involves adding a quantized amount of anyon
charge to the left edge and removing the same amount
anyon charge from right edge. This process will move
〈φt,1 − nφt,2〉L = −〈φt,1 − nφt,2〉R to a different minima
of Eq. 6. So changing ground states corresponds to mov-
ing between different minima of Eq. 6 as shown in Fig 2.
The action of moving between different minima gives the
pn ground states the group structure of the cyclic group

Zpn.

Figure 2: The process of changing ground states by
adding and removing charge from opposite ends of a

cylinder with gapped edges. This changes the
expectation value of the fields pinned at the edges.

The group structure of the ground states for a cylinder
with either confined or partially confined interfaces on
both edges can be found with this perscription. For the
confined interface at both ends, the fields φc,3 and φc,1−
φc,2 will both have expectation values due to Eq. 12 and
Eq. 14 respectively. There are then two conserved anyon
charges given by

Qc,1 = (〈φc,3〉L + 〈φc,3〉R)/2π

Qc,2 = (〈φc,1 − φc,2〉L + 〈φc,1 − φc,2〉R)/2π. (21)

Both of these charges should be zero for a physical sys-
tem, so Qc,1 = Qc,2 = 0. Since 〈φc,3〉 is pinned to a
minimum of Eq. 12 there are n ways to satisfy Qc,1 = 0.
Similarly, there are p ways to satisfy Qc,2 = 0 due to Eq.
14. In total there are pn ground states, in agreement
with the earlier calculation.

As in the traditional interface, adding and removing
anyon charge changes the ground state. However, for the
confined interface there are two distinct types of anyon



6

charge Qc,1 and Qc,2. Adding and removing Qc,1 corre-
sponds to moving the value of 〈φc,3〉L = −〈φc,3〉R to a
different minima of Eq. 12, while adding and removing
Qc,2 corresponds to moving the value of 〈φc,1 − φc,2〉L =
−〈φt,1 − φc,2〉R to a different minima of Eq. 14. Since
moving between the n minima of Eq. 12 and the p min-
ima of Eq. 14 are independent actions, the group struc-
ture of the ground states is Zp×Zn. Although the number
of ground states is the same for both the traditional and
confined interfaces, we find that the group structure of
the ground states is in fact different.

For the partially confined interface at both ends, the
fields φpc,3 and φpc,1−mφpc,2 will both have expectation
values due to Eq. 17 and Eq. 18 respectively. There are
again two conserved anyon charges given by

Qpc,1 = (〈φpc,3〉L + 〈φpc,3〉R)/2π (22)

Qpc,2 = (〈φpc,1 −mφpc,2〉L + 〈φpc,1 −mφpc,2〉R)/2π.

Due to Eqs. 17 and 18 there are n/m ways to satisfy
Qpc,1 = 0, and pm ways to satisfy Qpc,2 = 0 leading to pn
ground states. Following the same logic as was used for
the confined interface, the group structure of the ground
states for the partially confined interface is Zpm ×Zn/m.

VI. PARAFERMION ZERO MODES

In earlier work it was shown that for the traditional
interface between the 1/p and 1/pn2 states, there are
parafermion zero modes if the interface terminates at the
vacuum.15,16,19 We want to understand the nature of the
possible parafermion modes for the confined and partially
confined interfaces.

To begin, we reconsider the traditional interface and
re-derive the existence of the parafermion zero modes.
Additionally, we will present the parafermion zero modes
in terms of an “order” and “disorder” operator. This
is done by considering two semi-infinite strips, one with
1/p topological order, and one with 1/pn2 topological
order, which are combined into a single infinite strip by
using a traditional interface (as shown in Fig 3). The
interface between the two topological orders thereby ter-
minates at the vacuum while the two edges of the strip
remain gapless. In order to consider only a single edge,
we will fold the infinite strip along the interface leading
to a semi-infinite strip with a single edge and topologi-
cal order given by the K matrix Kt (see Fig 4a). The
section of the edge where the strip was folded will be
gapped by the interface term used to join the 1/p and
1/pn2 states (purple in Fig 4a). The rest of the edge will
remain gapless (red and green stripes in Fig 4a).

Topologically, a semi-infinite strip is the same as a half-
plane, so it will be useful to deform the strip into half
plane as is done in Fig 4b. The edge of the half-plane
then consists of a finite gapped section (due to the inter-
face term) and gapless non-chiral modes to the left and
right. Defining the gapped section of the edge as running

between y0 and y1 (y0 < y1), the interaction along the
edge is given by

HI = λ cos
(
pnφp − pn2φpn2

)
Θ(y − y0)Θ(y1 − y),(23)

where Θ is a step function.

Figure 3: Combining two semi-infinite topologically
ordered strip into a single infinite strip by using a
gapped interface that terminates at the vacuum

(purple).

Figure 4: (a)Folding an infinite topologically ordered
semi-infinite strip into a semi-infinite strip. (b)

Deforming the semi-infinite strip into a half-plane.

At the ends of the gapped section of the edge (y0 and
y1), we define the operators

χt,0 = eilo·φt(y0+ε)eild·φt(y0−ε)

χt,1 = eild·φt(y1+ε)eilo·φt(y1−ε)

lo = (p,−pn)

ld = (1/2n, 1/2), (24)

where φt are the previously defined bosons of the Kt edge
and ε = 0+ (the subscripts o and d will be connected to
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the order/disorder operator language below). Both χt,0
and χt,1 commute with the Hamiltonian, and χt,1χt,0 =

χt,0χt,1e
i 2πn . Generalizing this to multiple interfaces and

operators χt,i, the commutation relationship are given by

χt,iχt,j = χt,jχt,ie
−i 2πn sgn(i−j) which is the parafermion

algebra.
This construction of the χt operators has a natu-

ral interpretation in terms of order and disorder oper-
ators. For the traditional interface on the half plane, the
parafermion operator χt,0 is composed of eilo·φt(y0+ε),

and eild·φt(y0−ε). Due to Eq. 23 eilo·φt(y0+ε) will have
an expectation value. As such we identify eilo·φt(y0+ε)

as an order operator. Since [lo · φt(yi), ld · φt(yj)] =
−iπn sgn(yi−yj), we identify eild·φt as a Zn disorder which

creates kinks in the value of eilo·φt . Both the order and
disorder operators self commute, and commute with the
Hamiltonian. Because of this, χt,0 is necessarily a zero
energy parafermion operator. The same argument holds
for χt,1.

This construction also shows that the parafermion zero
mode at the edge of the interface has quantum dimension√
n. Explicitly, the operators

O−0 = eilo·φt(y0+ε)

O−1 = eilo·φt(y1−ε)

O+
0 = eild·φt(y0−ε)eild·φt(y1+ε) (25)

can also be constructed from the order operators eilo·φt

and disorder operators eild·φt used to make χt. Because
the order and disorder operators individually commute
with the Hamiltonian, the O± operators also commute
with the Hamiltonian. Assuming φt vanishes at ±∞,
the O± operators can be rewritten as

O−0/1 = exp

[
i

∫
R−

0/1

dy′∂y′(lo · φt)

]
(26)

O+
0 = exp

[
i

∫
R+

0

dy′∂y′(ld · φt)

]
,

where R−0 = (−∞, y0 + ε), R+
0 = (y0 − ε, y1 + ε), and

R−1 = (y1 − ε,∞). These operators satisfy the alge-

bra O−0 O
+
0 = O+

0 O
−
0 e
−i 2πn , O−1 O

+
0 = O+

0 O
−
1 e

i 2πn , and
O−0 O

−
1 = O−1 O

−
0 .

Since these operators commute with the Hamiltonian,
we can label our ground states in the O−0/1 basis, and use

O+
0 as a ladder operator. This algebra indicates that for

the traditional interface, the ground states must come
in multiples of n. This can be generalized to multiple
interfaces which would involve multiple parafermion op-
erators. The analogous operators will then be O−i , and

O+
j with O−i O

+
j = O+

j O
−
i e

i 2πn (δj,i−1−δj,i). So the ground

states must come in mutliples of nk for k interfaces on
the half plane41. For a disk geometry, the ground states
will come in multiples of nk−1 for k interfaces since the
operators O±i are no longer independent. In both cases,
each additional interface (beyond possibly the first) adds

n ground states. In summary, the construction of the zero
energy parafermion operator χ from the order and disor-
der operators is equivalent to the existence of the opera-
tors O± which commute with the Hamiltonian, and gen-
erate n ground states per interface. A pair of parafermion
zero modes at the ends of an interface thereby indicate
n ground states, and so each parafermion zero mode has
a quantum dimension of

√
n as claimed.

The order and disorder operator picture of the
parafermion operators gives a general procedure for con-
structing Zn parafermion zero modes. For a given in-
terface, we can identify an order operator, along with a
corresponding Zn disorder operator which creates kinks
in the order operator. Formally this is a pair of operators
eiφo and eiφd satisfying [φo(y), φd(y

′)] = −iπn sgn(y − y′).
Provided that both the order and disorder operators are
bosonic, the product of these terms at a given interface
will necessarily be a Zn parafermion. As we have shown,
if the order and disorder operators also commute with the
Hamiltonian at the edges of the gapped interface, there
are Zn parafermion zero modes with quantum dimension√
n. Parafermions for the confined and partially confined

interfaces can now be constructed in terms of order and
disorder operators. For simplicity, we will continue to
use the half plane geometry of Fig. 4 with a gapped edge
between y0 and y1, and gapless modes everywhere else.

For the confined interface, the region between y0 and
y1 of the half plane are gapped with Eqs. 12 and 14. The
parafermion operators are

χc,0 = eilo·φc(y0+ε)eild·φc(y0−ε)

χc,1 = eild·φc(y1+ε)eilo·φc(y1−ε)

lo = (0, 0, 1, 0)

ld = (0, 1/n, 0,−1), (27)

where φc are the bosons of the Kc edge. χc,0 and
χc,1 commute with the Hamiltonian and χc,1χc,0 =

χc,0χc,1e
i 2πn , so they are Zn parafermion zero modes with

quantum dimension
√
n. It is worth noting that all fields

in the parafermion operator originate from the 1/pn2

topological order. As a result, the Zn parafermions will
remain even if tunneling with the 1/p state (Eq. 14) is
removed.

For the partially confined interface, the region of the
half plane between y0 and y1 is gapped by Eqs. 17 and
18. As we shall show there are two independent sets of
parafermion zero modes in this case. The first set of
parafermions is given by

χpc,0 = eilo·φpc(y0+ε)eild·φpc(y0−ε)

χpc,1 = eild·φpc(y1+ε)eilo·φpc(y1−ε)

lo = (0, 0, 1, 0)

ld = (0,m/n, 0,−1), (28)

where φpc are the bosons of the Kpc edge. χpc,0 and
χpc,1 commute with the Hamiltonian and χpc,1χpc,0 =

χpc,0χpc,1e
i 2πmn , and so they are Zn/m parafermion zero
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Table I: Interface Results

Name
K matrix and
Null Vectors

Tunneling
Properties

Ground State
Group Structure on a
Cylinder

Edge Parafermions
eilo·φeild·φ

Traditional
Kt =

[
−p 0
0 pn2

]
Λt = (n, 1)

mod(n) anyon
Andreev
reflection

Zpn

Zn

lo = (p,−pn)
ld = ( 1

2n
, 1
2
)

Confined
Kc =


−p 0 0 0
0 p −1 0
0 −1 0 n
0 0 n 0


Λc,1 = (0, 0, 0, 1)
Λc,2 = (1, 1, 0, 0)

no anyon
Andreev
reflection

Zn × Zp

Zn

lo = (0, 0, 1, 0)
ld = (0, 1

n
, 0,−1)

Partially
Confined

Kpc =


−p 0 0 0
0 pm2 −1 0
0 −1 0 n

m
0 0 n

m
0


Λpc,1 = (0, 0, 0, 1)
Λpc,2 = (m, 1, 0, 0)

mod(m) anyon
Andreev
reflection

Zn/m × Zpm

Zn/m

lo = (0, 0, 1, 0)
ld = (0, m

n
, 0,−1)

Zm

lo = (p,−pm, 0, 0)
ld = ( 1

2m
, 1
2
, 0, 0)

The summary of results for the 3 different gapped interfaces.

modes with quantum dimensions
√
n/m. The second set

of parafermions is given by

γpc,0 = eilo·φpc(y0+ε)eild·φpc(y0−ε)

γpc,1 = eild·φpc(y1+ε)eilo·φpc(y1−ε)

lo = (p,−mp, 0, 0)

ld = (1/2m, 1/2, 0, 0). (29)

Both γpc,0 and γpc,1 commute with the Hamiltonian

and γpc,1γpc,0 = γpc,0γpc,1e
i 2πm , and so they are Zm

parafermions zero modes with quantum dimensions√
m. So there are independently both Zm and Zn/m

parafermion zero modes for the partially confined in-
terface. Importantly, the combination of Zm and
Zn/m parafermions is not necessarily equivalent to Zn
parafermions, since Zm×Zn/m does not necessarily equal
Zn.

VII. CONCLUSION

We conclude the analysis of the three interfaces with
a summary of the results shown in Table I. Despite the
simple structure of the 1/p and 1/pn2 edges there are
actually a variety of ways to create interfaces between
them. This can lead to concrete differences in the tunnel-
ing, ground state, tunneling, and parafermion zero mode
structures. These calculations may be of experimental in-
terest due to the ability to realize and tune quantum hall
edge interfaces in, e.g., bilayer graphene systems42. In
particular, this may allow for observation of parafermion
zero modes which can be used for topological quantum
computing43.

In general, the 1/pn2 Laughlin states we have consid-
ered will correspond to fractional quantum hall states

with very low fillings. From an experimental standpoint,
such states are rare. Indeed low fillings in fractional
quantum hall systems tend to lead to Wigner crystal
states instead of topological order. Nevertheless, due
to the generality of the K-matrix approach we believe
that our results are meaningful outside of a fractional
quantum Hall context and can be applied to a varied of
topologically ordered systems. Furthermore, new mate-
rial platforms for fractional quantum Hall states now ex-
ist, e.g., in bilayer graphene44,45, and may provide addi-
tional filling fractions not previously measured in GaAs.

Compared to the traditional interface, the new inter-
faces discussed here require additional local particles.
These local particles may naturally accompany certain
edges due to reconstruction effects. These new types
of interfaces may also provide insight into interfaces be-
tween Abelian and non-Abelian topological orders, which
are related by gauging anyonic symmetries. For example,
we can consider the Abelian deconfined Z2 gauge theory
(toric code) and the non-Abelian double Ising topological
orders, which are related by gauging the e↔ m anyonic
symmetry of the Z2 gauge theory46,47. It may then be
possible to create a generalized confined interface by con-
densing the e ↔ m charged particle on the double Ising
edge, and then gapping out the two copies of Z2 gauge
theories. An interface for this system has been previously
determined in Ref. 48, and we believe that this interface
seems to correspond to a generalized confined interface.
We leave these questions to future work.
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