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We discuss the relations between restricted Boltzmann machine (RBM) states and the matrix
product states (MPS) for the ground states of 1D translational invariant stabilizer codes. A generic
translational invariant and finitely connected RBM state can be expressed as an MPS, and the
matrices of the resulting MPS are of rank 1. We dub such an MPS as an RBM-MPS. This provides
a necessary condition for exactly realizing a quantum state as an RBM state, if the quantum state
can be written as an MPS. For generic 1D stabilizer codes having a non-degenerate ground state
with periodic boundary condition, we obtain an expression for the lower bound of their MPS bond
dimension, and an upper bound for the rank of their MPS matrices. In terms of RBM, we provide
an algorithm to derive the RBM for the cocycle Hamiltonians whose MPS matrices are proved to be
of rank 1. Moreover, the RBM-MPS produced by our algorithm has the minimal bond dimension.
A family of examples is provided to explain the algorithm. We finally conjecture that these features
hold true for all the 1D stabilizer codes having a non-degenerate ground state with periodic boundary
condition, as long as their MPS matrices are of rank 1.
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I. INTRODUCTION

Restricted Boltzmann machines (RBM) and more gen-
erally neural networks1–18, have recently gained lots of
attention as numerical tools for studying quantum many-
body physics, boosted by the fast paced progress in ma-
chine learning. An RBM is a restriction from a Boltz-
mann machine (BM). The BM is defined on a bipartite
graph, whose vertices are grouped into two classes: the
visible vertices and the hidden vertices. Suppose there
are n visible vertices and m hidden vertices, and we as-
sociate the visible variables g ∈ {0,1}n and the hidden
variables h ∈ {0,1}m on the visible and hidden vertices
respectively. The variables {g, h} obey the Boltzmann
distribution,

P (g, h) =
1

Z
exp (−E(g, h)) , (1)

where E(g, h) is a real function mimicking the “energy” in
the Boltzmann distribution, and Z = ∑g,h exp (−E(g, h))
is the partition function. As the name suggests, only the
visible variables will show up in the physical probability
distribution, while the hidden variables are summed over
and thus hidden. Given Eq. (1), the BM is defined to be
the marginal distribution P (g) over the visible variables
g by summing over all the hidden variables {h}

P (g) =∑
h

P (g, h) =
1

Z
∑
h

exp (−E(g, h)) . (2)

The RBM further requires that the “energy” function
E(g, h) depends linearly on g and h. The most impor-
tant property of RBM is its representing power. It has
been proven19 in the machine learning context that any
probability distribution P0(g) of an n number of Z2 vari-
ables, i.e., g ∈ {0,1}n, can be approximated arbitrarily
well by an RBM P (g) given enough number of hidden
spins. See Ref. 19 for details.

For the purposes of the quantum physics, it is natural
to change the “energy” function E(g, h) from a real func-
tion to a complex one. Then we can interpret the “com-
plex probability distribution” P (g) as the coefficients of
a quantum many-body wave function:4748

∣Ψ⟩ =∑
g

P (g)∣g⟩, (3)

where ∣g⟩ is the basis to expand the quantum states ∣Ψ⟩.
The RBM state refers to the ansatz in Eq. (3).

The ground state of a 1D gapped local Hamiltonian
has entanglement entropy S(L) for a subregion of length
L which obeys area law20 and is in fact a constant, i.e.,
S(L) ∼ constant. Therefore, we expect that it suffices to
use a constant number of hidden spins per visible spin,
when we represent such a ground state by an RBM. One
of the purposes of this paper is to study the representing
power of RBM for 1D stabilizer code ground states using
as few hidden spins as possible.

For a 1D gapped local Hamiltonian, its ground state is
efficiently encoded as a matrix product state (MPS)20–28.
An MPS can be obtained either numerically (via, e.g.,
the density matrix renormalization group) or analyti-
cally. The core reason of this efficiency is the area law
satisfied by these many body quantum states. Indeed,
the entanglement of a generic MPS is upper bounded by
the dimension of the MPS matrices, i.e., the bond di-
mension D. On general grounds, the RBM state and
the MPS share many features in common12,13,29,30. Both
the virtual indices in the MPS and the hidden variables
in the RBM serve as the glue between different parts of
the state, and thus provide nontrivial entanglement. In
the literature, some of the relations between MPS and
the RBM have already been studied. In Refs. 13 and
18, a numerical algorithm has been proposed to convert
an RBM into an MPS as well as into a projected en-
tangled pair state (PEPS) - a generalization of MPS in
higher dimension. Refs. 13 and 18 also studied how the
PEPS are mapped to the RBM for some subset of the
stabilizer codes whose interactions are products of either
purely Pauli X or purely Z operators (e.g. the toric code
model31). In Refs. 12 and 32, an RBM state for the
1D ZXZ model was found numerically. However, their
RBM state is not optimal: the MPS from their RBM
state has bond dimension 4, which is larger the minimal
bond dimension 2. In other words, their MPS uses too
many hidden spin variables. We present another analyt-
ical construction which yields an optimal RBM state for
the ZXZ model. We also systematically construct the
optimal RBM states for a large family of stabilizer codes.

In this paper, we make progresses toward answer-
ing the following questions, when the stabilizer codes
have one ground state with periodic boundary condition
(PBC):

1. How to map a translational invariant and finitely
connected RBM to an MPS?

2. Given a stabilizer code, how to find the MPS of its
ground state?

3. Given a stabilizer code, can we cast the ground
state as an RBM state minimizing the number of
hidden spins?

A crucial concept in our paper is the rank of the MPS
matrix, which we define to be the rank of the matrix with
the fixed physical index. We will justify the validity of
this concept in Sec. II.

This paper is organized as follows: In Sec. II, we review
the BM and RBM, and discuss how an RBM state can
be expressed as an MPS which we dub as RBM-MPS. In
particular, we show that the rank of the non-vanishing
RBM-MPS matrices must be 1. In Sec. III, we present
an algorithm deriving the MPS from a stabilizer code
Hamiltonian. We illustrate the algorithm through the
example of ZZXZZ model. We derive a lower bound
for the bond dimension of the MPS matrices. In Sec. IV,
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we provide an upper bound for the rank of the MPS ma-
trices. In Sec. V, we show that the MPS matrices for the
cocycle Hamiltonians, which are representative Hamilto-
nians of generic SPT phases, are of rank 1. We provide
an algorithm to derive the optimal RBM of the cocycle
Hamiltonians whose bond dimension of the RBM-MPS
saturates the lower bound that is derived in Sec. III. We
apply our algorithm to the Zq−1XZq−1 models deriving
their RBM-MPS matrices.

II. (RESTRICTED) BOLTZMANN MACHINE

In this section, we introduce the notion of Boltz-
mann machine (BM) states, restricted Boltzmann ma-
chine (RBM) states and their connection to MPS.

A. Definitions

A BM state is a state defined by a classical Ising model
on a graph. Each vertex of the graph carries a classical
Ising spin sr = 0,1 where r is the index of the vertex.
Each edge of the graph carries a weight Ŵrr′ ∈ C that

mimics the Ising “interaction” between sr and sr
′
, and

each vertex also carries a bias α̂r ∈ C that mimics “an
external magnetic field”. The “energy” for such an Ising
model is:

EBM({sr}) = ∑
r,r′

Ŵrr′s
rsr

′
+∑

r

α̂rs
r, (4)

where the summation runs over all spins. In turn, a BM
can be efficiently represented by a graph: (1) the vertices
of the graph represent the spins {sr}; (2) the nonzero

weight of sr and sr
′

is represented by the link connecting

sr and sr
′
. The set of spins is divided into two disjoint

subsets: the visible spins whose set is denoted by V and
the hidden spins denoted by H. We denote gr the visible
spins and hs the hidden spins. Using these notations, the
BM state is defined as:

∣BM⟩ = C ∑
{gr}
r∈V

∑
{hs}
s∈H

exp( − EBM({hs},{gr}))∣{gr}⟩, (5)

where C is a normalization constant that we will drop
for simplicity. The states ∣{gr}⟩ are the basis states over
the visible spins, i.e., a given ∣{gr}⟩ is the direct product

of Pauli Z eigenstates with eigenvalues {(−1)g
r

}. The
“energy” terms in EBM({hs},{gr}) can be split into

EBM({hs},{gr}) = ∑
r,r′∈V

Rrr′g
rgr

′
+ ∑
s,s′∈H

Sss′h
shs

′

+ ∑
r∈V
s∈H

Wrsg
rhs + ∑

r∈V

βrg
r
+ ∑
s∈H

αsh
s,

(6)

where Wrs,Rrr′ , Sss′ ∈ C are the weights between visible
and hidden, visible and visible, hidden and hidden spins

respectively. βr ∈ C is the bias of the visible spin gr, and
αs ∈ C is the bias of the hidden spin hs.

A restricted Boltzmann machine (RBM) state is a spe-
cial BM state satisfying

Rrr′ = 0, ∀ r, r′ ∈ V ; Sss′ = 0, ∀ s, s′ ∈H. (7)

Thus an RBM state reads

∣RBM⟩ = ∑
{gr}
r∈V

∑
{hs}
s∈H

exp( − ERBM({hs},{gr}))∣{gr}⟩ (8)

with

ERBM({hs},{gr}) = ∑
r∈V
s∈H

Wrsg
rhs + ∑

r∈V

βrg
r
+ ∑
s∈H

αsh
s.

(9)
In this article, we will consider RBM states for 1D trans-
lational invariant systems. For this reason, we use r, s
to label the unit cells, and i, a to label the visible spin
and hidden spins within a unit cell (which are dubbed
“orbitals”) respectively. We further require the RBM to
be finitely connected, and by properly enlarging the unit
cell, we can always choose the RBM to be nearest unit
cell connected. Due to the requirement of translational
invariance and nearest neighbor connectivity, we label
the visible spins, the hidden spins, the weights and the
biases as follows:

1. The visible spins within the unit cell at r are labeled
by gri where i = 1, . . . , q labels the orbitals within
the unit cell. q is the number of visible spins within
each unit cell.

2. The hidden spins are divided into two categories:

(a) hra, a ∈ {1, . . . ,M}, labels the hidden spins
connecting to the visible spins from the unit
cell at r − 1 and those from the unit cell at
r, i.e., hra connects to both {gr−1

i } and {gri }.
M is the total number of such hidden spins
within the unit cell. Since we assume that the
RBM is nearest unit cell connected, hra does
not connect to the visible spins of another unit
cell. We will dub such hidden spins as type-h
hidden spins.

(b) h̃rb , b ∈ {1, . . . , M̃}, labels the hidden spins con-
necting to the visible spins within the unit cell
at r, i.e., h̃rb only connects to {gri }. M̃ is the
total number of such hidden spins within the
unit cell. We will dub such hidden spins as
type-h̃ hidden spins.

3. The weight connecting hra and gri is labeled by Aia,
i ∈ {1, . . . , q}, a ∈ {1, . . . ,M}.

4. The weight connecting hra and gr−1
i is labeled by

Bia, i ∈ {1, . . . , q}, a ∈ {1, . . . ,M}.

5. The weight connecting h̃rb and gri is labeled by C̃ib,

i ∈ {1, . . . , q}, b ∈ {1, . . . , M̃}.
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FIG. 1: An example of RBM state corresponding to q = 3,M =

2, M̃ = 2. The red circles represent visible spins. The black
rectangles are the hidden spins connecting visible spin be-
longing to different unit cells, which are linked to the purple
and orange lines representing the weights Aia and Bia respec-
tively. The black triangles are the hidden spins connecting
visible spins within the same unit cell, which are linked to
the green lines representing the weights C̃ib. The blue region
represents a unit cell. Notice that the nonzero weights are
only between the hidden spins and the visible spins.

6. The bias of the visible spin gri is βi, i ∈ {1, . . . , q}.

7. The bias of the hidden spin hra is αa, a ∈ {1, . . . ,M}.

8. The bias of the hidden spin h̃rb is α̃b, b ∈ {1, . . . , M̃}.

Due to translational invariance, the weights Aia, Bia, C̃ib
and the biases βi, αa and α̃b are all independent of the po-
sition of the unit cell r. We have distinguished the hidden
spins into type-h and type-h̃ because, as will be explained
in Sec. II B, the hidden spins of type-h contribute to the
entanglement, while those of type-h̃ do not. Correspond-
ingly, we distinguish the weights Aia which connect the
visible spin gri to the hidden spins of type-h, i.e., hra, and

C̃ib which connect the visible spin gri to the hidden spins

of type-h̃, i.e., h̃rb . In Fig. 1, we show an example of such

an RBM state with q = 3,M = 2 and M̃ = 2. The visible
spins (i.e., gri ) are represented by red circles. The hidden
spins connecting to the visible spins from the neighboring
unit cells (i.e., hra) are represented by the rectangles and
the hidden spins connecting to the visible spins from a
single unit cell (i.e., h̃rb) are represented by triangles.

With the notations introduced above, a translational
invariant and nearest neighbor connected RBM state is

∣RBM⟩ = ∑
{gri }

∑

{hra,h̃
r
b}

exp( − ERBM({hra, h̃
r
b},{g

r
i }))∣{g

r
i }⟩,

(10)

with

ERBM =∑
r

q

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎣

M

∑
a=1

(Aiag
r
i h
r
a +Biag

r
i h
r+1
a ) +

M̃

∑
b=1

C̃ibg
r
i h̃
r
b

⎤
⎥
⎥
⎥
⎥
⎦

+∑
r

⎡
⎢
⎢
⎢
⎢
⎣

q

∑
i=1

βig
r
i +

M

∑
a=1

αah
r
a +

M̃

∑
b=1

α̃bh̃
r
b

⎤
⎥
⎥
⎥
⎥
⎦

.

B. Relation to MPS

The RBM state defined by Eq. (10) can be cast into
an MPS by mapping the hidden spins of the RBM to
the virtual indices of the MPS. We name such MPS an
RBM-MPS. Specifically, Eq. (10) can be rewritten as

∣RBM⟩ = ∑
{gri }

Tr(∏
r

T g
r
1 ...g

r
q)∣{gri }⟩, (11)

where

T
gr1 ...g

r
q

hr1...h
r
M
,hr+1

1 ...hr+1
M

= e−∑
q,M
i,a=1

(Aiag
r
i h
r
a+Biag

r
i h
r+1
a )−∑

q
i=1 βig

r
i −∑

M
a=1 αah

r
a ∑

{h̃r
b
}

e−∑
q,M̃
i,b=1

C̃ibg
r
i h̃
r
b−∑

M̃
b=1 α̃bh̃

r
b . (12)

The bond dimension of the RBM-MPS is determined by
the number of type-h hidden spins, i.e., M . Hence only
the hidden spins of type-h contribute to the entangle-
ment, while those of type-h̃ do not. The optimal M will
be determined in Sec. III. For instance, if each hra ∈ {0,1}
is Z2 valued, the bond dimension is 2M . The tensor T
satisfies two useful properties:

Theorem II.1. (a) T g
r
1 ...g

r
q in Eq. (12) is either strictly

zero or all its matrix elements are non-vanishing. (b)

If T g
r
1 ...g

r
q is non-vanishing, it is of rank 1. If T g

r
1 ...g

r
q

vanishes, it is of rank 0.

Proof. To prove (a), we notice that each ma-

trix element of T g
r
1 ...g

r
q is a common multiplica-

tive factor ∑{h̃r
b
}
e−∑

q,M̃
i,b=1

C̃ibg
r
i h̃
r
b−∑

M̃
b=1 α̃bh̃

r
b indepen-

dent of the hidden spins {hra, h
r+1
a } for all a,

times a strictly nonzero expression of {hra, h
r+1
a }:

e−∑
q,M
i,a=1

(Aiag
r
i h
r
a+Biag

r
i h
r+1
a )−∑

q
i=1 βig

r
i −∑

M
a=1 αah

r
a . If the

common multiplicative factor is zero then T g
r
1 ...g

r
q

vanishes. If the common multiplicative factor is nonzero,
all matrix elements are non-vanishing.

To prove (b), we observe that, when the matrix ele-
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ments of T g
r
1 ...g

r
q are non-vanishing, the ratio

T
gr1 ...g

r
q

hr1...h
r
M
,hr+1

1 ...hr+1
M

T
gr1 ...g

r
q

hr1...h
r
M
,h′r+1

1 ...h′r+1
M

(13)

is independent of hr1 . . . h
r
M , for any hr+1

1 . . . hr+1
M and

h′r+1
1 . . . h′r+1

M . Hence any two rows of the matrix T g
r
1 ...g

r
N

are proportional to each other, and thus the matrix is
of rank 1. When T g

r
1 ...g

r
q vanishes, by definition, it is of

rank 0.

We emphasize that the form of the RBM depends on
the visible spin basis choice. If we perform a basis trans-
formation on the visible spins, this form, in general, will
no longer be preserved. Indeed, the rank of the MPS
matrices after the basis rotation can be higher than 1
for a generic local unitary transformation. However, if
the new MPS can be casted into an RBM with the same
connection range, the rank of the RBM-MPS should be
1 by Theorem II.1. This leads to a contradiction. Hence
in this paper, we consider the RBM and the MPS under
a particular choice of visible (physical) spin basis. The
rank one condition refers to the MPS matrices with fixed
physical indices being of rank 1.

Since the non-vanishing matrices of the RBM-MPS are
of rank 1, it is natural to ask if the reverse statement also
holds true, i.e., whether an MPS can be expressed as
an RBM-MPS if the non-vanishing MPS matrices are of
rank 1. In the rest of this article, we study this problem
in the context of stabilizer codes. We conjecture that
if the non-vanishing MPS matrices of the ground state
of a translational invariant stabilizer code are of rank
1, such a ground state can also be found as an RBM
state. In Sec. III, we first determine the condition for
the non-vanishing MPS matrices of a stabilizer code to
be of rank 1. In Sec. V, we give an algorithm to generate
the RBM state for a large class of models (the cocycle
models) whose MPS matrices are of rank 1.

III. MATRIX PRODUCT STATE OF A
STABILIZER CODE

In this section, we present our algorithm to find an
MPS for the ground state of a translational invariant
stabilizer code. Along the way, we derive the formula
which enables us to read the minimal bond dimension
and the upper bound of the rank of the MPS matrices
from the Hamiltonian terms. We illustrate our algorithm
using an example, the ZZXZZ model, and then discuss
of the general case. Each steps of the algorithm is proven
in App. B, C, D, E and F. We derive and prove our re-
sults based on the following assumptions throughout the
paper:

Assumption III.1. We only consider the translational
invariant stabilizer codes that have a unique ground state
with PBC.

Assumption III.2. The MPS matrices of the transla-
tional invariant stabilizer codes become independent of
the system size for sufficiently large system sizes.

Assumption III.3. The MPS matrices are independent
of the boundary condition. In other words, in the bulk,
the MPS matrices for PBC are the same as those for the
open boundary condition (OBC).

We begin by stating the notations of spin chains. We
mainly consider spin models defined on a finite chain with
L unit cells and PBC. Each unit cell contains q spin-
1
2
’s. For the i-th spin (i = 1, . . . , q) in the r-th unit cell

(r = 0, . . . , L− 1), we associate a two dimensional Hilbert
space spanned by ∣gri ⟩, where gri = 0,1 corresponds to spin
up and spin down respectively. ∣gri ⟩ satisfies

Zri ∣g
r
i ⟩ = (−1)g

r
i ∣gri ⟩, Xr

i ∣g
r
i ⟩ = ∣1 − gri ⟩, (14)

where Zri and Xr
i are Pauli Z and X matrices acting on

∣gri ⟩.

A. An Example of Stabilizer Codes: ZZXZZ Model

To define the ZZXZZ model, we place 3 physical spin-
1
2
’s in each unit cell, i.e., q = 3. (We choose q = 3 since it

fits naturally into the discussion of general cocycle mod-
els. See App. H for details.) We introduce three sets of
commuting operators Orα (α = 1,2,3) defined as

O
r
1 = Z

r
2Z

r
3X

r+1
1 Zr+1

2 Zr+1
3

O
r
2 = Z

r
3Z

r+1
1 Xr+1

2 Zr+1
3 Zr+2

1

O
r
3 = Z

r
1Z

r
2X

r
3Z

r+1
1 Zr+1

2 ,

(15)

where r is defined modulo L due to PBC. Using these
operators, the Hamiltonian reads

HZZXZZ = −
L−1

∑
r=0

(O
r
1 +O

r
2 +O

r
3). (16)

All the terms in the Hamiltonian Eq. (16) mutually com-
mute, and have eigenvalues ±1. Thus its ground state is
the common positive eigenstate of Orα for any r and α,
i.e.,

O
r
α∣GS⟩ = ∣GS⟩, α = 1,2,3, r = 0,1, . . . , L − 1. (17)

For example, one can construct ∣GS⟩ as

∣GS⟩ =
L−1

∏
r=0

3

∏
α=1

(
1 +Orα

2
)∣0⟩, (18)

where

∣0⟩ =
L−1

⊗
r=0

3

⊗
i=1

∣0ri ⟩. (19)

It is straightforward to verify that the ∣GS⟩ in Eq. (18)
satisfies Eq. (17).
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FIG. 2: A graphical representation of the matrix T g
r
1g
r
2g
r
3 . We

denote each physical index by an arrow. The shaded region
represents a unit cell, and the virtual left and right indices
are represented by the horizontal line. The virtual indices are
not explicitly shown here.

Our goal in this section is to express the ground state
∣GS⟩ as an MPS

∣GS⟩ = ∑
{gri }

Tr(
L−1

∏
r=0

T g
r
1g
r
2g
r
3)∣{gri }⟩, (20)

where

∣{gri }⟩ ≡
L−1

⊗
r=0

3

⊗
i=1

∣gri ⟩. (21)

The matrix T g
r
1g
r
2g
r
3 is labeled with three physical indices

gr1, g
r
2 and gr3 in the r-th unit cell. The left and right vir-

tual indices of T g
r
1g
r
2g
r
3 and matrix elements will be solved

in Sec. III B. The product of two T matrices amounts to
contracting the pair of virtual indices between them. The
coefficient of ∣{gri }⟩ is determined by contracting all vir-
tual indices with the same configuration of physical spins
{gri }. The matrix T g

r
1g
r
2g
r
3 is graphically represented in

Fig. 2. Some notations and general properties of MPS
for stabilizer codes are given in App. A.

B. MPS for the ZZXZZ Model

To derive the MPS for the ground state ∣GS⟩ of the
ZZXZZ model Eq. (16), we start with Eq. (17). Ori acts
on the basis ∣{gri }⟩ in each summand of ∣GS⟩ in Eq. (20).
By re-arranging the summation, we derive the action of
Ori on the T -matrices. For example, let us consider the
action of Or1,

O
r
1 ∣GS⟩ = ∑

{gr
′
i }

Tr(
L−1

∏
r′=0

T g
r′
1 g

r′
2 g

r′
3 )O

r
1 ∣{g

r′

i }⟩

= ∑

{gr
′
i }

Tr(
L−1

∏
r′=0

T g
r′
1 g

r′
2 g

r′
3 )(−1)g

r
2+g

r
3+g

r+1
2 +gr+1

3 ∣{gr
′

i }∣r′≤r,{(1 − g
r+1
1 )gr+1

2 gr+1
3 },{gr

′′

i }∣r′′>r+1⟩

= ∑

{ĝr
′
i }

Tr((∏
r′<r

T ĝ
r′
1 ĝ

r′
2 ĝ

r′
3 ) ⋅ T ĝ

r
1 ĝ
r
2 ĝ
r
3 ⋅ T (1−ĝ

r+1
1 )ĝr+1

2 ĝr+1
3 ⋅ ( ∏

r′>r+1

T ĝ
r′
1 ĝ

r′
2 ĝ

r′
3 ))(−1)ĝ

r
2+ĝ

r
3+ĝ

r+1
2 +ĝr+1

3 ∣{ĝr
′

i }⟩

≡ ∑

{ĝr
′
i }

Tr((∏
r′<r

T ĝ
r′
1 ĝ

r′
2 ĝ

r′
3 ) ⋅O

r
1 ○ (T

ĝr1 ĝ
r
2 ĝ
r
3 ⋅ T ĝ

r+1
1 ĝr+1

2 ĝr+1
3 ) ⋅ ( ∏

r′>r+1

T ĝ
r′
1 ĝ

r′
2 ĝ

r′
3 ))∣{ĝr

′

i }⟩.

(22)

In the second equality, we use the definition of Or1 in Eq. (15), and in the last equality we defined the action of Or1
on T g

r
1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 , via

O
r
1 ○ (T

gr1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ) ≡ (−1)g

r
2+g

r
3+g

r+1
2 +gr+1

3 (T g
r
1g
r
2g
r
3 ⋅ T (1−g

r+1
1 )gr+1

2 gr+1
3 ). (23)

For Or2 and Or3, we similarly define

O
r
2 ○ (T

gr1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ⋅ T g

r+2
1 gr+2

2 gr+2
3 ) ≡ (−1)g

r
3+g

r+1
1 +gr+1

3 +gr+2
1 (T g

r
1g
r
2g
r
3 ⋅ T g

r+1
1 (1−gr+1

2 )gr+1
3 ⋅ T g

r+2
1 gr+2

2 gr+2
3 )

O
r
3 ○ (T

gr1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ) ≡ (−1)g

r
1+g

r
2+g

r+1
1 +gr+1

2 (T g
r
1g
r
2(1−g

r
3) ⋅ T g

r+1
1 gr+1

2 gr+1
3 ).

(24)

Using the definitions Eqs. (23) and (24), we find that a sufficient condition for the stabilizer condition Eq. (17) is

O
r
1 ○ (T

gr1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ) = (T g

r
1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 )

O
r
2 ○ (T

gr1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ⋅ T g

r+2
1 gr+2

2 gr+2
3 ) = (T g

r
1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ⋅ T g

r+2
1 gr+2

2 gr+2
3 )

O
r
3 ○ (T

gr1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ) = (T g

r
1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ).

(25)
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FIG. 3: A graph representation of Eq. (17).

We prove in App. B and C that Eq. (25) is also a neces-
sary condition for Eq. (17). A graphical representation
of these equations is given in Fig. 3.

We now construct a solution of T matrices from
Eq. (25). It is difficult to solve Eq. (25) directly, as it
is a set of nonlinear equations of the T matrices. In the
following, we will derive a new set of equations equivalent
to Eq. (25), which are linear in the T matrices and only
contain the matrices in the r-th unit cell.

The idea to derive the equations linear in the T ma-
trices is to decompose the Hamiltonian terms Orα into
separate parts, where each part acts only on one unit
cell, and then derive their action on a single T matrix.
(Notice that we are only allowed to cut in between the
unit cells, not inside one unit cell.) As a first step, we
start by cutting the operator Orα into two parts: Or1 and
Or3 can be cut into Or1 = Lr1,1R

r
1,1 and Or3 = Lr3,1R

r
3,1,

such that the operators

L
r
1,1 = I

r
1 ⊗Z

r
2 ⊗Z

r
3

R
r
1,1 =X

r+1
1 ⊗Zr+1

2 ⊗Zr+1
3

(26)

and

L
r
3,1 = Z

r
1 ⊗Z

r
2 ⊗X

r
3

R
r
3,1 = Z

r+1
1 ⊗Zr+1

2 ⊗ Ir+1
3

(27)

only act on a given unit cell. The second subscript τ
of Lrα,τ labels the position of bipartition of Orα. Since
Or1 and Or3 are supported on two unit cells, there is only
one way to cut them into two parts and hence τ only
takes one value, i.e., τ = 1. Such a unique bipartition is
not possible for Or2 since Or2 is supported on 3 unit cells.
Nevertheless, we can define two bipartitions as follows:

O
r
2 = L

r
2,1R

r
2,1, O

r
2 = L

r
2,2R

r
2,2, (28)

where Lr2,τ ,R
r
2,τ(τ = 1,2) are

L
r
2,1 = I

r
1 ⊗ I

r
2 ⊗Z

r
3

R
r
2,1 = Z

r+1
1 ⊗Xr+1

2 ⊗Zr+1
3 ⊗Zr+2

1 ⊗ Ir+2
2 ⊗ Ir+2

3

L
r
2,2 = I

r
1 ⊗ I

r
2 ⊗Z

r
3 ⊗Z

r+1
1 ⊗Xr+1

2 ⊗Zr+1
3

R
r
2,2 = Z

r+2
1 ⊗ Ir+2

2 ⊗ Ir+2
3 .

(29)

FIG. 4: A graphical representation of Eqs. (30), (31) and (32).

Notice that Rr2,1 and Lr2,2 have a support over two unit
cells whileRr2,2 and Lr2,1 have a support over a single unit
cell.

Let us consider the action of Lrα,τ ’s and Rrα,τ ’s on
the T matrices. First we focus on Or1. The product

of two matrices T g
r
1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 should be invari-

ant under the combined action of Lr1,1R
r
1,1, where Lr1,1

acts only on T g
r
1g
r
2g
r
3 while Rr1,1 only on T g

r+1
1 gr+1

2 gr+1
3 . In

App. D, we prove in a general setting of stabilizer codes
that the following condition is both necessary and suffi-
cient of Eq. (25): the action of Lr1,1 on T g

r
1g
r
2g
r
3 can be

encoded by a transformation Ur1,1 on the right virtual in-

dex of T g
r
1g
r
2g
r
3 , while the action of Rr1,1 on T g

r+1
1 gr+1

2 gr+1
3

can be encoded by the inverse of the same transforma-

tion (Ur1,1)
−1 on the left virtual index of T g

r+1
1 gr+1

2 gr+1
3 .

Concretely, we have

L
r
1,1 ○ T

gr1g
r
2g
r
3 = T g

r
1g
r
2g
r
3 ⋅Ur1,1

R
r
1,1 ○ T

gr+1
1 gr+1

2 gr+1
3 = (Ur1,1)

−1
⋅ T g

r+1
1 gr+1

2 gr+1
3 ,

(30)

where ○ represents the action on the physical indices (see
Eqs. (23) and (24)), and ⋅ represents the matrix multipli-
cation (i.e., the contraction over the virtual indices). See
Fig. 4. Similarly, for Lr2,1,R

r
2,1 and Lr2,2,R

r
2,2,

L
r
2,1 ○ T

gr1g
r
2g
r
3 = T g

r
1g
r
2g
r
3 ⋅Ur2,1 (31a)

R
r
2,1 ○ (T

gr+1
1 gr+1

2 gr+1
3 ⋅ T g

r+2
1 gr+2

2 gr+2
3 )

= (Ur2,1)
−1
⋅ (T g

r+1
1 gr+1

2 gr+1
3 ⋅ T g

r+2
1 gr+2

2 gr+2
3 ) (31b)

L
r
2,2 ○ (T

gr1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 )

= (T g
r
1g
r
2g
r
3 ⋅ T g

r+1
1 gr+1

2 gr+1
3 ) ⋅Ur2,2 (31c)

R
r
2,2 ○ T

gr+2
1 gr+2

2 gr+2
3

= (Ur2,2)
−1
⋅ T g

r+2
1 gr+2

2 gr+2
3 . (31d)
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For Lr3,1,R
r
3,1, we get

L
r
3,1 ○ T

gr1g
r
2g
r
3 = T g

r
1g
r
2g
r
3 ⋅Ur3,1

R
r
3,1 ○ T

gr+1
1 gr+1

2 gr+1
3 = (Ur3,1)

−1
⋅ T g

r+1
1 gr+1

2 gr+1
3 .

(32)

Eqs. (30), (31) and (32) are graphically represented in
Fig. 4.

Let us use the translational invariance and focus on the
operators that act on the virtual indices between the r-
th and (r+1)-th unit cells, i.e., Ur1,1, U

r
2,1, U

r−1
2,2 and Ur3,1.

For Eqs. (30), (31) and (32) being consistent, the virtual

Ur
′

α′,τ ′ and (Ur
′

α′,τ ′)
−1 operators on the right hand side

(RHS) should satisfy the same commutation relations as

the physical Lr
′

α′,τ ′ and Rr
′

α′,τ ′ operators on the left hand

side (LHS) respectively. As a result, Lr
′

α′,τ ′ and Rr
′

α′,τ ′

share the same commutation relation.49 Here,

L
r′

α′,τ ′ ∈ {L
r
1,1,L

r
2,1,L

r−1
2,2 ,L

r
3,1},

R
r′

α′,τ ′ ∈ {R
r
1,1,R

r
2,1,R

r−1
2,2 ,R

r
3,1}

Ur
′

α′,τ ′ ∈ {Ur1,1, U
r
2,1, U

r−1
2,2 , U

r
3,1}

(33)

This statement is proved in App. E in a general setting
of stabilizer codes. The commutation relations can be
encoded using the compact notations:

L
r′

α′,τ ′L
r′′

α′′,τ ′′ = (−1)
tr
′,r′′

(α′τ ′),(α′′τ ′′)L
r′′

α′′,τ ′′L
r′

α′,τ ′ ,

R
r′

α′,τ ′R
r′′

α′′,τ ′′ = (−1)
tr
′,r′′

(α′τ ′),(α′′τ ′′)R
r′′

α′′,τ ′′R
r′

α′,τ ′ ,

Ur
′

α′,τ ′U
r′′

α′′,τ ′′ = (−1)
tr
′,r′′

(α′τ ′),(α′′τ ′′)Ur
′′

α′′,τ ′′U
r′

α′,τ ′ ,

(34)

Since R operators obey the same commutation relations
as the L’s, we just focus on the L operators. The co-

efficients tr
′,r′′

(α′τ ′),(α′′τ ′′)
form an anti-symmetric t matrix,

which under the basis (Lr1,1,L
r
2,1,L

r−1
2,2 ,L

r
3,1)

T is given

by50

t =

⎛
⎜
⎜
⎜
⎝

0 0 1 1
0 0 0 1
−1 0 0 0
−1 −1 0 0

⎞
⎟
⎟
⎟
⎠

. (35)

We first determine the dimension of irreducible represen-
tation of the algebra Eq. (34) that {Lr1,1,L

r
2,1,L

r−1
2,2 ,L

r
3,1}

and {Ur1,1, U
r
2,1, U

r−1
2,2 , U

r
3,1} obey. It is convenient to in-

troduce:

L̃1 = L
r
3,1, Ũ1 = U

r
3,1,

L̃2 = L
r
2,1, Ũ2 = U

r
2,1

L̃3 = L
r−1
2,2 , Ũ3 = U

r−1
2,2

L̃4 = L
r
1,1L

r
2,1, Ũ4 = U

r
1,1U

r
2,1.

(36)

The new operators {L̃α, Ũα, α = 1,2,3,4} satisfy a sim-
pler algebra,

L̃αL̃β = (−1)t̃αβ L̃βL̃α

ŨαŨβ = (−1)t̃αβ ŨβŨα,
(37)

with

t̃ =

⎛
⎜
⎜
⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟
⎟
⎟
⎠

. (38)

The algebra of {L̃α} (or {Ũα}) is decoupled into two

subalgebras, generated by {L̃1, L̃2} (or {Ũ1, Ũ2}) and

{L̃3, L̃4} (or {Ũ3, Ũ4}) respectively. Each subalgebra has
a two dimensional irreducible representation. Hence the
total dimension of the irreducible representation of {L̃α}

(or {Ũα}) is 2 × 2 = 4. Finally, noticing that the trans-

formation between L’s and L̃’s is invertible. The inverse
transformation of Eq. (36) is

L
r
3,1 = L̃1, U

r
3,1 = Ũ1,

L
r
2,1 = L̃2, U

r
2,1 = Ũ2

L
r−1
2,2 = L̃3, U

r−1
2,2 = Ũ3

L
r
1,1 = L̃4(L̃2)

−1, Ur1,1 = Ũ4(Ũ2)
−1

(39)

Since L̃’s form a irreducible representation, the physical
operators Lr+1

1,1 ,L
r+1
2,1 ,L

r
2,2 and Lr3,1 (and thus by Eq. (34),

Ur+1
1,1 , U

r+1
2,1 , U

r
2,2 and Ur3,1 as well) also provide a 4 dimen-

sional irreducible representation.
For the rest of the task, we need to first find a matrix

representation of Ur1,1, U
r
2,1, U

r−1
2,2 and Ur3,1 satisfying the

algebra Eq. (34), and then solve for T g
r
1g
r
2g
r
3 in Eqs. (30),

(31) and (32). Since the irreducible representation of the
algebra is 4-dimensional, the virtual U operators should
be 4 × 4 matrices.

The matrix representations for the U operators are

not unique. If Ur
′

α′,τ ′ satisfies the algebra Eq. (34) and

T g
r′
1 g

r′
2 g

r′
3 is the solution of Eqs. (30), (31) and (32), then

S ⋅ Ur
′

α′,τ ′ ⋅ S
−1, with S independent of r′, α′, τ ′, also sat-

isfies Eq. (34) and the corresponding solution for the T

matrices is given by S ⋅ T g
r′
1 g

r′
2 g

r′
3 ⋅ S−1. Hence without

loss of generality, let us choose the virtual U operators

{Ur
′

α′,τ ′} to be:51

Ur1,1 = (X ⊗X)
r,

Ur2,1 = (I ⊗X)
r,

Ur−1
2,2 = ((−Y )⊗ I)r.

Ur3,1 = (I ⊗ (−Y ))
r.

(40)

where the superscript r on the RHS indicates that the
operators acts on the virtual bonds connecting the the
r-th and r + 1-th unit cell. We denote the corresponding

MPS matrix elements as T
gr1g

r
2g
r
3

h1h2,h3h4
where h1, h2 ∈ {0,1}

represent the left virtual indices and h3, h4 ∈ {0,1} repre-
sent the right virtual indices. In Eq. (40), the first Pauli
matrices act on the virtual indices h1 and h3, while the
second Pauli matrices act on the virtual indices h2 and
h4.
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So far, we have only considered bipartition of the
Hamiltonian terms Orα. For the operators that have sup-
port over three or more unit cells, we can take the combi-
nations of L and R operators so that Orα can be decom-
posed into a product of operators which only act within
a single unit cell. We enumerate the decompositions for
all three types of operators:

O
r
1,1 = L

r
1,1 ⋅R

r
1,1

O
r
2 = L

r
2,1 ⋅ (R

r
2,1(R

r
2,2)

−1) ⋅R
r
2,2

= L
r
2,1 ⋅ ((L

r
2,1)

−1
L
r
2,2) ⋅R

r
2,2

O
r
3,1 = L

r
3,1 ⋅R

r
3,1

(41)

where all the terms on the RHS of Eq. (41), in particular
(Rr2,1(R

r
2,2)

−1) and ((Lr2,1)
−1Lr2,2), are supported within

one unit cell. In App. F, we show in a general setting of
stabilizer codes, that Eq. (31) is equivalent to the fol-
lowing equations linear to the T matrix in the r-th unit
cell:

L
r
1,1 ○ T

gr1g
r
2g
r
3 = T g

r
1g
r
2g
r
3 ⋅Ur1,1

R
r−1
1,1 ○ T g

r
1g
r
2g
r
3 = (Ur−1

1,1 )
−1
⋅ T g

r
1g
r
2g
r
3

L
r
2,1 ○ T

gr1g
r
2g
r
3 = T g

r
1g
r
2g
r
3 ⋅Ur2,1

((L
r−1
2,1 )

−1
L
r−1
2,2 ) ○ T g

r
1g
r
2g
r
3 = (Ur−1

2,1 )
−1
⋅ T g

r
1g
r
2g
r
3 ⋅Ur−1

2,2

(R
r−1
2,1 (R

r−1
2,2 )

−1
) ○ T g

r
1g
r
2g
r
3 = (Ur−1

2,1 )
−1
⋅ T g

r
1g
r
2g
r
3 ⋅Ur−1

2,2

R
r−2
2,2 ○ T g

r
1g
r
2g
r
3 = (Ur−2

2,2 )
−1
⋅ T g

r
1g
r
2g
r
3

L
r
3,1 ○ T

gr1g
r
2g
r
3 = T g

r
1g
r
2g
r
3 ⋅Ur3,1

R
r−1
3,1 ○ T g

r
1g
r
2g
r
3 = (Ur−1

3,1 )
−1
⋅ T g

r
1g
r
2g
r
3 ,

(42)

where by translational invariance

Ur1,1 = (X ⊗X)
r, Ur−1

1,1 = (X ⊗X)
r−1,

Ur2,1 = (I ⊗X)
r, Ur−1

2,1 = (I ⊗X)
r−1,

Ur−1
2,2 = ((−Y )⊗ I)r, Ur−2

2,2 = ((−Y )⊗ I)r−1,

Ur3,1 = (I ⊗ (−Y ))
r, Ur−1

3,1 = (I ⊗ (−Y ))
r−1.

(43)

More concretely, the equations in (42) are

T
gr1g

r
2g
r
3

h1h2,h3h4
(−1)g

r
2+g

r
3 = T

gr1g
r
2g
r
3

h1h2,(1−h3)(1−h4)

T
(1−gr1)g

r
2g
r
3

h1h2,h3h4
(−1)g

r
2+g

r
3 = T

gr1g
r
2g
r
3

(1−h1)(1−h2),h3h4

T
gr1g

r
2g
r
3

h1h2,h3h4
(−1)g

r
3 = T

gr1g
r
2g
r
3

h1h2,h3(1−h4)

T
gr1(1−g

r
2)g

r
3

h1h2,h3h4
(−1)g

r
1+g

r
3 = −iT

gr1g
r
2g
r
3

h1(1−h2),(1−h3)h4
(−1)1−h3

T
gr1(1−g

r
2)g

r
3

h1h2,h3h4
(−1)g

r
1+g

r
3 = −iT

gr1g
r
2g
r
3

h1(1−h2),(1−h3)h4
(−1)1−h3

T
gr1g

r
2g
r
3

h1h2,h3h4
(−1)g

r
1 = −iT

gr1g
r
2g
r
3

(1−h1)h2,h3h4
(−1)h1

T
gr1g

r
2(1−g

r
3)

h1h2,h3h4
(−1)g

r
1+g

r
2 = −iT

gr1g
r
2g
r
3

h1h2,h3(1−h4)
(−1)1−h4

T
gr1g

r
2g
r
3

h1h2,h3h4
(−1)g

r
1+g

r
2 = −iT

gr1g
r
2g
r
3

h1(1−h2),h3h4
(−1)h2 .

(44)

Thus we have derived a set of linear equations Eq. (44) of
the T -matrices from the non-linear ones Eq. (25). Solving
Eq. (44), we obtain a solution up to a total scale factor:

T 000
=

⎛
⎜
⎜
⎜
⎝

1 1 1 1
i i i i
i i i i
−1 −1 −1 −1

⎞
⎟
⎟
⎟
⎠

, T 001
=

⎛
⎜
⎜
⎜
⎝

i −i i −i
−1 1 −1 1
−1 1 −1 1
−i i −i i

⎞
⎟
⎟
⎟
⎠

,

T 010
=

⎛
⎜
⎜
⎜
⎝

−1 −1 1 1
i i −i −i
−i −i i i
−1 −1 1 1

⎞
⎟
⎟
⎟
⎠

, T 011
=

⎛
⎜
⎜
⎜
⎝

i −i −i i
1 −1 −1 1
−1 1 1 −1
i −i −i i

⎞
⎟
⎟
⎟
⎠

,

T 100
=

⎛
⎜
⎜
⎜
⎝

−1 −1 −1 −1
i i i i
i i i i
1 1 1 1

⎞
⎟
⎟
⎟
⎠

, T 101
=

⎛
⎜
⎜
⎜
⎝

i −i i −i
1 −1 1 −1
1 −1 1 −1
−i i −i i

⎞
⎟
⎟
⎟
⎠

,

T 110
=

⎛
⎜
⎜
⎜
⎝

1 1 −1 −1
i i −i −i
−i −i i i
1 1 −1 −1

⎞
⎟
⎟
⎟
⎠

, T 111
=

⎛
⎜
⎜
⎜
⎝

i −i −i i
−1 1 1 −1
1 −1 −1 1
i −i −i i

⎞
⎟
⎟
⎟
⎠

.

(45)

These matrices are of rank 1 and all the tensor elements
are nonzero. We emphasize that they match the two
properties (a) and (b) in Theorem II.1, and this match
depends on the proper choice of the matrices for U op-
erators. Indeed, if there is a U operator containing Pauli
Z matrix, for instance Ur1,1 =X ⊗X,Ur2,1 =X ⊗ I,Ur−1

2,2 =

I ⊗ Z,Ur3,1 = Z ⊗ I, then the MPS matrix elements can
have both zeros and nonzeros. The appearance of zero
matrix elements makes it difficult to match the MPS to
the RBM element-wise, because the matrix elements of
RBM-MPS are all non-vanishing as shown in Theorem
II.1.

In fact, we do not have to solve the matrices and then
find their ranks. We can immediately find the rank of
the matrices from the Hamiltonian terms. From Eq. (44)
used only for T 000,

T 000
h1h2,h3h4

= T 000
h1h2,(1−h3)(1−h4)

T 000
h1h2,h3h4

= T 000
h1h2,h3(1−h4)

T 000
h1h2,h3h4

= −iT 000
(1−h1)h2,h3h4

(−1)h1

T 000
h1h2,h3h4

= −iT 000
h1(1−h2),h3h4

(−1)h2 .

(46)

The physical indices are unchanged on both sides of
Eq. (46) simply because the four equations are coming
from acting with the physical operators on the LHS of
Eq. (46),

L
r
1,1 = I

r
1 ⊗Z

r
2 ⊗Z

r
3 ,

L
r
2,1 = I

r
1 ⊗ I

r
2 ⊗Z

r
3 ,

R
r
2,2 = Z

r
1 ⊗ I

r
2 ⊗ I

r
3 ,

R
r
3,1 = Z

r
1 ⊗Z

r
2 ⊗ I

r
3 ,

(47)

which contain only Pauli Z operators and identities.
Hence, the left indices h1 and h2 of the matrix T 000 obey
two independent constraints, and the right indices h3
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and h4 obey two independent constraints. Therefore, the
rank of the matrix T 000 can be at most 1, since each con-
straint for the left (or right) indices eliminates half of the
total rank. Acting with Eq. (47) on the T -matrices with
other physical indices, we also get two independent con-
straints on the left and right indices respectively. Hence
the T matrices with any physical indices are of rank 1.
For other general models obeying the assumptions (III.1),
(III.2) and (III.3), we can similarly find the constraints
on the rank of the matrices by counting the independent
L or R operators with only Pauli Z matrices without
solving explicitly the matrices by brute-force. We elabo-
rate this idea in Sec. IV.

We finally comment that for the ZZXZZ model with
one spin per unit cell, i.e.,

H1−site
ZZXZZ =

r−1

∑
i=0

Zr−2Zr−1XrZr+1Zr+2 (48)

Using the same calculation in this section, the ground
state of H1−site

ZZXZZ can be expressed as an MPS,

∣GS⟩1−site = ∑
{gr}

Tr(
L−1

∏
r=0

T g
r

)∣{gr}⟩ (49)

where the MPS matrices are

T 0
=

⎛
⎜
⎜
⎜
⎝

1 0 1 0
−i 0 −i 0
0 1 0 1
0 −i 0 −i

⎞
⎟
⎟
⎟
⎠

, T 1
=

⎛
⎜
⎜
⎜
⎝

0 −1 0 1
0 −i 0 i
−1 0 1 0
−i 0 i 0

⎞
⎟
⎟
⎟
⎠

(50)

Notice that both T 0 and T 1 are of rank 2. By theorem
II.1, it is impossible to express the MPS Eq. (49) as an
RBM state.

C. General Stabilizer Code Convention

A generic translational invariant stabilizer code is de-
scribed by the Hamiltonian

H = −
L−1

∑
r=0

t

∑
α=1

O
r
α (51)

where t is the total number of types of interactions and
α ∈ 1, . . . , t labels the type. Each unit cell contains q spin-
1
2
’s. Orα is a product of Pauli X and Z operators such

that (1) Orα is Hermitian and (Orα)
2 = 1 for any r,α; and

(2) Orα and Or
′

α′ commute for any r, r′, α,α′, i.e.,

[O
r
α,O

r′

α′] = 0, ∀ α,α′, r, r′. (52)

Each interaction term Orα is supported over the unit cells
r, r + 1, ..., r + Pα − 1, and can be written as an ordered
product of Pα number of local operators orα,τ

O
r
α =

Pα

∏
τ=1

orα,τ , (53)

where orα,τ is a product of Pauli matrices only supported
on the (r+ τ −1)-th unit cell. For convenience, we define
Lrα,τ and Rrα,τ as follows

L
r
α,τ =

τ

∏
µ=1

orα,µ,

R
r
α,τ =

Pα

∏
µ=τ+1

orα,µ, τ = 1, . . . , Pα − 1.

(54)

By Assumption III.1, we consider only cases where
Eq. (51) has a unique ground state when using PBC.
The ground state ∣GS⟩ is the common eigenstate of all
Orα’s with eigenvalue 1 for all r and α,

O
r
α∣GS⟩ = ∣GS⟩, ∀ r,α. (55)

Our goal is to express the ground state ∣GS⟩ as an MPS

∣GS⟩ = ∑
{gri }

Tr(
L−1

∏
r=0

T g
r
1 ...g

r
q)∣{gri }⟩. (56)

where grα, (α = 1, ..., q), labels the value of the α-th phys-
ical spin in the r-th unit cell.

D. General Algorithm to Construct MPS

The calculation algorithm to construct an MPS repre-
sentation is divided into in 4 steps. These 4 steps will
follow those of Sec. III B for the ZZXZZ model.

1. We start with the stabilizer condition Eq. (55). A
sufficient condition for the MPS of Eq. (56) to satisfy
Eq. (55) is

O
r
α ○ (

r+Pα−1

∏
r′=r

T g
r′
1 ...g

r′
q ) = (

r+Pα−1

∏
r′=r

T g
r′
1 ...g

r′
q ). (57)

Eq. (57) is graphically represented as Fig. 5. In fact,
Eq. (57) is not only sufficient, but also necessary for
Eq. (55), as derived in App. C.

FIG. 5: Graphical representation of Eq. (57). The shaded
purple region represents the operator Orα acting on the phys-
ical indices.
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FIG. 6: An illustration of the operators L
r−(τ−1)
α,τ and R

r−(τ−1)
α,τ with fixed r and α, and all 1τ ≤ Pα−1. The blue blocks represent

unit cells. The purple blocks represent the operators L
r−(τ−1)
α,τ , and the operators R

r−(τ−1)
α,τ .

2. To find a solution of Eq. (57), we consider a bi-
partition of the Hamiltonian term Orα into the product
of the left and right part, i.e., Lrα,τ and Rrα,τ . The two
parts act solely on two disjoint and contiguous sets of unit
cells. For Pα > 1, since Orα is supported on the unit cells
between r and r +Pα − 1, Lrα,τ is chosen to be supported
from r to r + τ − 1-th unit cell, and Rrα,τ is supported
from (r+τ) to (r+Pα−1)-th unit cell. The definitions of
Lrα,τ and Rrα,τ are in given Eq. (54). Either Lrα,τ or Rrα,τ
can act nontrivially on the MPS, although their product
leaves the MPS invariant. This nontrivial action can be
captured by a transformation on the virtual index ex-
actly across the cut (between the (r + τ − 1)-th and the
(r + τ)-th unit cell). From Eq. (57), we find

L
r
α,τ ○ (

r+τ−1

∏
r′=r

T g
r′
1 ...g

r′
q ) = (

r+τ−1

∏
r′=r

T g
r′
1 ...g

r′
q ) ⋅Urα,τ (58)

R
r
α,τ ○ (

r+Pα−1

∏
r′=r+τ

T g
r′
1 ...g

r′
q ) = (Urα,τ)

−1
⋅ (

r+Pα−1

∏
r′=r+τ

T g
r′
1 ...g

r′
q ).

Eq. (58) is graphically represented as Fig. 7. We prove
in App. D that Eq. (58) is both necessary and sufficient
for Eq. (57).

For convenience, for each choice of (α, τ) we can shift r
to r−τ+1 in Eq. (58) by translational invariance such that
the Ur−τ+1

α,τ acts on the virtual bond between the r-th and
(r + 1)-th unit cell. See Fig. 6 for the operators that are
obtained from shifting Orα. Under the shift r → r − τ + 1,
Eq. (58) becomes

L
r−τ+1
α,τ ○ (

r

∏
r′=r−τ+1

T g
r′
1 ...g

r′
q ) = (

r

∏
r′=r−τ+1

T g
r′
1 ...g

r′
q ) ⋅Ur−τ+1

α,τ

R
r−τ+1
α,τ ○ (

r+Pα−τ

∏
r′=r+1

T g
r′
1 ...g

r′
q ) = (Ur−τ+1

α,τ )
−1
⋅ (

r+Pα−τ

∏
r′=r+1

T g
r′
1 ...g

r′
q ),

1 ≤ α ≤ t, 1 ≤ τ ≤ Pα − 1

(59)

FIG. 7: Graphical representation of Eq. (58). The virtual op-
erator Uri,τ and (Uri,τ)

−1 act on the right virtual index between
the r + τ − 1 and r-th unit cell.

When the operator Orα is supported only over 1 unit
cell, i.e., Pα = 1, Eq. (57) is already linear. Without loss
of generality, we take Lrα,1 = O

r
α, Rrα,1 = I

r and Urα,1 = I
r

where Ir is an identity operator acting on the r-th unit
cell.

3. We further determine the minimal bond dimen-
sion of T g

r
1 ...g

r
q . We prove in App. E that the commu-

tation and anti-commutation relations of the virtual U
operators on RHS of Eq. (59) should match those of the
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physical L and R operators on the LHS,

L
r−(τ ′−1)
α′,τ ′ L

r−(τ ′′−1)
α′′,τ ′′

= (−1)
t
r−(τ ′−1),r−(τ ′′−1)
(α′τ ′),(α′′τ ′′) L

r−(τ ′′−1)
α′′,τ ′′ L

r−(τ ′−1)
α′,τ ′ ,

R
r−(τ ′−1)
α′,τ ′ R

r−(τ ′′−1)
α′′,τ ′′

= (−1)
t
r−(τ ′−1),r−(τ ′′−1)
(α′τ ′),(α′′τ ′′) R

r−(τ ′′−1)
α′′,τ ′′ R

r−(τ ′−1)
α′,τ ′ ,

U
r−(τ ′−1)
α′,τ ′ U

r−(τ ′′−1)
α′′,τ ′′

= (−1)
t
r−(τ ′−1),r−(τ ′′−1)
(α′τ ′),(α′′τ ′′) U

r−(τ ′′−1)
α′′,τ ′′ U

r−(τ ′−1)
α′,τ ′ ,

1 ≤ α′, α′′ ≤ t, 1 ≤ τ ′ ≤ Pα′ − 1, 1 ≤ τ ′′ ≤ Pα′′ − 1

(60)

The parameter

t
r−(τ ′−1),r−(τ ′′−1)

(α′τ ′),(α′′τ ′′)
= 0,1 mod 2 (61)

encodes whether U
r−(τ ′−1)
α′,τ ′ and U

r−(τ ′′−1)
α′′,τ ′′ commute

or anti-commute. We ensemble the parameters

t
r−(τ ′−1),r−(τ ′′−1)

(α′τ ′),(α′′τ ′′)
into an anti-symmetric matrix t.52

The algebra Eq. (60) is a generalization of the Clifford
algebra, where the standard Clifford algebra is generated
by mutually anti-commuting operators. In Ref. 33, it
was shown that any integer-valued antisymmetric ma-
trix t can be block diagonalized by a unimodular in-
teger matrix V , such that each nontrivial block is a
2 × 2 anti-symmetric matrix with integer off-diagonal el-
ements. Due to Eq. (61), only the modulo 2 values of
the off-diagonal elements of the nontrivial 2 × 2 blocks
matter. The nontrivial blocks can therefore be written
as follows:53

V tV T = (
0 1
−1 0

)⊕ (
0 1
−1 0

)⋯⊕ (
0 1
−1 0

)⊕ 0⋯. (62)

Here we explicitly keep the minus signs to make the an-
tisymmetry manifest. In the new basis, the operators
Lrα,τ become decoupled pairs of anti-commuting oper-

ators (such as Eq. (36)); there are rank(t)
2

such pairs.
Since each pair provides a two dimensional irreducible
representation, the dimension of the irreducible repre-
sentation of the generalized Clifford algebra Eq. (60) is
given by

D = 2
rank(t)

2 . (63)

Since the dimension of an irreducible representation of
the algebra Eq. (60) is D, the matrices of the Urα,τ op-

erators, as well as the MPS matrix T g
r
1 ...g

r
q under the

irreducible representation should be D × D matrices.54

Since the representation is irreducible, D is also the min-
imal bond dimension. For the ZZXZZ model with 3
spins per unit cell discussed in Sec. III B, the t matrix
is given by Eq. (35), which is of rank 4. By Eq. (63),

the minimal bond dimension of the MPS is D = 24/2 = 4,
which matches the MPS explicitly derived in Eq. (45).

4. We solve Eq. (59) for the MPS matrices T with the
minimal bond dimension D. Let us first determine the
form of U . The matrix elements of U can be obtained by
finding the representation of the algebra Eq. (60). Here
we focus only on irreducible representations such that the
bond dimension is minimal. Notice that there exist mul-
tiple choices of U operators satisfying the same algebra
Eq. (60). However, since we only consider models with a
single ground state, different solutions of T from differ-
ent choices of U should correspond to the same ground
state. Hence it is sufficient to work with one choice of U .
As shown in App. G, U can always be constructed as a

tensor product of rank(t)
2

Pauli matrices. After specifying
the virtual U operators, we manipulate the equations in
Eq. (59) such that all the physical operators on the LHS
only act on the r-th unit cell, and all the equations are lin-
ear in T g

r
1⋯g

r
q . For instance, using the definition Eq. (54),

Lr−τ+1
α,τ =∏

τ
µ=1 o

r−τ+1
α,µ and Lr−τ+1

α,τ−1 =∏
τ−1
µ=1 o

r−τ+1
α,µ , the com-

bination ((Lr−τ+1
α,τ−1 )

−1Lr−τ+1
α,τ ) = or−τ+1

α,τ is only supported
on the r-th unit cell. In App. F, we show that Eq. (59)
are equivalent to

L
r
α,1 ○ T

gr1 ...g
r
q = T g

r
1 ...g

r
q ⋅Urα,1

((L
r−τ+1
α,τ−1 )

−1
L
r−τ+1
α,τ ) ○ T g

r
1⋯g

r
q = (Ur−τ+1

α,τ−1 )
−1
⋅ T g

r
1⋯g

r
q ⋅Ur−τ+1

α,τ

(R
r−τ+1
α,τ−1 (R

r−τ+1
α,τ )

−1) ○ T g
r
1 ...g

r
q = (Ur−τ+1

α,τ−1 )
−1
⋅ T g

r
1 ...g

r
q ⋅Ur−τ+1

α,τ

R
r−(Pα−1)
α,Pα−1 ○ T g

r
1 ...g

r
q = (U

r−(Pα−1)
α,Pα−1 )

−1
⋅ T g

r
1 ...g

r
q ,

1 ≤ α ≤ t, 2 ≤ τ ≤ Pα − 1

(64)

Since Eq. (64) is a set of linear equations in T , they can
be numerically solved efficiently. For all the models we
have explicitly checked (e.g. Zq−1XZq−1 with 2 ≤ q ≤

6), Eq. (64) has one non-zero solution up to an overall
scaling.

IV. AN INEQUALITY FOR RANK OF MPS

As discussed in Sec. II, a necessary condition for the
existence of a finitely connected RBM of a stabilizer code
ground state is Theorem II.1. In this section, we propose
an inequality which allows us to directly constrain the
rank of the MPS without solving for the MPS matrices.

Before we state and prove our theorem, it is convenient
to introduce two notations. Denote a set of operators:

L = {L
r
1,1,L

r
2,1, . . . ,L

r
t,1}. (65)

In particular, L contains a special subset dubbed as LZ
such that the operators in LZ are only the tensors prod-
ucts of Pauli Z and the identity I matrices. Denote NLZ
as the number of independent operators in LZ . Notice
that due to translational invariance, NLZ is independent
of r.
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Theorem IV.1. For the matrices T g
r
1 ...g

r
q satisfying

Eq. (64) where the U matrices are tensor product of Pauli

matrices, the rank of T g
r
1 ...g

r
q is upper bounded:

rank(T g
r
1 ...g

r
q ) ≤

D

2N
L
Z

= 2
rank(t)

2 −NLZ , ∀{gri }. (66)

where NLZ is the number of independent operators in LZ .

Proof. To constrain rank(T g
r
1 ...g

r
q ), we only focus on a

subset of Eq. (64) satisfying:

(1) the physical operator on LHS of Eq. (64) only in-
volves the operators in LZ ;

(2) the virtual operator on RHS of Eq. (64) only acts on
the right virtual index.

Explicitly, this subset of equations are all included in the
following equations:

L
r
α,1 ○ T

gr1 ...g
r
q = T g

r
1 ...g

r
q ⋅Urα,1, ∀ L

r
α,1 ∈ LZ . (67)

This subset is useful to constrain rank(T g
r
1 ...g

r
q ) because

(1) both LHS and RHS of this subset of equations only

involve the same matrix T g
r
1 ...g

r
q . Indeed, since Lrα,1

belongs to LZ , the LHS is proportional to the matrix
T g

r
1 ...g

r
q ;

(2) only the columns of T g
r
1 ...g

r
q are constrained.

Using Theorem F.2 of App. F, the number of independent
equations among Eq. (67)(i.e., the number of indepen-
dent constraints for the columns ) is given by the number
of independent operators in LZ , i.e., NLZ . We know that
U operators form a generalized Clifford algebra, and as
proven in App. G, their matrices are tensor products of
the Pauli matrices. More precisely, each virtual U opera-
tor either swaps and/or multiplies by some factors (±i or
±1) on half of the columns. Hence, each independent con-
straint eliminates half of the rank. Therefore, the rank
of the MPS T matrix is upper bounded:

rank(T g
r
1 ...g

r
q ) ≤

D

2N
L
Z

. (68)

This completes proving Theorem IV.1.

In the 1D stabilizer codes we have studied, the upper
bound in Eq. (66) always saturates.

V. RESTRICTED BOLTZMANN MACHINE
STATE OF A STABILIZER CODE

In this section, we discuss how to express the ground
states of a class of stabilizer codes, which we dub as co-
cycle models, as RBM states. They are a special class of

Hamiltonians describing 1D symmetry protected topo-
logical phases. We first use Theorem IV.1 to prove that
the rank of the ground state MPS is 1. Then we use
the ZZXZZ model as an example to illustrate the con-
struction of the RBM state with the RBM-MPS bond
dimension 4. We further present a general and explicit
algorithm to construct the RBM states for an arbitrary
cocycle model, with the minimal RBM-MPS bond dimen-
sion. We finally conjecture that for any stabilizer code
which satisfies Assumptions III.1, III.2 and III.3 and also
the necessary condition II.1, it is possible to express its
ground state as an RBM state with the minimal RBM-
MPS bond dimension.

A. MPS Matrix Rank For Cocycle SPT Models

In this section, we apply Theorem IV.1 to a particular
family of stabilizer codes — the cocycle Hamiltonians for
symmetry protected topological phases — and show that
their MPS matrices are of rank 1. In App. H, we provide
some backgrounds about the cocycle Hamiltonians, in-
cluding the projective representations of the global sym-
metry G, cocycles ω2, cohomology group H2(G,U(1))
and 1D SPT phases. The cocycle ω2 ∈H

2(G,U(1)) clas-
sifies the 1D SPT phases with the discrete onsite sym-
metry G. In this paper, we restrict G to be (Z2)

q. The
group elements are parametrized by g = (g1, g2, . . . , gq)
with gi ∈ Z2 = {0,1}, and the generic form of the cocycle
is34,35:

ω2(g, g
′
) = exp

⎛

⎝
−iπ ∑

1≤i<j≤q

Pijgjg
′
i

⎞

⎠
, g, g′ ∈ G, (69)

where Pij can be either 0 or 1. The cocycles can also
be used to construct representative SPT wave functions
and representative parent Hamiltonians which are sta-
bilizer codes. For simplicity, we dub the representative
states and representative Hamiltonians as cocycle states
and cocycle Hamiltonians respectively. See App. H for a
brief overview.

The cocycle Hamiltonian for a (Z2)
q SPT phase (with

q spin- 1
2
’s per unit cell) with a given generic cocycle ω2

Eq. (69) is

H(Z2)q,ω2
= −

L−1

∑
r=0

q

∑
α=1

O
r
α, (70)

with
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O
r
α =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∏
1<l≤q

(Zr+1
l Zrl )

P1lXr+1
1 α = 1

∏α<l≤q(Z
r+1
l Zrl )

PαlXr+1
α ∏1≤k<α(Z

r+2
k Zr+1

k )Pkα 1 < α < q

Xr
q ∏

1≤k<q

(Zr+1
k Zrk)

Pkq α = q.

(71)

For 1 < α < q, Orα are supported on 3 unit cells; while for
α = 1, q, Or1 and Orq are supported on 2 unit cells. The
Hamiltonian H(Z2)q,ω2

has the ground state (see App. H
for details)

∣GS⟩(Z2)q,ω2
= ∑
{gri }

exp(iπ
L−1

∑
r=0

∑
1≤i<j≤q

Pij(g
r
j−g

r−1
j )gri )∣{g

r
i }⟩.

(72)
When

P =
⎛
⎜
⎝

0 1 1
0 0 1
0 0 0

⎞
⎟
⎠
, (73)

the Hamiltonian Eq. (70) reduces to the Hamiltonian of
the ZZXZZ model, i.e., Eq. (16).

Theorem V.1. For the stabilizer codes of Eq. (70), if

T g
r
1 ...g

r
q is not null, then

rank(T g
r
1 ...g

r
q ) = 1. (74)

Proof. To calculate rank(T g
r
1 ...g

r
q ), we apply Theorem

IV.1, where the upper bound of the rank of T g
r
1⋯g

r
q is

given by 2
rank(t)

2 −NLZ . We will first compute rank(t) and
NLZ respectively, and show that the upper bound is 1. We
further show that the upper bound is saturated, which
completes the proof of the theorem.

We first compute rank(t). To calculate the t-matrix,
we enumerate all possible Lr−τ+1

α,τ with all possible (α, τ)
and fixed r. For 1 < α < q, τ = 1,2; for α = 1 or q, τ = 1.
Hence there are 2(q − 1) L operators:

L
r
1,1 ≡ (Zr2)

P12 ⊗ (Zr3)
P13 ⊗⋯⊗ (Zrq−1)

P1(q−1) ⊗ (Zrq )
P1q

⋮

L
r
q−2,1 ≡ (Zrq−1)

P(q−2)(q−1) ⊗ (Zrq )
P(q−2)q

L
r
q−1,1 ≡ (Zrq )

P(q−1)q

L
r−1
2,2 ≡ (Zr−1

3 )
P23 ⊗⋯⊗ (Zr−1

q )
P2q ⊗ (Zr1)

P12 ⊗Xr
2 ⊗ (Zr3)

P23 ⊗ (Zr4)
P24 ⊗⋯⊗ (Zrq )

P2q

L
r−1
3,2 ≡ (Zr−1

4 )
P34 ⊗⋯⊗ (Zr−1

q )
P3q ⊗ (Zr1)

P13 ⊗ (Zr2)
P23 ⊗Xr

3 ⊗ (Zr4)
P34 ⊗ (Zr5)

P35 ⊗⋯⊗ (Zrq )
P3q

⋮

L
r−1
q−1,2 ≡ (Zr−1

q )
P(q−1)q ⊗ (Zr1)

P1(q−1) ⊗ (Zr2)
P2(q−1) ⊗⋯⊗ (Zrq−2)

P(q−2)(q−1) ⊗Xr
q−1 ⊗ (Zrq )

P(q−1)q

L
r
q,1 ≡ (Zr1)

P1q ⊗ (Zr2)
P2q ⊗⋯⊗ (Zrq−1)

P(q−1)q ⊗Xr
q .

(75)

We have suppressed the identity operators for simplic-
ity. Among all the operators in Eq. (75), the first q − 1
and the last one act only on the r-th unit cell, while
the remaining act both on the r − 1-th and r-th unit
cells. It is straightforward to compute the commuta-
tion relation and determine the t matrix. In the ba-
sis where the operators are listed as in Eq. (75), i.e.,
{Lr1,1,⋯,L

r
q−2,1,L

r
q−1,1,L

r−1
2,2 ,L

r−1
3,2 ,⋯,L

r−1
q−1,2,L

r
q,1}, the t

matrix reads

t = (
0 Λ

−ΛT 0
) , (76)

where 0 is a (q−1)×(q−1) dimensional zero matrix, and

Λ is a (q − 1) × (q − 1) upper triangular matrix:

Λ =

⎛
⎜
⎜
⎜
⎝

P12 ⋯ P1(q−1) P1q

⋱ ⋮ ⋮

P(q−2)(q−1) P(q−2)q

P(q−1)q

⎞
⎟
⎟
⎟
⎠

. (77)

Therefore, by Eq. (76), we have:

rank(t) = 2rank(Λ). (78)

Counting rank(Λ) is simply counting the number of in-
dependent rows in Λ.

We proceed to evaluate NLZ . Recall that NLZ is defined
to be the number of independent operators among LZ .
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In this case, we have:

LZ = {L
r
1,1,L

r
2,1, . . . ,L

r
q−1,1}. (79)

A crucial observation is that the powers of the Z’s among
the operators in Eq. (79) are in one-to-one correspon-
dence with the rows of the Λ matrix in Eq. (77). Hence,
the number of independent operators among Eq. (79) co-
incides with the number of independent rows of the Λ
matrix Eq. (77), i.e.,

NLZ = rank(Λ). (80)

Using Theorem IV.1 and Eqs. (78) and (80), we obtain

rank(T g1...gq) ≤ 2
rank(t)

2 −NLZ = 2
2rank(Λ)

2 −rank(Λ)
= 1. (81)

We have assumed that T g1...gq is not null. rank(T g1...gq)

is thus assumed to be positive. Constrained by Eq. (81),
we conclude that

rank(T g1...gq) = 1. (82)

Since in the ground state Eq. (72) for any spin config-
uration {gri } the coefficient of the basis ∣{gri }⟩ is a non-
vanishing number, the MPS matrices are non-vanishing
for any physical indices gr1 . . . g

r
q . This shows that the ma-

trices T g
r
1 ...g

r
q are indeed not null. Hence the MPS matrix

rank is 1 for the ground state MPS of an arbitrary co-
cycle Hamiltonian in Eq. (70) with the global symmetry
(Z2)

q.

B. An Example: ZZXZZ Model Revisited

In this section, we derive the RBM for the ZZXZZ
model with the RBM-MPS bond dimension 4.

We start with the ground state ∣GS⟩ of the ZZXZZ
model Eq. (18). Concretely, by restricting Eq. (72) to
q = 3, and using P12 = P23 = P13 = 1, we obtain the
ground state

∣GS⟩ZZXZZ = ∑
{gri }

exp(iπ
L−1

∑
r=0

∑
1≤i<j≤3

(grj − g
r−1
j )gri )∣{g

r
i }⟩.

(83)
The coefficient of the configuration ∣{gri }⟩ is an exponent
of a quadratic function of the physical spins. The idea to
write Eq. (83) in the form of an RBM state is to intro-
duce hidden spins and to transform the quadratic terms
in g to linear terms. This is achieved by applying a se-
ries of identities proved in App. I. The identities can be
summarized as

exp(iπSym(g1,⋯, gn))

=
1

√
2

1

∑
h=0

exp(i
π

2
(1 − 2h)

n

∑
i=1

gi − i
π

4
(1 − 2h)),

(84)

where gi ∈ {0,1}, and Sym(g1,⋯, gn) is a symmetric sum-
mation of quadratic expressions in gi, i.e.,

Sym(g1,⋯, gn) ≡ ∑
1≤i<j≤n

gjgi. (85)

We introduce the following definitions to simplify the dis-
cussion below:

1. The on-site terms: the quadratic terms involving
only the visible spins from a single unit cell. For
example: grj g

r
i , g

r−1
j gr−1

i , etc.

2. The inter-site terms: the quadratic terms involv-
ing the visible spins from different unit cells. For
example: gr−1

j gri , g
r
j g
r−1
i , etc.

3. The on-site symmetric expressions: the symmet-
ric expressions involving only visible spins from a
single unit cell. For example: Sym(gri , g

r
j , g

r
k), etc.

4. The inter-site symmetric expressions: the symmet-
ric expressions involving visible spins from different
unit cells. For example: Sym(gr−1

i , grj , g
r
k), etc.

To convert Eq. (83) into an RBM state, our strategy
is as follows. We group all the quadratic terms in the ex-
ponent of Eq. (83) into a sum of symmetric expressions,
and apply the identity Eq. (84) to each symmetric expres-
sion. For the inter-site symmetric expression, applying
Eq. (84) introduces a hidden spin of type-h; for the on-
site symmetric expression, applying Eq. (84) introduces

a hidden spin of type-h̃. As discussed in Sec. II, each
hidden spin of type-h doubles the bond dimension once
we write the RBM state as an MPS (i.e., RBM-MPS),

while the hidden spin of type-h̃ does not contribute to
the bond dimension. Hence, to obtain the RBM state
whose RBM-MPS bond dimension is as small as possi-
ble, we are aiming to group the quadratic expressions
in Eq. (83) to as few inter-site symmetric expressions as
possible, together with some additional on-site symmet-
ric expressions.

We first discuss the inter-site terms in Eq. (83), i.e.,
∑1≤i<j≤3 g

r−1
j gri , because on-site terms do not contribute

to the inter-site symmetric expressions. There are differ-
ent ways to decompose the inter-site terms in the ex-
ponent of Eq. (83) as a summation of symmetric ex-
pressions. Superficially, there are 3 inter-site terms,
∑1≤i<j≤3 g

r−1
j gri = gr−1

2 gr1 + g
r−1
3 gr1 + g

r−1
3 gr2, and it seems

that one has to introduce 3 hidden variables by applying
Eq. (84) to the three terms separately. However, it is pos-
sible to organize the three inter-site terms into the sum
of two inter-site symmetric expressions and one on-site
symmetric expression. Concretely,

∑
1≤i<j≤3

gr−1
j gri =

Sym(gr−1
2 , gr1) + Sym(gr−1

3 , gr1, g
r
2) − Sym(gr1, g

r
2).

(86)

Under the decomposition Eq. (86) and applying Eq. (84),
we need to introduce 2 hidden spins of type-h, which we
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denote as hr1 and hr2. From the discussion in the last para-
graph, the bond dimension of the RBM-MPS is 22 = 4,
which precisely matches the minimal bond dimension of
the ZZXZZ model derived in Sec. III B. This shows that
there is no way to decompose the quadratic expression
∑1≤i<j≤3 g

r−1
j gri in Eq. (83) as a sum of at most one inter-

site symmetric expression, together with some additional
on-site symmetric expressions. Different decompositions
of ∑1≤i<j≤3 g

r−1
j gri should include at least two inter-site

symmetric expressions. We will provide a general recipe
of grouping the inter-site terms in Sec. V C for all the 1D
cocycle models and show that the grouping is optimal.

We further consider the on-site terms ∑1≤i<j≤3 g
r
j g
r
i .

We use the same decomposition as Eq. (86) by replacing
gr−1
j with grj , and obtain

∑
1≤i<j≤3

grj g
r
i = Sym(gr2, g

r
1) + Sym(gr3, g

r
1, g

r
2) − Sym(gr1, g

r
2).

(87)

Applying Eq. (84) for all the symmetric expressions, the
ground state ∣GS⟩ZZXZZ can be rewritten as an RBM
state

∣GS⟩ZZXZZ = ∑
{gri }

exp(iπ
L−1

∑
r=0

−Sym(gr−1
2 , gr1) − Sym(gr−1

3 , gr1, g
r
2) + Sym(gr2, g

r
1) + Sym(gr3, g

r
1, g

r
2))∣{g

r
i }⟩

= ∑
{gri }

∑

{hr1,h
r
2}{h̃

r
1,h̃

r
2}

L−1

∏
r=0

exp( − i
π

2
(1 − 2hr1)(g

r−1
2 + gr1) + i

π

4
(1 − 2hr1) − i

π

2
(1 − 2hr2)(g

r−1
3 + gr1 + g

r
2)

+ i
π

4
(1 − 2hr2) + i

π

2
(1 − 2h̃r1)(g

r
1 + g

r
2) − i

π

4
(1 − 2h̃r1) + i

π

2
(1 − 2h̃r2)(g

r
1 + g

r
2 + g

r
3) − i

π

4
(1 − 2h̃r2))∣{g

r
i }⟩

(88)

We have suppressed the overall normalization constant. From the discussion in Sec. II, the RBM state Eq. (88) can
further be written as an MPS with the MPS matrix:

T
gr1g

r
2g
r
3

hr1h
r
2,h

r+1
1 hr+1

2

=

∑

{h̃r1,h̃
r
2}

exp( − i
π

2
(1 − 2hr1)g

r
1 − i

π

2
(1 − 2hr+1

1 )gr2 + i
π

4
(1 − 2hr1) − i

π

2
(1 − 2hr2)(g

r
1 + g

r
2) − i

π

2
(1 − 2hr+1

2 )gr3

+ i
π

4
(1 − 2hr2) + i

π

2
(1 − 2h̃r1)(g

r
1 + g

r
2) − i

π

4
(1 − 2h̃r1) + i

π

2
(1 − 2h̃r2)(g

r
1 + g

r
2 + g

r
3) − i

π

4
(1 − 2h̃r2)).

(89)

The bond dimension of the RBM-MPS Eq. (89) is indeed
4, which matches the bond dimension derived from the
RBM state Eq. (88). Since we have shown in Sec. III B
that the minimal bond dimension of the ZZXZZ MPS
is 4, there can not be an RBM state with the number of
hidden spin of type-h per unit cell less than 2. This im-
plies that our RBM state is the most optimal, in the sense
that the number of hidden spins of type-h is minimal.

Fig. 8 is a graphical representation of the RBM state
Eq. (88). In fact, the RBM-MPS matrices Eq. (89) are
the same as the MPS matrices Eq. (45) in derived in
Sec. III B. As we will see in the next subsection, for more
general models Zq−1XZq−1, each unit cell contains q vis-
ible spins. Our construction yields the RBM-MPS bond
dimension 2q−1, and we need to introduce 2(q−1) hidden
spins on average for each unit cell. Among them, (q − 1)
are of the type-h while the remaining (q − 1) are of the

type-h̃.

C. RBM States of Cocycle Hamiltonians

In Sec. V A, we have shown that the MPS matrices
of the (Z2)

q cocycle Hamiltonians (with q spin- 1
2
’s per

unit cell) are all of rank 1. Then it is natural to ask
if the ground state of the cocycle Hamiltonians can al-
ways be expressed as an RBM state, whose RBM-MPS

FIG. 8: Graphical representation of the RBM state of the
ZZXZZ model.
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bond dimension being D defined in Eq. (63). In this
subsection, we describe a procedure to obtain the RBM
states with minimal number of hidden spins. In particu-
lar, we generalize and apply the procedures of Sec. V B,
and we present explicit RBM states for Zq−1XZq−1 cocy-
cle Hamiltonians with arbitrary q. See App. J for more
examples.

The cocycle Hamiltonian in Eq. (70) has the ground
state ∣GS⟩(Z2)q,ω2

in Eq. (72). To convert it to an RBM
state, we follow the same procedures in Sec. V B. The
core idea is that we need to group the inter-site terms
∑1≤i<j≤q Pijg

r−1
j gri as a sum of the rank(Λ) inter-site

symmetric expressions together with some on-site terms.
Since each inter-site symmetric expression contributes a
hidden spin of type-h which doubles the bond dimension
of the RBM-MPS, the bond dimension of the RBM-MPS

is thus 2rank(Λ) ≡ 2
rank(t)

2 . This is precisely the minimal
bond dimension derived in Sec. (III D), which in turn
implies that the decomposition of the inter-site terms is
optimal, i.e, the number of type-h hidden spins is mini-
mal in our construction.

Lemma V.2. For an inter-site quadratic term,

(gr−1)
T
⋅ Γ ⋅ gr =

q

∑
i,j=1

Γijg
r−1
i grj , Γij ∈ {0,1}, (90)

there exists a unimodular transformation G such that Γ
transforms to

Γ→ Γ̂ = (G)
T
⋅ Γ ⋅G = (

γ
0
) mod 2, (91)

where the integer matrix γ of size rank(Γ)×q has full row
rank:

rank(γ) = rank(Γ). (92)

The vectors gr−1 and gr transform as

gr−1
i → ĝr−1

i =

q

∑
j=1

G−1
ij g

r−1
j , gri → ĝri =

q

∑
j=1

G−1
ij g

r
j . (93)

and

(gr−1)
T
⋅ Γ ⋅ gr = (ĝr−1)

T
⋅ Γ̂ ⋅ ĝr (94)

Proof. Our proof is based on the Gaussian elimination
algorithm. For simplicity, we first introduce the matrix
notations: I represents the identity q × q matrix, and
E(i, j) represents a q × q matrix whose elements are

(E(i, j))m,n = δm,iδn,j , ∀m,n = 1,2, . . . , q. (95)

In other words, the only nonzero value of E(i, j) is 1 lo-
cated at the i-th row and j-th column. Moreover, we use
the following two types of matrix row transformations:

G1(i, j) = I +E(i, j) +E(j, i) −E(i, i) −E(j, j)

G2(i, j) = I +E(j, i), i ≠ j.
(96)

It is obvious that both G1 and G2 are unimodular, i.e.,

∣det(G1(i, j))∣ = 1, ∣det(G2(i, j))∣ = 1. (97)

The products of G1’s and G2’s are also unimodular.
The first transformation G1(i, j) interchanges the i-th

row and the j-th row of Γ, and the second transformation
G2(i, j) adds the i-th row to the j-th row.55 There exists
a sequence of G1(i, j) and G2(i, j) such that:

∏
m

Gkm(im, jm) ⋅ Γ = (
γ′

0
) mod 2, (98)

where the matrix γ′ of size rank(Γ)×q has full row rank,
and its elements are either 0 and 1. Denote:

G = (∏
m

Gkm(im, jm))

T

. (99)

Using Eq. (98), we have:

Γ̂ = GT ⋅ Γ ⋅G = (
γ′

0
) ⋅G = (

γ
0
) mod 2, (100)

where

γ = γ′ ⋅G, (101)

and γ of size rank(Γ) × q has full row rank.

Lemma V.3. The inter-site term in the ground state
∣GS⟩(Z2)q,ω2

Eq. (72) ∑1≤i<j≤q Pijg
r−1
j gri can be grouped

into rank(Λ) number of inter-site symmetric expressions
and rank(Λ) on-site symmetric expressions, where Λ is
defined in Eq. (77).

Proof. We first define the Γ matrix:

Γ ≡

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0 0
P12 0 ⋯ 0 0
P13 P23 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

P1q P2q ⋯ P(q−1)q 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0 0
0
0

ΛT ⋮

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (102)

The matrix Γ is a q × q matrix, whose each element is
defined modulo 2. There are 0s in the first row and last
column because gr−1

1 and grq do not appear in the sum

∑1≤i<j≤q Pijg
r−1
j gri . The bottom-left (q−1)×(q−1) block

of Γ is ΛT where Λ is defined in Eq. (77). In particular,

rank(Γ) = rank(Λ). (103)

Using this notation, we have:

∑
1≤i<j≤q

Pijg
r−1
j gri = (gr−1

)
T
⋅ Γ ⋅ gr. (104)

Using Lemma V.2, Eq. (104) can be simplified:

∑
1≤i<j≤q

Pijg
r−1
j gri =

rank(Λ)

∑
i=1

ĝr−1
i

q

∑
j=1

Γ̂ij ĝ
r
j . (105)



18

It can be decomposed by the symmetric expressions:

∑
1≤i<j≤q

Pijg
r−1
j gri =

rank(Λ)

∑
i=1

Sym(ĝr−1
i , Γ̂i1ĝ

r
1, . . . , Γ̂iq ĝ

r
q)

−

rank(Λ)

∑
i=1

Sym(Γ̂i1ĝ
r
1, . . . , Γ̂iq ĝ

r
q).

(106)

The first rank(Λ) terms are inter-site symmetric expres-
sions, and the remaining rank(Λ) terms are the on-site
terms. This completes the proof.

Theorem V.4. There exists an RBM for the state
Eq. (72) whose RBM-MPS has the minimal bond dimen-

sion 2rank(Λ) where Λ is defined in Eq. (77).

Proof. Using Lemma V.2 and V.3, we obtain

exp( − iπ ∑
1≤i<j≤q

Pijg
r−1
j gri ) = exp( − iπ(ĝr−1

)
T
⋅ Γ̂ ⋅ ĝr)

= exp( − iπ
rank(Λ)

∑
i=1

Sym(ĝr−1
i , Γ̂i1ĝ

r
1, . . . , Γ̂iq ĝ

r
q)

+ iπ
rank(Λ)

∑
i=1

Sym(Γ̂i1ĝ
r
1, . . . , Γ̂iq ĝ

r
q)).

(107)

Applying Eq. (84) to the inter-site symmetric expressions
leads to:

exp( − iπ ∑
1≤i<j≤q

Pijg
r−1
j gri ) =

rank(Λ)

∏
i=1

⎡
⎢
⎢
⎢
⎢
⎣

1
√

2

1

∑
hri =0

exp( − i
π

2
(1 − 2hri )(ĝ

r−1
i +

q

∑
j=1

Γ̂ij ĝ
r
j ) + i

π

4
(1 − 2hri ))

× exp( − iπSym(Γ̂i1ĝ
r
1,⋯, Γ̂iq ĝ

r
q))

⎤
⎥
⎥
⎥
⎥
⎦

.

(108)

Notice that further introducing the hidden spins by lin-
earizing the on-site terms on RHS of Eq. (107) does not
increase the bond dimension of the RBM-MPS. Hence we
have shown that the RBM-MPS derived via the above al-
gorithm has rank(Λ) hidden spins of type h, which corre-

sponds to the RBM-MPS bond dimension D = 2rank(Γ) =

2rank(Λ). This matches the bond dimension Eq. (63) asso-
ciated with the irreducible representation in Sec. III.

We use the rest of this section to express the state
Eq. (72) as an RBM explicitly.

exp(iπ ∑
1≤i<j≤q

Pij(g
r
j − g

r−1
j )gri )

= exp( − iπ
rank(Λ)

∑
i=1

Sym(ĝr−1
i , Γ̂i1ĝ

r
1, . . . , Γ̂iq ĝ

r
q)

+ iπ
rank(Λ)

∑
i=1

Sym(ĝri , Γ̂i1ĝ
r
1, . . . , Γ̂iq ĝ

r
q)).

(109)

Applying Eq. (84) to Eq. (109), we can write the ground

state ∣GS⟩(Z2)q,ω2
as an RBM state

∣GS⟩(Z2)q,ω2
=

∑

{gri },{h
r
i },{h̃

r
i }

rank(Λ)

∏
i=1

exp( − i
π

2
(1 − 2hri )(ĝ

r−1
i +

q

∑
j=1

Γ̂ij ĝ
r
j )

+ i
π

4
(1 − 2hri ) + i

π

2
(1 − 2h̃ri )(ĝ

r
i +

q

∑
j=1

Γ̂ij ĝ
r
j )

− i
π

4
(1 − 2h̃ri ))∣{g

r
i }⟩.

(110)

We find that in the particular construction Eq. (110),
the number of inter-site hidden spin is the same as the
number of on-site hidden spin, for an arbitrary cocycle
Hamiltonian. The relation between {ĝri } and {gri } de-
pends on the cocycle parameters Pij , as per Eq. (93).

D. RBM Construction for Zq−1XZq−1 Model

To exemplify our RBM construction, we apply the
above algorithm to the stabilizer code Zq−1XZq−1 for
an arbitrary cocycle. Another example is discussed in
App. J. The Zq−1XZq−1 model corresponds to the cocy-
cle Hamiltonian with Pij = 1 for any 1 ≤ i < j ≤ q.
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The Hamiltonian of the Zq−1XZq−1 model is

HZq−1XZq−1

= −
L−1

∑
r=0

⎛

⎝

q−1

∏
i=1

ZriX
r
q

q−1

∏
i=1

Zr+1
i +

q

∏
i=2

ZriX
r+1
1

q

∏
i=2

Zr+1
i

+

q

∑
s=3

(

q

∏
i=s

Zri

s−2

∏
j=1

Zr+1
j Xr+1

s−1

q

∏
k=s

Zr+1
k

s−2

∏
l=1

Zr+2
l )

⎞

⎠
.

(111)

Its ground state is

∣GS⟩Zq−1XZq−1 =

∑
{gri }

L−1

∏
r=0

exp(iπ ∑
1≤j<i≤q

(gri − g
r−1
i )grj)∣{g

r
i }⟩.

(112)

The the q × q Γ matrix and the (q − 1)× (q − 1) Λ matrix
are

Γ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0
1 0
1 1 0
⋮ ⋮ ⋱ ⋮

1 1 ⋯ 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, Λ =

⎛
⎜
⎜
⎜
⎝

1 1 ⋯ 1
1 ⋯ 1
⋱ ⋮

1

⎞
⎟
⎟
⎟
⎠

. (113)

To transform the Γ matrix to the form as in Eq. (91), we
switch the rows using

GT = G1(q − 1, q)⋯G1(1,2). (114)

The visible spins transform as

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gr1
gr2
⋮

grq−1

grq

⎞
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ĝr1
ĝr2
⋮

ĝrq−1

ĝrq

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= G−1
⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gr1
gr2
⋮

grq−1

grq

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gr2
gr3
⋮

grq
gr1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (115)

The Γ matrix transforms as

Γ→ Γ̂ = GT ⋅ Γ ⋅G =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0
1 1 0
⋮ ⋮ ⋱ ⋮

1 1 ⋯ 1 0
0 0 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (116)

All the q − 1 rows in the top (q − 1) × q block of Γ̂ are
independent,

rank(Γ̂) = rank(Γ) = rank(Λ) = q − 1. (117)

As a result, the exponents in Eq. (112) can be written as

∑
1≤j<i≤q

(gri − g
r−1
i )grj = −

q−1

∑
i=1

Sym(gr−1
i+1 , g

r
i , g

r
i−1, . . . , g

r
1)

+

q−1

∑
i=1

Sym(gri+1, g
r
i , g

r
i−1, . . . , g

r
1).

(118)
On RHS of the equality, the first q−1 symmetric functions
are inter-site terms. Using Eq. (84) we introduce q−1 hid-

den spins of type-h contributing to 2rank(Γ) = 2q−1 bond
dimension of the RBM-MPS. The remaining q − 1 sym-
metric functions only contain on-site quadratic terms.
Using Eq. (84), we introduce q−1 hidden spins of type-h̃.
Combining these two operations, we have:

∣GS⟩Zq−1XZq−1 = ∑
{gri }

∑
{hr1}...{h

r
q−1}

L−1

∏
r=0

exp( − i
π

2

q−1

∑
i=1

(1 − 2hri )(g
r−1
i+1 +

i

∑
j=1

grj ) + i
π

4

q−1

∑
i=1

(1 − 2hri ))

× ∑

{h̃ri }

exp(i
π

2

q−1

∑
i=1

(1 − 2h̃ri )
i+1

∑
j=1

grj − i
π

4

q−1

∑
i=1

(1 − 2h̃ri ))∣{g
r
i }⟩.

(119)

This RBM can be casted into an rank-1 MPS, and the matrix elements of the RBM-MPS are:

T
gr1 ,...,g

r
q

hr1...h
r
q−1,h

r+1
1 ...hr+1

q−1

= exp( − i
π

2

q−1

∑
i=1

(1 − 2hri )(
i

∑
j=1

grj ) − i
π

2

q−1

∑
i=1

(1 − 2hr+1
i )gri+1 + i

π

4

q−1

∑
i=1

(1 − 2hri ))

× ∑

{h̃ri }

exp(i
π

2

q−1

∑
i=1

(1 − 2h̃ri )
i+1

∑
j=1

grj − i
π

4

q−1

∑
i=1

(1 − 2h̃ri )).

(120)

We discuss two particular cases. When q = 2, the model corresponds to the ZXZ model. A graphical representa-
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FIG. 9: Graphical representation of the RBM state of the
ZXZ model. The red circles represent visible spins, the black
rectangles represent the hidden spins connecting visible spin
belonging to different unit cells, and the black triangles repre-
sent the hidden spins connecting visible spins within the same
unit cell.

tion of the ZXZ model is shown in Fig. 9. We notice that
the corresponding RBM-MPS has bond dimension 2. In
the RBM derived in Ref. 32, the corresponding bond di-
mension is 4, which is not minimal. When q = 3 which
corresponds to the ZZXZZ model, we find that the
RBM-MPS matrices in Eq. (120) precisely agrees with
the MPS matrices in Eq. (45).

In summary, we have shown that for cocycle Hamil-
tonians, the ground state can be expressed as an RBM
state with the minimal RBM-MPS bond dimension. We
further conjecture, that for an arbitrary translational in-
variant stabilizer code with non-degenerate ground state
with PBC, if its ground state MPS matrix is of rank
1, then it is possible to express its ground state as an
RBM state with the minimal RBM-MPS bond dimension
matching Eq. (63). We leave the proof of this conjecture
for future work.

VI. CONCLUSION

We conclude this paper by summarizing the main re-
sults for a 1D translational invariant stabilizer code with
a non-degenerate ground state on PBC.

1. We have shown that a translational invariant and
finitely connected RBM state can be converted to
an MPS, which we dub as an RBM-MPS. We show
that the non-vanishing matrix of the RBM-MPS is
always of rank 1.

2. We provide an algorithm to determine the MPS
for the stabilizer codes satisfying our assumptions

given in Sec. III. The MPS bond dimension 2
rank(t)

2

is proved to be the irreducible representation of the
generalized Clifford algebra Eq. (60). The t matrix
elements can be read off from the Hamiltonian.

3. An upper bound for the rank of the MPS matrices
is proved. For all the stabilizer codes we have ex-
plicitly considered, the upper bound is saturated.
In particular, we have proved that the MPS ma-
trices of the cocycle Hamiltonians are all of rank
1.

4. For the cocycle Hamiltonians, we present an ex-
plicit construction of the RBM state with the min-
imal RBM-MPS bond dimension. We exemplify
our construction using a family of cocycle Hamil-
tonians explicitly. For a stabilizer code satisfying
the assumptions III.1, III.1 and III.3, we conjecture
that the ground state can be expressed as an RBM
state and that its RBM-MPS bond dimension is
the minimal one, as long as its MPS matrices are
of rank 1.

We have restricted our study to 1D stabilizer codes
with a non-degenerate ground state for PBC, i.e., with-
out symmetry breaking. Including cases with symmetry
breaking could be envisioned rather simply. Consider a
classical Ising model as the simplest case of such a 1D sta-
bilizer code, which has two maximally polarized ground
states. A (trivial) MPS of bond dimension 1 can be built
for each maximally polarized state. For each of these
two MPS, we can derive a (trivial) RBM. We conjecture
that such a construction could be extended to the more
involved cases.

For future investigation, it would be interesting to ex-
tend the discussion of the present paper to higher di-
mensions. Some examples of the RBM representation of
SPT states and topologically ordered states in two and
three dimensions4,13,18 have been studied. A general un-
derstanding of RBM states for higher dimensional stabi-
lizer codes is still missing. We hope to get some insights
for higher dimensional systems by considering stabilizer
codes. Following the ideas developed in this paper, we
hope to address the two following challenges: 1) how to
systematically derive the PEPS representations of sta-
bilizer codes, where the Hamiltonian terms can be the
mixed products of both Pauli X and Z operators36; 2)
whether a given PEPS of a stabilizer code can be repre-
sented by an efficient RBM state with the minimal RBM-
PEPS bond dimension.

Note Added: During the preparation of the present
manuscript appeared a paper Ref. 37 partially overlap-
ping with our results. The authors have proposed an
efficient numerical algorithm to construct efficient RBM
state for an quantum stabilizer code. In particular, their
RBM state of the ZXZ model is identical to ours.
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Appendix A: Conventions for MPS and Canonical
MPS

1. Conventions for MPS and Transfer Matrix

Since each unit cell contains q spins- 1
2
’s, it is natural

to start with the translational invariant MPS in Eq. (56),
i.e.,

∣GS⟩ = ∑
{gri }

Tr(
L−1

∏
r=0

T g
r
1 ...g

r
q)∣{gri }⟩. (A1)

For convenience, we introduce the notation of the phys-
ical operators acting on the MPS tensors. Denoting Xr

i

and Zri as the Pauli X and Z operators acting on i-th
orbital (i = 1, . . . , q) in the r-th unit cell, their action on
the MPS matrices are defined as:

Xr
i ○ T

gr
′

1 ...g
r′
i ...g

r′
q =

⎧⎪⎪
⎨
⎪⎪⎩

T g
r′
1 ...(1−g

r′
i )...g

r′
q if r′ = r

T g
r′
1 ...g

r′
i ...g

r′
q if r′ ≠ r,

(A2)

and

Zri ○ T
gr

′
1 ...g

r′
i ...g

r′
q = (−1)δrr′g

r′
i T g

r′
1 ...g

r′
i ...g

r′
q . (A3)

For other, more complex operators, the notation ○ can
be naturally generalized.

To make the equations more compact, let hi ∈

{1, ...,D} be the virtual indices of the MPS matrices,
where D is the bond dimension. Notice that the bold
font hi is different from the Z2 valued virtual indices
h’s in the main text. For instance, the MPS matrix ele-

ments of Eq. (44) become T
gr1g

r
2g
r
3

h1h2,h3h4
≡ (T g

r
1g
r
2g
r
3 )h1,h2 , so

we identify h1 and h2 as the composite of Z2 valued h
indices, i.e., h1h2 and h3h4 respectively. Given the MPS
matrix elements (T g

r
1 ...g

r
q )h1,h2 , where h1,h2 ∈ {1, ...,D}

are the left and right virtual indices, we can construct
the MPS transfer matrix Th1h3,h2h4 by contracting over
the physical indices,

Th1h3,h2h4 = ∑
gr1 ...g

r
q

(T g
r
1 ...g

r
q )h1,h2(T

gr1 ...g
r
q )

∗
h3,h4

. (A4)

Here, h1h3 is regarded as a composite left virtual index of
the transfer matrix, of dimension D2. The same applies
to h2h4. The transfer matrix T is a D2 ×D2 matrix.

2. Review of Canonical MPS

We now review the definition and the properties of
canonical MPS, and apply the canonical MPS to stabi-
lizer codes. The MPS matrix T̆ g

r
1 ...g

r
q is called “canonical”

if its transfer matrix satisfies:

∑
h2

(T̆)
h1h3,h2h2

= δh1h3 ,

∑
h1,h3

Λh1h3
(T̆)

h1h3,h2h4
= Λh2h4 ,

(A5)

FIG. 10: Graphical representation of Eq. (A7).

where T̆ is the transfer matrix of T̆ g
r
1 ...g

r
q , and Λ is a full-

rank diagonal matrix whose diagonal elements are the
entanglement spectrum of a single cut. In Ref. 25, it was
shown that a generic MPS matrix T g

r
1 ...g

r
q on an open

chain can be mapped to the canonical form T̆ g
r
1 ...g

r
q via a

similarity transformation

T g
r
1 ...g

r
q = S ⋅ T̆ g

r
1 ...g

r
q ⋅ S−1, (A6)

where S is an invertible matrix. We use ˘ to denote the
canonical form of the MPS matrix and the MPS transfer
matrix throughout the appendix.

In Ref. 38, it was proved that when there is a non-
degenerate ground state on any compact space, the en-
tanglement spectrum of a stabilizer code ground state
is flat. The reduced density matrices are, in fact, pro-
jectors. Their original proof was formulated in 2 spatial
dimensions, but it can be directly generalized to arbitrary
dimensions. See Ref. 39 for the application to 3 spatial
dimensions. Here we apply their conclusion to the case of
1 spatial dimension. Hence, the entanglement spectrum
of a 1D stabilizer code with PBC is flat.

The reduced density matrix on a local and contractible
region of a gapped state should not depend on the bound-
ary condition far away from the local region. Thus the
entanglement spectrum does not depend on the bound-
ary condition either. Thus for the 1D stabilizer code
with OBC, the entanglement spectrum is flat. Hence Λ
in Eq. (A5) is also flat for one of the ground states with
OBC. Since Λ is full-rank, there are no zero diagonal el-
ements in Λ and Λ is proportional to an identity matrix.
Hence the canonical MPS of a stabilizer code satisfies the
following conditions

∑
h2

(T̆)
h1h3,h2h2

= δh1h3 ,

∑
h1

(T̆)
h1h1,h2h4

= δh2h4 .
(A7)

The two conditions in Eq. (A7) are graphically repre-
sented in Fig. 10.

Hence we can use Eq. (A7) to solve for the MPS with
OBC. By Assumption III.3, the MPS matrices for the
OBC shall also be the MPS matrices for the PBC.
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Appendix B: Correlation Functions and Transfer
Matrix Eigenvalues

In this appendix, we derive the eigenvalue structure
of the transfer matrix of a general translational invari-
ant stabilizer code. As we will prove, there is only one
nonzero eigenvalue of the MPS transfer matrix, obtained
by Jordan decomposition. Moreover, a finite power of
the MPS transfer matrix can be decomposed as a tensor
product of two vectors. The lemmas and theorems will
be used in App. C.

Lemma B.1. Suppose an operator O anti-commutes
with some of the Hamiltonian terms in Eq. (51), i.e.,

H = −∑
L−1
r=0 ∑

t
α=1O

r
α, its expectation value of the ground

state of Eq. (51) satisfies

⟨GS∣O∣GS⟩ = 0. (B1)

Proof. Without loss of generality, suppose O anti-
commutes with O0

1 in Eq. (51). Since the ground state
∣GS⟩ satisfies the stabilizer condition Eq. (55), we have

⟨GS∣O∣GS⟩ =⟨GS∣OO0
1 ∣GS⟩

= − ⟨GS∣O0
1O∣GS⟩

= − ⟨GS∣O∣GS⟩.

(B2)

Hence

⟨GS∣O∣GS⟩ = 0. (B3)

Consider two operators σi, i = 1,2. We denote p1 (resp.
p2) the support of σ1 (resp. σ2) on the unit cells r1 ≤ r ≤
r1 + p1 − 1 (resp. r2 ≤ r ≤ r2 + p2 − 1). We define the
distance d(σ1, σ2) of the two operators as the number of
unit cells between the two operators plus one, i.e.,

d(σ1, σ2) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

r2 − r1 − p1 + 1 , r2 ≥ r1 + p1

r1 − r2 − p2 + 1 , r1 ≥ r2 + p2

0 , r1 + p1 > r2 > r1 − p2.

(B4)
In particular, when two operators overlap even only on
one site, their distance is zero. When the distance of
two operators σ1 and σ2 are larger than P , where P is
the range of another operator O, then O can not overlap
simultaneously with σ1 and σ2.

Lemma B.2. Suppose σ1 and σ2 are products of Pauli
matrices supported on different regions of distance larger
than the maximal interaction range, i.e.:

d(σ1, σ2) > max{P1, . . . , Pt}, (B5)

where Pα is the support of α-th type of the Hamiltonian
term Orα. Then, their expectation values satisfy

⟨GS∣σ1σ2∣GS⟩ = ⟨GS∣σ1∣GS⟩⟨GS∣σ2∣GS⟩. (B6)

Proof. σ1 and σ2 either commute or anti-commute with
the Hamiltonian terms, because σ1, σ2 and stabilizer op-
erators are all products of Pauli matrices. We prove this
lemma case by case:

1. σ1 and σ2 both commute with all stabilizer opera-
tors.

[H,σi] = 0, i = 1,2. (B7)

Hence for any excited eigenstate ∣E,k⟩ of the
Hamiltonian H, i.e., H ∣E,k⟩ = E∣E,k⟩ (E is the
energy and k labels the degeneracy within the en-
ergy eigenspace), σi∣E,k⟩ is also an excited eigen-
state of H. One can see this from Eq. (B7):
[H,σi]∣E,k⟩ = 0 for i = 1,2, which implies σi∣E,k⟩
is an energy eigenstate of H with energy E. So

⟨GS∣σi∣E,k⟩ = 0, i = 1,2. (B8)

Then

⟨GS∣σ1∣GS⟩⟨GS∣σ2∣GS⟩

= ⟨GS∣σ1(1 −∑
E,k

∣E,k⟩⟨E,k∣)σ2∣GS⟩

= ⟨GS∣σ1σ2∣GS⟩ −∑
E,k

⟨GS∣σ1∣E,k⟩⟨E,k∣σ2∣GS⟩

= ⟨GS∣σ1σ2∣GS⟩,

(B9)

where in the first equality, we have used Assump-
tion III.1, and in the last equality, we have used
Eq. (B8). Hence Eq. (B6) holds true in this case.

2. σ1 commutes with all stabilizer operators while σ2

anti-commutes with some of the stabilizer opera-
tors. Hence, σ2 and σ1σ2 both satisfy Lemma B.1.
Their expectation values are both 0:

⟨GS∣σ2∣GS⟩ = 0, ⟨GS∣σ1σ2∣GS⟩ = 0. (B10)

Therefore, Eq. (B6) holds true in this case.

3. σ1 anti-commutes with some of the stabilizer op-
erators while σ2 commutes with all stabilizer oper-
ators. This is the same situation as the last one.
Both sides of Eq. (B6) vanish.

4. σ1 and σ2 both anti-commute with some of stabi-
lizer operators. Using Lemma B.1, their expecta-
tion values both vanish. There does not exist a sta-
bilizer operator which overlaps simultaneously with
σ1 and σ2, because σ1 and σ2 are separated with a
distance larger than the maximal interaction range
max{P1, . . . , Pt}. Hence, σ1σ2 still anti-commutes
with some of the stabilizer operators. So both sides
of Eq. (B6) vanish.

This completes the proof.

Theorem B.3. Suppose two arbitrary operators O and
Õ are supported on different regions separated by a dis-
tance larger than max{P1, . . . , Pt}. Then we have

⟨GS∣OÕ∣GS⟩ − ⟨GS∣O∣GS⟩⟨GS∣Õ∣GS⟩ = 0. (B11)
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Proof. First we can expand the two operators as the sum-
mations of the products of Pauli matrices:

O =∑
i

φiσi

Õ =∑
j

θj σ̃j ,
(B12)

where the terms σi and σ̃j are products of Pauli ma-
trices supported in two separated regions, and φi and
θj are complex coefficients. Recall our assumption that

O and Õ are supported on different regions separated
by a distance larger than the maximal interaction range
max{P1, . . . , Pt}. Then, σi and σ̃j are also supported
on regions with a distance larger than max{P1, . . . , Pt}.
Hence, σi and σ̃j satisfy Lemma B.2. Therefore

⟨GS∣OÕ∣GS⟩ =∑
i,j

φiθj⟨GS∣σiσ̃j ∣GS⟩

=∑
i,j

φiθj⟨GS∣σi∣GS⟩⟨GS∣σ̃j ∣GS⟩

=⟨GS∣O∣GS⟩⟨GS∣Õ∣GS⟩.

(B13)

This completes the proof.

Theorem B.4. Let T
gr1 ...g

r
q

h1,h2
be the MPS matrix element

of a translational invariant stabilizer code where h1 and
h2 are the virtual indices, and Th1h3,h2h4 be the MPS
transfer matrix of T defined in Eq. (A4). Then T has
only 1 nonzero eigenvalue.

Proof. For convenience, we introduce the notation:

T[Or
]h1h3,h2h4

= ∑
gr1 ...g

r
q

(Or
○ T g

r
1 ...g

r
q )h1,h2(T

gr1 ...g
r
q )

⋆
h3,h4

. (B14)

Moreover, the transfer matrix T can always be decom-
posed into Jordan blocks:

T = U(Pλ0 +Pλ1 +Pλ2 +⋯)U−1, (B15)

where ∣λ0∣ > ∣λ1∣ > ∣λ2∣ > ⋯ are the eigenvalues of T, and
Pλi is the corresponding Jordan block. By a proper scal-
ing of T, we let λ0 = 1. Using this normalization, Pλ0 ≡ P1

is non-degenerate due to the gap and non-degeneracy of
the ground state.25,40 Without loss of generality, let us
consider the special basis of the virtual indices such that
U is an identity matrix, i.e.,

T = Pλ0 +Pλ1 +Pλ2 +⋯. (B16)

Suppose we have two operators Or and Õr+l with a suffi-
ciently large (but finite) l such that they satisfy Theorem

B.3. The expectation value of Or and Õr+l can be writ-
ten in terms of transfer matrices:

⟨GS∣OrÕr+l
∣GS⟩ =

Tr [Tr(T[Or])Tl−1(T[Õr+l])TL−1−r−l]

Tr (TL)

=
Tr [TL−l−1(T[Or])Tl−1(T[Õr+l])]

Tr (TL)
.

(B17)

By Assumption III.2 in the beginning of Sec. III, the
MPS matrices is independent of the system size when L
is sufficient large. For simplicity, let us take the limit:

lim
L→∞

TL−l−1
= lim
L→∞

TL = P1. (B18)

Eq. (B17) then simplifies to

⟨GS∣OrÕr+l
∣GS⟩ =

Tr [P1(T[Or])Tl−1(T[Õr+l])]

Tr (P1)

=Tr [P1(T[Or
])Tl−1

(T[Õr+l
])] .

(B19)

Using the Jordan blocks decomposition of T (λ0 = 1), we
have

Tl−1
= P1 + ∑

∣λ∣<1

P
l−1
λ . (B20)

Substituting to Eq. (B19), we have

⟨GS∣OrÕr+l
∣GS⟩

=Tr
⎛

⎝
P1(T[Or

])(P1 + ∑
∣λ∣<1

P
l−1
λ )(T[Õr+l

])
⎞

⎠

=Tr [P1(T[Or
])P1(T[Õr+l

])]

+ ∑
∣λ∣<1

Tr [P1(T[Or
])P

l−1
λ (T[Õr+l

])] .

(B21)

Since P1 is 1 dimensional (unique gapped ground state),

Tr [P1(T[Or
])P1(T[Õr+l

])]

=Tr (P1T[Or
])Tr (P1T[Õr+l

])

=⟨GS∣Or
∣GS⟩⟨GS∣Õr+l

∣GS⟩.

(B22)

Hence

⟨GS∣OrÕr+l
∣GS⟩

=⟨GS∣Or
∣GS⟩⟨GS∣Õr+l

∣GS⟩

+ ∑
∣λ∣<1

Tr [P1(T[Or
])P

l−1
λ (T[Õr+l

])] .
(B23)

Theorem B.3 implies that:

∑
λ≠1

Tr [P1(T[Or
])P

l−1
λ (T[Õr+l

])] = 0 (B24)

for any operators Or and Õr+l with a sufficiently large
but finite l. Then the only possibility is that for all λ ≠ 1,
λ = 0. In other words, the only nonzero eigenvalue of T
is 1. This completes the proof.

We numerically checked the Zq−1XZq−1 models with
2 ≤ q ≤ 6 and found that the transfer matrix indeed has
only 1 nonzero eigenvalue.

Lemma B.5. For a Jordan block P0 of size m ×m with
zero diagonal elements, then

(P0)
n
= 0, (B25)

where the integer n ≥m.
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Proof. In terms of matrix elements, P0 is:

P0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(B26)

Denote ei as the vector of size m whose i-th entry is 1
and 0 otherwise. Then we can show that:

P0 ⋅ e1 = 0,

P0 ⋅ ei = ei−1, ∀i = 2,2, . . . ,m.
(B27)

Hence, for any vector ei (i = 1,2, . . . ,m), we can prove
that:

(P0)
m
⋅ ei = (P0)

m−1
⋅ ei−1 . . . = (P0)

m−i+1
⋅ e1 = 0 (B28)

Therefore, we conclude that:

(P0)
m
= 0. (B29)

For any integer n ≥m, we also have:

(P0)
n
= 0. (B30)

Theorem B.6. Suppose the transfer matrix T of size
D2 × D2 satisfies Theorem B.4. In other words, its
nonzero eigenvalues contain a unique 1. Then

(T)
D2

= uv (B31)

for a column vector u of size D2 and a row vector v of
size D2 such that

v ⋅ u = 1, (B32)

where ⋅ represents the vector multiplication. In terms of
matrix elements, Eq. (B31) is

((T)
D2

)
h1h3,h2h4

= uh1h3vh2h4 , (B33)

and Eq. (B32) is

D

∑
h1,h2=1

uh1h2vh1h2 = 1. (B34)

Proof. Using the fact that T satisfies Theorem B.4, its
Jordan decomposition is:

T = U(P1 +P0)U
−1, (B35)

where P1 is the projector into the 1 dimensional Jordan
block for eigenvalue 1 and P0 is the projector into the
Jordan block for eigenvalue 0. Therefore,

TD
2

= U(P
D2

1 +P
D2

0 )U−1
= UP1U

−1, (B36)

where we have used Lemma B.5 and the fact that the
size of P0 is smaller than D2 ×D2:

P
D2

0 = 0. (B37)

Since the Jordan block with eigenvalue 1 is 1 dimensional,
there is only one nontrivial matrix element which locates
at the diagonal of P1. Without loss of generality, we as-
sume that the only nonzero element of P1 locates at 1-th
row and 1-th column. Hence, we can write this equation
in terms of matrix elements

TD
2

h1h3,h2h4
=Uh1h3,1 (U−1)

1,h2h4

≡uh1h3vh2h4 ,
(B38)

where we define

uh1h3 ≡ Uh1h3,1

vh2h4 ≡ (U−1)
1,h2h4

.
(B39)

From these definitions

v ⋅ u = (U−1
⋅U)1,1 = 1. (B40)

This completes the proof.

Now we explore the properties for the canonical MPS
with the tensor T̆ and Eq. (A7).

Lemma B.7. For a stabilizer code, the transfer matrix
of the ground state canonical MPS satisfies Eq. (A7). We
prove that:

∑
h1

(T̆n)
h1h1,h2h4

= δh2h4 , ∑
h2

(T̆n)
h1h3,h2h2

= δh1h3 ,

(B41)
for any integer n > 0.

Proof. Using the definition of the canonical MPS in
Eq. (A7), we first show that

∑
h1

(T̆n)
h1h1,h2h4

= ∑
h1,h5,h6

T̆h1h1,h5h6
(T̆n−1)

h5h6,h2h4

= ∑
h5,h6

δh5h6
(T̆n−1)

h5h6,h2h4

=∑
h1

(T̆n−1)
h1h1,h2h4

.

(B42)

Then we repeatedly apply this equation until there is
only 1 T̆ matrix.

∑
h1

(T̆n)
h1h1,h2h4

=∑
h1

(T̆n−1)
h1h1,h2h4

=∑
h1

(T̆n−2)
h1h1,h2h4

⋮

=∑
h1

(T̆)
h1h1,h2h4

=δh2h4 .

(B43)

Similarly, we can prove the other equation. This com-
pletes the proof.
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Lemma B.8. For a stabilizer code, the transfer matrix
of its ground state canonical MPS satisfies Theorem B.6.
We prove that the elements of u and v are

uh1h2 =
δh1h2

Tr(v)
, vh1h2 =

δh1h2

Tr(u)
, (B44)

where

Tr(u) =∑
h

uhh, Tr(v) =∑
h

vhh. (B45)

In other words,

(T̆D
2

)
h1h3,h2h4

=
1

Tr(u)Tr(v)
δh1h3δh2h4 =

1

D
δh1h3δh2h4 .

(B46)

Proof. Using Theorem B.6 for a canonical MPS, we have:

(T̆D
2

)
h1h3,h2h4

= uh1h3vh2h4 . (B47)

Applying Lemma B.7 with n =D2, we obtain:

δh2h4 =∑
h1

(T̆D
2

)
h1h1,h2h4

= Tr(u)vh2h4 . (B48)

Hence, the second equation of Eq. (B44) is proved. Sim-
ilarly, we can prove the first one. Using Eqs. (B32) and
(B44), we find that

v ⋅ u =
D

Tr(u)Tr(v)
= 1. (B49)

This yields

Tr(u)Tr(v) =D. (B50)

Hence, Eq. (B46) is proved.

Note that Lemma B.8 is not true for a general MPS
transfer matrix. Indeed, using the similarity transforma-
tion Eq. (A6), a general MPS transfer matrix is related
to a canonical one:

Th1h2,h3h4 = ∑
h5,6,7,8

Sh1,h5S
⋆
h2,h6

T̆h5h6,h7h8S
−1
h7,h3

S−1⋆
h8,h4

(B51)
where S is the similarity transformation. Applying
Lemma B.8, we get:

(TD
2

)
h1h2,h3h4

= ∑
h5,6,7,8

Sh1,h5S
⋆
h2,h6

(T̆D
2

)
h5h6,h7h8

S−1
h7,h3

S−1⋆
h8,h4

= ∑
h5,6,7,8

Sh1,h5S
⋆
h2,h6

1

D
δh5h6δh7h8S

−1
h7,h3

S−1⋆
h8,h4

=
1

D
∑
h5,7

Sh1,h5S
⋆
h2,h5

S−1
h7,h3

S−1⋆
h7,h4

(B52)

The similarity transformation S is required to be invert-
ible, but does not have to be unitary. Hence, we conclude
that Lemma B.8 is not true for a general MPS transfer
matrix.

Lemma B.9. For a stabilizer code, the transfer matrix
of the ground state canonical MPS T̆ satisfies:

(T̆n)
h1h3,h2h4

=
1

D
δh1h3δh2h4 , ∀ n >D2

∈ N. (B53)

Proof. Using Lemma B.8, we have

(T̆n)
h1h3,h2h4

= (T̆D
2

T̆n−D
2

)
h1h3,h2h4

= ∑
h5,h6

1

D
δh1h3δh5h6 (T̆n−D

2

)
h5h6,h2h4

=
1

D
δh1h3∑

h5

(T̆n−D
2

)
h5h5,h2h4

.

(B54)

Using Lemma B.7, we obtain

(T̆n)
h1h3,h2h4

=
1

D
δh1h3δh2h4 . (B55)

This completes the proof.

We further remark that the Lemma B.9 holds only
when n >D2, which is more restricted than the condition,
i.e., n > 0, for the Lemma B.7 holds true. However, when
we contract over the two virtual indices h1 and h3 (or h2

and h4) in Eq. (B55), we get Eq. (B41).

Appendix C: Stabilizer Operator Acts on MPS
Locally

In this appendix, we prove that Eq. (25) (and its
generic case Eq. (57)) is a sufficient and necessary condi-
tion satisfied by any MPS description of the 1D stabilizer
codes fulfilling the 3 assumptions of Sec. III.

Theorem C.1. Eq. (57) is a necessary and sufficient
condition for Eq. (55) when the system size L ≥ D2 +

max{P1, . . . , Pt} where P1, P2, . . . , Pt is defined in Lemma
B.2.

Proof. By substituting Eq. (57) into the left hand side of
Eq. (55), it is trivial to show that Eq. (57) is a sufficient
condition for Eq. (55). Hence, our focus in the rest of
the proof is to show that Eq. (57) is also a necessary
condition for Eq. (55). It suffices to prove this statement
for a particular operator O0

1. The proof generalizes to
other operators.

The strategy of this proof is to first establish this state-
ment for the canonical MPS T̆ and then for a general
MPS T . Typically, we will encounter many long equa-
tions where there are T -matrices with their physical in-
dices uncontracted on both sides. Using the properties of
the canonical MPS, i.e., Eq. (A7), we are able to shorten
the equations by contracting out those T -matrices. We
will use this trick many times below. Similar to Sec. III B,
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Eq. (55) for O0
1 implies: (Notice that O0

1 is supported
from r = 0 to r = P1 − 1)

Tr
⎛

⎝
O

0
1 ○ (

P1−1

∏
r=0

T̆ g
r
1 ...g

r
q) ⋅

⎛

⎝

L−1

∏
r=P1

T̆ g
r
1 ...g

r
q
⎞

⎠

⎞

⎠

=Tr(
L−1

∏
r=0

T̆ g
r
1 ...g

r
q) .

(C1)

Multiplying both sides with (∏
L−1
r=P1

T̆ g
r
1 ...g

r
q )

⋆

h1h2
and

summing over their physical indices, we obtain:

∑

g
P1
1 ...g

P1
q ...gL−1

1 ...gL−1
q

Tr
⎛

⎝
O

0
1 ○ (

P1−1

∏
r=0

T̆ g
r
1 ...g

r
q) ⋅

⎛

⎝

L−1

∏
r=P1

T̆ g
r
1 ...g

r
q
⎞

⎠

⎞

⎠

⎛

⎝

L−1

∏
r=P1

T̆ g
r
1 ...g

r
q
⎞

⎠

⋆

h1h2

= ∑

g
P1
1 ...g

P1
q ...gL−1

1 ...gL−1
q

Tr(
L−1

∏
r=0

T̆ g
r
1 ...g

r
q)

⎛

⎝

L−1

∏
r=P1

T̆ g
r
1 ...g

r
q
⎞

⎠

⋆

h1h2

.

(C2)

Summing over the physical indices gives rise to transfer
matrices. We rewrite this equation with explicit virtual
indices as follows

∑
h3h4

O
0
1 ○ (

P1−1

∏
r=0

T̆ g
r
1 ...g

r
q)

h3h4

(T̆L−P1)
h4h1,h3h2

= ∑
h3h4

(
P1−1

∏
r=0

T̆ g
r
1 ...g

r
q)

h3h4

(T̆L−P1)
h4h1,h3h2

.

(C3)

Using Lemma B.9 and considering L ≥ D2 +

max{P1, . . . , Pt} as stated, we simplify

∑
h3h4

O
0
1 ○ (

P1−1

∏
r=0

T̆ g
r
1 ...g

r
q)

h3h4

δh4h1δh3h2

= ∑
h3h4

(
P1−1

∏
r=0

T̆ g
r
1 ...g

r
q)

h3h4

δh4h1δh3h2 .

(C4)

Equivalently,

O
0
1 ○ (

P1−1

∏
r=0

T̆ g
r
1 ...g

r
q)

h2h1

= (
P1−1

∏
r=0

T̆ g
r
1 ...g

r
q)

h2h1

. (C5)

See Fig. 11 for the graphical representation of Eqs. (C2)
and (C5). Notice that a general MPS tensor T differs

from T̆ by a similarity transformation in Eq. (A6), then
after doing a similarity transformation on both sides of
Eq. (C5), we find that an analogue equation for non-
canonical MPS also holds,

O
0
1 ○ (

P1−1

∏
r=0

T g
r
1 ...g

r
q)

h2h1

= (
P1−1

∏
r=0

T g
r
1 ...g

r
q)

h2h1

. (C6)

This completes the proof.

Applying the theorem C.1 to the ZZXZZ model, we
find that Eq. (25) is a necessary and sufficient condition
for Eq. (17) when the system size is large enough, i.e.,
L ≥ 16 + 3 = 19.

FIG. 11: Graphical representation of (a) Eq. (C2) and (b)
Eq. (C5).

Appendix D: The Action of L and R Operators on
the MPS Matrices

Theorem D.1. Eq. (58) is a necessary and sufficient
condition of Eq. (57).

Proof. It is trivial to show that Eq. (58) is a sufficient
condition of Eq. (57). Our focus in this proof is to show
that it is also a necessary condition. Without loss of
generality, we only need to prove this for a particular
pair of L and R operators, Lr1,1 and Rr1,1.

The strategy of this proof is to first establish this state-
ment for the canonical MPS T̆ and then for a general

MPS T . The matrix element T̆
gr1 ...g

r
q

h1,h2
of a canonical MPS

satisfies Eq. (A7). We start with Eq. (57), and restore
the virtual indices as follows,

∑
h2

(L
r
1,1 ○ T̆

gr1 ...g
r
q )

h1,h2

⎛

⎝
R
r
1,1 ○ (

r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q )

h2,h3

⎞

⎠

=∑
h2

T̆ g
r
1 ...g

r
q (

r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q )

h2,h3

.

(D1)
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FIG. 12: Graphical representation of (a) Eq. (D2) and (b) the virtual operator Ur1,1.

Multiplying (∏
r+P1−1
r′=r+1 T̆ g

r′
1 ...g

r′
q )

⋆

h4,h3

on both sides of the

Eq. (D1), and summing over both the physical indices

gr
′

1 , . . . , g
r′

q with r + 1 ≤ r′ ≤ r + P1 − 1 and the virtual
index h3, we find that

∑

h2,h3,gr
′

1 ,...,g
r′
q ∣r+1≤r′≤r+P1−1

(L
r
1,1 ○ T̆

gr1 ...g
r
q )

h1,h2
(R

r
1,1 ○ (

r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q ))

h2,h3

(
r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q )

⋆

h4,h3

= ∑

h2,h3,gr
′

1 ,...,g
r′
q ∣r+1≤r′≤r+P1−1

T̆
gr1 ...g

r
q

h1,h2
(
r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q )

h2,h3

(
r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q )

⋆

h4,h3

= ∑
h2,h3

T̆
gr1 ...g

r
q

h1,h2
(T̆P1−1)

h2h4,h3h3

=∑
h2

T̆
gr1 ...g

r
q

h1,h2
δh4,h2

=T̆
gr1 ...g

r
q

h1,h4
,

(D2)

where in the third equality, we use Lemma B.7. Let us define

(Ŭr1,1)h2,h4 ≡ ∑

h3,gr
′

1 ,...,g
r′
q ∣r+1≤r′≤r+P1−1

(R
r
1,1 ○ (

r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q ))

h2,h3

(
r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q )

⋆

h4,h3

. (D3)

LHS of Eq. (D2) becomes

∑
h2

(L
r
1,1 ○ T̆

gr1 ...g
r
q )h1,h2(Ŭ

r
1,1)h2,h4 . (D4)

Eq. (D2) and the definition of Ur1,1 are graphically repre-
sented in (a) and (b) of Fig. 12 respectively. Combining
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Eqs. (D2), (D3) and (D4), we find

∑
h2

(L
r
1,1 ○ T̆

gr1 ...g
r
q )h1,h2(Ŭ

r
1,1)h2,h4 = T̆

gr1 ...g
r
q

h1,h4
. (D5)

Applying Lr1,1 on both sides, since (Lr1,1)
2 is an identity

operator56, we obtain

∑
h2

(T̆ g
r
1 ...g

r
q )h1,h2(Ŭ

r
1,1)h2,h4 = (L

r
1,1 ○ T̆

gr1 ...g
r
q )h1,h4 .

(D6)

This is one of the first set of equations in Eq. (58)
when the tensors are canonical. Substituting the RHS
of Eq. (D6) into the LHS of Eq. (D5), we find

∑
h2

(T̆ g
r
1 ...g

r
q )h1,h2[(Ŭ

r
1,1)

2
]h2,h3 = (T̆ g

r
1 ...g

r
q )h1,h3 . (D7)

Using the property of the canonical form Eq. (A7), we

obtain that (Ŭr1,1)
2 = I is an identity operator, hence

Ŭr1,1 = (Ŭr1,1)
−1. (D8)

In particular, the U matrices are invertible. Since the

product Lr1,1R
r
1,1 leaves T̆ g

r
1 ...g

r
q ⋅∏

r+P1−1
r′=r+1 T̆ g

r′
1 ...g

r′
q invari-

ant, Rr1,1 has to transform ∏
r+P1−1
r′=r+1 T̆ g

r′
1 ...g

r′
q as

(R
r
1,1 ○ (

r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q ))

h1,h4

=∑
h2

(Ŭr1,1)
−1
h1,h2

(
r+P1−1

∏
r′=r+1

T̆ g
r′
1 ...g

r′
q )

h2,h4

,

(D9)

which is one of the second set of equations in Eq. (58)
when the tensors are canonical. In Eq. (D9), we use

(Ŭr1,1)
−1 explicitly to manifest the fact that (Lr1,1R

r
1,1)

leaves the MPS invariant. Similarly, we can prove for
other pairs of L and R operators. Therefore, we have
completed the proof for the canonical MPS T̆ .

For a generic MPS T g
r
1 ...g

r
q , it is related to its canonical

form via a similarity transformation, Eq. (A6). The equa-

tions that T obeys can be inferred from those T̆ obeys in
Eqs. (D6) and (D9):

∑
h2

(T g
r
1 ...g

r
q )h1,h2(U

r
1,1)h2,h4 = (L

r
1,1 ○ T

gr1 ...g
r
q )h1,h4

∑
h2

(Ur1,1)
−1
h1,h2

(
r+P1−1

∏
r′=r+1

T g
r′
1 ...g

r′
q )

h2,h4

= (R
r
1,1 ○ (

r+P1−1

∏
r′=r+1

T g
r′
1 ...g

r′
q ))

h1,h4

,
(D10)

where

Ur1,1 = S ⋅ Ŭ
r
1,1 ⋅ S

−1. (D11)

where S is the similarity transformation defined in
Eq. (A6). Similarly for other pairs of L and R opera-
tors. Therefore, Eq. (58) also holds. This completes the
proof.

Applying Theorem D.1 to the ZZXZZ model, we find
that Eqs. (30), (31) and (32) are necessary and sufficient
conditions for Eq. (25).

Appendix E: Commutation Relations of U Operators

Theorem E.1. (Eq. (58)) Urα,τ operators have the same
commutation/anti-commutation relation as the Lrα,τ op-
erators or Rrα,τ operators.

Proof. For convenience, we first denote:

L
r
α,τL

r
α′,τ ′ = (−1)t

r
ατ,α′τ ′L

r
α′,τ ′L

r
α,τ . (E1)

where trατ,α′τ ′ is an integer. Consider these two operators

acting on the tensors of the canonical MPS T̆ :

L
r
α,τL

r
α′,τ ′ ○ (

r+τ−1

∏
r′=r

T̆ g
r′
1 ...g

r′
q )

=(−1)t
r
ατ,α′τ ′L

r
α′,τ ′L

r
α,τ ○ (

r+τ−1

∏
r′=r

T̆ g
r′
1 ...g

r′
q ) .

(E2)

Apply Eq. (58) to both sides of the equation twice when

the tensor in Eq. (58) is the canonical one T̆ :

(
r+τ−1

∏
r′=r

T̆ g
r′
1 ...g

r′
q ) Ŭrα′,τ ′Ŭ

r
α,τ

=(−1)t
r
ατ,α′τ ′ (

r+τ−1

∏
r′=r

T̆ g
r′
1 ...g

r′
q ) Ŭrα,τ Ŭ

r
α′,τ ′ .

(E3)

Multiply both sides with (∏
r+τ−1
r′=r T̆ g

r′
1 ...g

r′
q )

†
and sum

over the physical indices:
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∑
gr1 ...g

r
q ...g

r+τ−1
1 ...gr+τ−1

q

(
r+τ−1

∏
r′=r

T̆ g
r′
1 ...g

r′
q )

†

(
r+τ−1

∏
r′=r

T̆ g
r′
1 ...g

r′
q ) Ŭrα′,τ ′Ŭ

r
α,τ

=(−1)t
r
ατ,α′τ ′ ∑

gr1 ...g
r
q ...g

r+τ−1
1 ...gr+τ−1

q

(
r+τ−1

∏
r′=r

T̆ g
r′
1 ...g

r′
q )

†

(
r+τ−1

∏
r′=r

T̆ g
r′
1 ...g

r′
q ) Ŭrα,τ Ŭ

r
α′,τ ′ .

(E4)

Using the canonical conditions Eq. (A7), we can find
that:

Ŭrα′,τ ′Ŭ
r
α,τ = (−1)t

r
ατ,α′τ ′ Ŭrα,τ Ŭ

r
α′,τ ′ . (E5)

Hence, we have completed the proof that Ŭrα,τ operators
form the same commutation relations as the Lrα,τ does.

Similarly, we can prove that the Ŭrα,τ operators form the
same commutation relations as the Rrα,τ does.

We further discuss the case where the MPS matrix
T g

r
1 ...g

r
q is not canonical. Since T g

r
1 ...g

r
q is related to its

canonical form via a similarity transformation Eq. (A6),

the virtual U operator is related to Ŭ via the same simi-
larity transformation, S, i.e., Urα,τ = S ⋅ Ŭ

r
α,τ ⋅S

−1. Hence

Urα′,τ ′U
r
α,τ = S ⋅ Ŭ

r
α′,τ ′ ⋅ S

−1
⋅ S ⋅ Ŭrα,τ ⋅ S

−1

= S ⋅ Ŭrα′,τ ′Ŭ
r
α,τ ⋅ S

−1

= (−1)t
r
ατ,α′τ ′S ⋅ Ŭrα,τ Ŭ

r
α′,τ ′ ⋅ S

−1

= (−1)t
r
ατ,α′τ ′Urα,τU

r
α′,τ ′ .

(E6)

So the virtual U operators (associated to the non-
canonical MPS) also satisfy the same commutation re-
lation as the physical L operators.

Appendix F: Linear Equations for Local Tensors

In this appendix, we prove that Eq. (42) (and its gen-
eralization Eq. (64)) is a necessary and sufficient condi-
tion of Eqs. (30), (31) and (32) (and their generalization
Eq. (58)).

Theorem F.1. Eq. (64) is a necessary and sufficient
condition of Eq. (58).

Proof. It is trivial to show that Eq. (64) is a sufficient
condition for Eq. (58). Our focus in this proof is to show
that Eq. (64) is also a necessary condition for Eq. (58).
We start with the leftmost L operator in Eq. (58).

By shifting the positions of Eq. (58), we can obtain
Eq. (59), and we will mainly use Eq. (59). We first con-
sider the case when the MPS is canonical, and then dis-
cuss the general case. To prove that Eq. (64) is necessary
of Eq. (59), we use an recursive method. In particular,
let us focus on the first two equations of Eq. (59) when

FIG. 13: Graphical representation of (a) Eq. (F1) and (b)
Eq. (F3), and (c) Eq. (F6).

the tensor is the canonical one T̆ : (See Fig. 13 (a) for the
graphical representation)

L
r
α,1 ○ (T̆

gr1 ...g
r
q ) = T̆ g

r
1 ...g

r
q Ŭrα,1

L
r−1
α,2 ○ (T̆

gr−1
1 ...gr−1

q T̆ g
r
1 ...g

r
q ) = T̆ g

r−1
1 ...gr−1

q T̆ g
r
1 ...g

r
q Ŭr−1

α,2 .

(F1)

We can apply (Lr−1
α,1 )

−1 to the second equation:

(L
r−1
α,1 )

−1
L
r−1
α,2 ○ (T̆

gr−1
1 ...gr−1

q T̆ g
r
1 ...g

r
q )

=(L
r−1
α,1 )

−1
○ (T̆ g

r−1
1 ...gr−1

q T̆ g
r
1 ...g

r
q Ŭr−1

α,2 ) .
(F2)

Using the first equation of Eq. (F1) at the (r−1)-th site,
we continue to simplify: (See Fig. 13 (b) for the graphical
representation )

(L
r−1
α,1 )

−1
L
r−1
α,2 ○ (T̆

gr−1
1 ...gr−1

q T̆ g
r
1 ...g

r
q )

=T̆ g
r−1
1 ...gr−1

q (Ŭr−1
α,1 )

−1T̆ g
r
1 ...g

r
q Ŭr−1

α,2 .
(F3)

Notice that the physical operator (Lr−1
α,1 )

−1Lr−1
α,2 only acts

on the r-th site. We can rewrite this equation as:

T̆ g
r−1
1 ...gr−1

q ((L
r−1
α,1 )

−1
L
r−1
α,2 ○ T̆

gr1 ...g
r
q )

=T̆ g
r−1
1 ...gr−1

q (Ŭr−1
α,1 )

−1T̆ g
r
1 ...g

r
q Ŭr−1

α,2 .
(F4)
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Multiply both sides with (T̆ g
r−1
1 ...gr−1

q )
†

and sum over the physical indices:

∑
gr−1
1 ...gr−1

q

(T̆ g
r−1
1 ...gr−1

q )
†
T̆ g

r−1
1 ...gr−1

q ((L
r−1
α,1 )

−1
L
r−1
α,2 ○ T̆

gr1 ...g
r
q ) = ∑

gr−1
1 ...gr−1

q

(T̆ g
r−1
1 ...gr−1

q )
†
T̆ g

r−1
1 ...gr−1

q (Ŭr−1
α,1 )

−1T̆ g
r
1 ...g

r
q Ŭr−1

α,2 .

(F5)

Now we can apply Eq. (A7) at the (r − 1)-th site: (See
Fig. 13 (c) for the graphical representation)

(L
r−1
α,1 )

−1
L
r−1
α,2 ○ T̆

gr1 ...g
r
q = (Ŭr−1

α,1 )
−1T̆ g

r
1 ...g

r
q Ŭr−1

α,2 . (F6)

Hence, we have proved the following equations for the
canonical MPS T̆ :

L
r
α,1 ○ T̆

gr1 ...g
r
q = T̆ g

r
1 ...g

r
q ⋅ Ŭrα,1

((L
r−1
α,1 )

−1
L
r−1
α,2 ) ○ T̆

gr1⋯g
r
q = (Ŭr−1

α,1 )
−1
⋅ T̆ g

r
1⋯g

r
q ⋅ Ŭr−1

α,2 .

(F7)

By iterating the process, we can prove the rest of the
equations in Eq. (64) for the canonical MPS with tensor

T̆ . The same statement is true for a general MPS with
a tensor T , since the tensor T and T̆ are related by the
similarity transformation in Eq. (A6). Therefore, we have
completed our proof.

Applying the theorem F.1 to the ZZXZZ model, we
find that Eq. (42) is the necessary and sufficient condition
for Eqs. (30), (31) and (32).

Theorem F.2. If Lrα,1, U
r
α,1 and V rα,1 satisfy

L
r
α,1 ○ T

gr1 ...g
r
q = T g

r
1 ...g

r
q ⋅Urα,1

L
r
α,1 ○ T

gr1 ...g
r
q = T g

r
1 ...g

r
q ⋅ V rα,1,

(F8)

then Urα,1 = V
r
α,1.

Proof. We first prove when the T matrix is canonical.
Since Lrα,1 and Lrβ,1 are identical physical operators, LHS

of Eq. (F8) are the same. Hence

T̆ g
r
1 ...g

r
q ⋅ Ŭrα,1 = T̆

gr1 ...g
r
q ⋅ V̆ rα,1, (F9)

where T̆ g
r
1 ...g

r
q is the canonical MPS matrix, and Ŭrα,1 and

V̆ rα,1 are the associated virtual operator. In components,

∑
h2

(T̆ g
r
1 ...g

r
q )h1,h2(Ŭ

r
α,1)h2,h3 =∑

h2

(T̆ g
r
1 ...g

r
q )h1,h2(V̆

r
α,1)h2,h3 .

(F10)

Multiplying (T̆ g
r
1 ...g

r
q )∗h1,h4

on both sides, and summing
over h1 as well as the physical indices gr1, . . . , g

r
q , and

using the canonical condition Eq. (A7), we find

(Ŭrα,1)h4,h3 = (V̆ rα,1)h4,h3 . (F11)

When the MPS is not canonical, we apply the similar-
ity transformation Eq. (A6):

Urα,1 = S ⋅ Ŭ
r
α,1 ⋅ S

−1, V rα,1 = S ⋅ V̆
r
α,1 ⋅ S

−1. (F12)

So

Urα,1 = S ⋅ Ŭ
r
α,1 ⋅ S

−1
= S ⋅ V̆ rα,1 ⋅ S

−1
= V rα,1. (F13)

This completes the proof.

Appendix G: Virtual U Operators as Tensor
Products of Pauli Matrices

In this appendix, we show that the virtual U operators
can be constructed as tensor products of Pauli matrices.

As discussed in the paragraph before Eq. (62) in
Sec. III D and proved in Ref. 33, the anti-symmetric in-
teger matrix t can be block diagonalized by a unimodu-
lar integer matrix V , such that each nontrivial block is a
2×2 anti-symmetric matrix with integer off-diagonal ma-
trix elements. Consider a general set of operators {Ui}
(i = 1, ...,N) which either commute or anti-commute,

UiUj = (−1)tijUjUi. (G1)

Let us define a new set of operators using the unimodular
integer matrix V as follows

Ũi = U
Vi1
1 UVi22 ...UViNN , (G2)

where Vij are the entries of the unimodular integer matrix
V . It is straightforward to compute the commutation
relations of {Ũi},

ŨiŨj = (−1)∑k,l Viktkl(V
T
)lj ŨjŨi

= (−1)(V ⋅t⋅V
T
)ij ŨjŨi.

(G3)

Due to Eq.(62), V ⋅ t ⋅ V T is block diagonalized. Since
V ⋅t ⋅V T appears on the exponent of (−1), only the mod-
ulo 2 values of the matrix elements matter. Hence the
nontrivial 2×2 blocks have off-diagonal elements ±1 where
we keep the minus signs to make the anti-symmetry man-
ifest. Suppose n is the number of nontrivial blocks of the
V ⋅ t ⋅ V T . Then one can find the representations of Ũi
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by using the Pauli matrices, because each 2×2 block cor-
responds to a pair of anti-commuting operators. For an
irreducible representation, we can assign for instance

Ũi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I ⊗ ...⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i−1
2

⊗X ⊗ I ⊗ ...⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2n−i−1
2

, i is odd,1 ≤ i ≤ 2n

I ⊗ ...⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i−2
2

⊗Z ⊗ I ⊗ ...⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2n−i
2

, i is even,1 ≤ i ≤ 2n

I ⊗ ...⊗ I ⊗ I ⊗ I ⊗ ...⊗ I
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

, 2n + 1 ≤ i ≤ N,

(G4)

where n =
rank(t)

2
, and each Ũi is a tensor product of n

Pauli matrices, forming a 2
rank(t)

2 = 2n dimensional repre-
sentation. Since V is unimodular, we can do an inverse
transformation from {Ũi} to {Ui}.

Ui = Ũ
(V −1

)i1
1 ...Ũ

(V −1
)iN

N . (G5)

Since {Ũi} are tensor product of Pauli matrices, {Ui} are
also tensor product of Pauli matrices. This generalizes
the construction of Sec. III B.

Appendix H: Projective Representations and 1D
Symmetry Protected Topological Phases

1. Projective Representations and Cocycles

In this section, we describe projective representations
and cocycles. Suppose G is a discrete group and ρ(g) is
a matrix representation of the group element g ∈ G. ρ is
the projective representation of G if

ρ(g1)ρ(g2) = ω2(g1, g2)ρ(g1g2), ∀ g1, g2 ∈ G, (H1)

where ω2(g1, g2) is a U(1) phase. As a result of Eq. (H1)
being associative, i.e.,

(ρ(g1)ρ(g2))ρ(g3) = ρ(g1)(ρ(g2)ρ(g3)). (H2)

ω2(g1, g2) satisfies:

ω2(g1, g2)ω2(g1g2, g3) = ω2(g2, g3)ω2(g1, g2g3). (H3)

We further require that ρ(g) and ρ(g)µ1(g) belongs to
the same class of the projective representation, where
µ1(g) is a U(1) phase. This yields that if two cocycles,
ω2 and ω̃2, are related by µ1 as follows:

ω̃2(g1, g2) = µ1(g1)µ1(g2)µ1(g1g2)
−1ω2(g1, g2), (H4)

then they give rise to the same projective representa-
tion. The conditions Eqs. (H3) and (H4) require the U(1)
phase ω2 belongs to the group cohomology H2(G,U(1))
and is a cocycle.34,41,42.

Throughout the paper, G is an Abelian group of the
form (Z2)

q, and the group element g is parametrized
by g = (g1, g2, . . . , gq) with gi ∈ Z2 for i = 1,2, . . . , q.
All the cocycles in H2(G,U(1)) are parametrized as in
Eq. (69)34,35.

2. Cocycle States

In this subsection, we summarize the construction of a
class of short range entangled states which we dub as the
the cocycle states, following Ref. 42. These states are in-
teresting because they are the states describing the sym-
metry protected topological (SPT) phase, protected by
the on-site unitary symmetry G. We first set up the no-
tations, and then review their results with Abelian groups
for simplicity.

Consider a 1D lattice with L unit cells. In each unit
cell, the local Hilbert space basis can be labeled by the
elements of G: ∣gr⟩,∀ gr ∈ G, (r = 0,1, ..., L − 1). Besides
the group elements {gr}, Ref. 42 also introduced an aux-
iliary group element g⋆ ∈ G which does not belong to the
Hilbert space, but nevertheless enables one to cons. The
cocycle state is constructed as follows (see Eq. (54) of
Ref. 42)

∣ψ⟩G,ω2 = ∑
{gr}

(∑
g⋆

L−1

∏
r=0

ω2(g
r
− gr−1, g⋆ − gr))∣{gr}⟩. (H5)

We further restrict Eq. (H5) to the (Z2)
q group. As

introduced in App. H 1, each unit cell contains q num-
ber of Z2 group elements/spins, i.e., gr = (gr1, ..., g

r
q). A

generic ω2 is in Eq. (69), i.e.,

ω2(g
r
− gr−1, g⋆ − gr)

= exp( − iπ ∑
1≤i<j≤q

Pij(g
r
j − g

r−1
j )(g⋆i − g

r
i )).

(H6)

Plugging Eq. (H6) to (H5), the cocycle state of (Z2)
q

global symmetry becomes:

∣ψ⟩(Z2)q,ω2
= ∑
{gri }

⎛

⎝
∑
{g⋆i }

exp( − iπ
L−1

∑
r=0

∑
1≤i<j≤q

Pij(g
r
j − g

r−1
j )(g⋆i − g

r
i ))

⎞

⎠
∣{gri }⟩.

(H7)

Notice that in the exponent, the coefficient of g⋆i with

fixed j, i.e., −iπ∑
L−1
r=0 Pij(g

r
j−g

r−1
j ), vanishes due to PBC.

This further simplifies the cocycle state Eq. (H7) to

∣ψ⟩(Z2)q,ω2
=

∑
{gri }

exp
⎛

⎝
iπ

L−1

∑
r=0

∑
1≤i<j≤q

Pij(g
r
j − g

r−1
j )gri

⎞

⎠
∣{gri }⟩.

(H8)

3. Cocycle Hamiltonians

We now construct a cocycle Hamiltonian H(Z2)q,ω2

whose ground state is Eq. (H8). The cocycle Hamilto-
nian has been constructed in Refs. 43,44. We present a
simplified construction.
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Lemma H.1. There exist qL operators Orα defined by

O
r
α ≡ ∏

1≤k<α

(Zr+1
k Zrk)

PkαXr
α ∏
α<l≤q

(Zrl Z
r−1
l )

Pαl (H9)

satisfying

O
r
α∣ψ⟩(Z2)q,ω2

= ∣ψ⟩(Z2)q,ω2
,∀r ∈ [0, L − 1], α ∈ {1, . . . , q}.

(H10)

In the main text, we adopt a slightly different but

equivalent convention to label all the operators Orα using
translation symmetry. See Eq. (71). In the main text,
the convention adopted in Eq. (71) is consistent with the
discussion of general stabilizer code Eq. (54). In this ap-
pendix, Orα in Eq. (H9) shares the same label with Xr

α

in its expression. The convention in Eq. (H9) will sim-
plify the proof without repeating the same equations for
different labels.

Proof. We first act Xr
α on ∣ψ⟩(Z2)q,ω2

(H8),

Xr
α∣ψ⟩(Z2)q,ω2

= ∑
{gr̂
k
}

exp(iπ
L−1

∑
r̂=0

∑
1≤k<l≤q

Pkl(g
r̂
l − g

r̂−1
l )gr̂k)X

r
α∣{g

r̂
k}⟩

= ∑
{gr̂
k
}

exp(iπ
L−1

∑
r̂=0

∑
1≤k<l≤q

Pkl(g
r̂
l − g

r̂−1
l )gr̂k)∣{g

r̂
k + δ

r̂rδkα}⟩.

(H11)

In the second line, we used the fact that since the group element grα is defined mod 2, gr̂k + δ
r̂rδkα is equivalent to

flipping the value of the spin grα. We further redefine the spins as g̃r̂k = g
r̂
k + δ

r̂rδkα, and rewrite the equation as

Xr
α∣ψ⟩(Z2)q,ω2

= ∑
{g̃r̂
k
}

exp(iπ
L−1

∑
r̂=0

∑
1≤k<l≤q

Pkl(g̃
r̂
l − g̃

r̂−1
l − δr̂rδlα + δ

(r̂−1)rδlα)(g̃
r̂
k − δ

r̂rδkα))∣{g̃
k
r̂ }⟩

= ∑
{g̃r̂
k
}

exp(iπ
L−1

∑
r̂=0

∑
1≤k<l≤q

Pkl(g̃
r̂
l − g̃

r̂−1
l )g̃r̂k − iπ ∑

1≤k<α

Pkα(g̃
r
k − g̃

r+1
k ) − iπ ∑

α<l≤q

Pαl(g̃
r
l − g̃

r−1
l ))∣{g̃kr̂ }⟩

= ∏
1≤k<α

(Zr+1
k Zrk)

Pkα ∏
α<l≤q

(Zrl Z
r−1
l )

Pαl ∑
{gr̂
k
}

exp(iπ
L−1

∑
r̂=0

∑
1≤k<l≤q

Pkl(g
r̂
l − g

r̂−1
l )gr̂k)∣{g

r̂
k}⟩

= ∏
1≤k<α

(Zr+1
k Zrk)

Pkα ∏
α<l≤q

(Zrl Z
r−1
l )

Pαl ∣ψ⟩(Z2)q,ω2
.

(H12)

In the second line, the first term on the exponent
has exactly the same form as the original ∣ψ⟩(Z2)q,ω2

,
while the second and the third terms on the expo-
nent are extra terms. They can be reproduced by
the acting with the product of Pauli Z operators,
∏1≤k<α(Z

k
r+1Z

k
r )
Pkα∏α<l≤q(Z

l
rZ

l
r−1)

Pαl . This observa-
tion directly leads to the third line. Hence we find the
following combination leaves ∣ψ⟩(Z2)q,ω2

invariant:

O
r
α ≡ ∏

1≤k<α

(Zr+1
k Zrk)

PkαXr
α ∏
α<l≤q

(Zrl Z
r−1
l )

Pαl . (H13)

This completes the proof.

Lemma H.2. The operators Orα in Lemma H.1 mutually
commute, i.e,

[O
r
α,O

r′

α′] = 0, ∀r, r′, α,α′. (H14)

Proof. Without loss of generality, we assume r = 1. Then
O1
α only acts on the unit cells at 0,1 and 2. O1

α and

Or
′

α′ trivially commute unless X1
α overlap with a Pauli

Z operator of Or
′

α′ and/or Xr′

α′ overlap with a Pauli Z
operator of O1

α. It is straightforward to check that the
Pauli X and Z operators overlap when

1. r′ = 2 and α > α′.

2. r′ = 1 and α ≠ α′.

3. r′ = 0 and α < α′.

When r′ = 2 and α > α′,

O
1
αO

2
α′ = (−1)Pα′α(−1)Pα′αO2

α′O
1
α = O

2
α′O

1
α. (H15)

When r′ = 1 and α > α′,

O
1
αO

1
α′ = (−1)Pα′α(−1)Pα′αO1

α′O
1
α = O

1
α′O

1
α. (H16)

When r′ = 1 and α < α′,

O
1
αO

1
α′ = (−1)Pαα′ (−1)Pαα′O1

α′O
1
α = O

1
α′O

1
α. (H17)
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When r′ = 0 and α < α′,

O
1
αO

0
α′ = (−1)Pαα′ (−1)Pαα′O0

α′O
1
α = O

0
α′O

1
α. (H18)

In summary, we have proven that for any r′, α,α′,

[O1
α,O

r′

α′] = 0. By translational invariance, [Orα,O
r′

α′] =

0, ∀r, r′, α,α′. This completes the proof.

Lemma H.3. The operators Orα in Lemma H.1 are all
independent for different r = 0, ..., L − 1 and α = 1, ..., q.

Proof. The observation is that each Orα involves only one
Pauli X operator, Xr

α. Then all operators Orα are inde-
pendent.

Lemma H.4. The commuting Hamiltonian

H(Z2)q,ω2
= −

L−1

∑
r=0

q

∑
α=1

O
r
α. (H19)

has only one ground state.

Proof. We prove by counting the degrees of freedom and
the number of independent constraints. Since each unit
cell contains q spins and there are L unit cells, the to-
tal dimension of the Hilbert space is 2qL. From Lemma
H.2, all the operators in the Hamiltonian commute. Thus
the ground state ∣ψ⟩(Z2)q,ω2

must be stabilized by all the
operators satisfying

O
r
α∣ψ⟩(Z2)q,ω2

= ∣ψ⟩(Z2)q,ω2
. (H20)

From Lemma H.3, all the operators Orα are indepen-
dent. Hence each Eq. (H20) provides one independent
constraint for the ground state Hilbert space. Because
Orα is a product of Pauli operators, each equation in
Eq. (H20) eliminates half of the Hilbert space dimension.
Since there are qL independent equations, the number
of ground state is 2qL−qL = 1. Hence there is only one
ground state.

Summarizing Lemma H.1, H.2, H.3 and H.4, we have
constructed the cocycle Hamiltonian:

Theorem H.5. The cocycle state Eq. (H8) is stabilized
by the cocycle Hamiltonian

H(Z2)q,ω2
= −

L−1

∑
r=0

q

∑
α=1

O
r
α, (H21)

where

O
r
α ≡ ∏

1≤k<α

(Zr+1
k Zrk)

PkαXr
α ∏
α<l≤q

(Zrl Z
r−1
l )

Pαl . (H22)

The Hamiltonian satisfies

1. All the operators Orα are products of Pauli opera-
tors, and mutually commute.

2. There is a unique ground state ∣ψ⟩(Z2)q,ω2
with

PBC.

Appendix I: Some Useful Identities

In this appendix, we prove that Eq. (84) holds. We first
prove a Lemma which turns out to be useful in proving
Eq. (84).

Lemma I.1. If x is an integer, then the following equa-
tion holds.

exp(iπ
1

2
x2

) =
1 + exp (iπx)

2
+ i

1 − exp (iπx)

2
. (I1)

Proof. When x is an even integer, both sides are 1. When
x is an odd integer, both sides are i. Hence Eq. (I1)
holds.

Lemma I.2. Eq. (84) holds.

Proof. We start with the LHS of Eq. (84). Using
∑i<j gigj =

1
2
((∑i gi)

2 −∑i g
2
i ), we reduce the LHS to

exp(iπ∑
i<j

gigj) = exp(iπ
1

2
((∑

i

gi)
2
−∑

i

g2
i )). (I2)

If we further restrict the value of gi as gi ∈ {0,1}, we have
g2
i = gi, hence ∑i g

2
i = ∑i gi. Applying Lemma I.1 with

x = ∑i gi, we further reduce Eq. (I2) to

(
1 + eiπ∑

n
i=1 gi

2
+ i

1 − eiπ∑
n
i=1 gi

2
)e−

iπ
2 ∑

n
i=1 gi

=
√

2 cos(
π

2
(
n

∑
i=1

gi −
1

2
)) .

(I3)

Introducing a hidden variable h to write the RHS in the
RBM form, we find the RHS is precisely

1
√

2

1

∑
h=0

exp(i
π

2
(1 − 2h)

n

∑
i=1

gi − i
π

4
(1 − 2h)). (I4)

This completes the proof.

Two simple examples of Eq. (84) are:

exp(iπg1g2)

=
1

√
2

1

∑
h=0

exp(i
π

2
(1 − 2h)(g1 + g2) − i

π

4
(1 − 2h))

(I5)

for n = 2 and

exp(iπ(g1g2 + g1g3 + g2g3))

=
1

√
2

1

∑
h=0

exp(i
π

2
(1 − 2h)(g1 + g2 + g3) − i

π

4
(1 − 2h))

(I6)

for n = 3.
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Appendix J: More Examples of RBM for Cocycle
Model

In this appendix, we exemplify the construction of the
RBM state in Sec. V C by the cocycle model with P12 =

P13 = ⋯ = P1q = 1 and Pij = 0 with i ≥ 2 and j > i.
The Hamiltonian of the model is

H(Z2)q,ω2
= −

L−1

∑
r=0

⎛

⎝

q

∏
i=2

ZriX
r+1
1

q

∏
i=2

Zr+1
i +

q

∑
i=2

Zr1Z
r+1
1 Xr

i

⎞

⎠
.

(J1)

The ground state is

∣GS⟩(Z2)q,ω2
= ∑
{gri }

L−1

∏
r=0

exp(iπ
q

∑
i=2

(gri − g
r−1
i )gr1)∣{g

r
i }⟩.

(J2)
The q × q Γ matrix (defined in Eq. (102)) is

Γ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0 0
1 0 ⋯ 0 0
1 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ 0
1 0 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (J3)

Applying the procedures introduced in the proof of
Lemma. V.2, we first use row operations to set the all
the rows of Eq. (J3) to zero except the first row. Recall
G1 and G2 defined in Eq. (96). The row operation is

GT = G2(1, q − 1)G2(1, q − 2)⋯G2(1,2)G1(1, q). (J4)

The visible spins transform as

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gr1
gr2
⋮

grq−1

grq

⎞
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ĝr1
ĝr2
⋮

ĝrq−1

ĝrq

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= G−1
⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gr1
gr2
⋮

grq−1

grq

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
q
i=2 g

r
i

gr2
⋮

grq−1

gr1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (J5)

The Γ matrix is transformed to

Γ→ Γ̂ = GT ⋅ Γ ⋅G =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0 1
0 0 ⋯ 0 0
0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ 0
0 0 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (J6)

Hence the rank of the Γ matrix is

rank(Γ) = rank(Γ̂) = 1. (J7)

Using the identity Eq. (84), we only need to introduce one

hidden spin of type h and type h̃ respectively to express
the exponent in Eq. (J2) in terms of RBM,

L−1

∑
r=0

q

∑
i=2

(gri − g
r−1
i )gr1 =

L−1

∑
r=0

( − Sym(gr1,
q

∑
i=2

gr−1
i ) + Sym(gr1,

q

∑
i=2

gri )).

(J8)

The ground state Eq. (J2) can be written as an RBM
state

∣GS⟩(Z2)q,ω2
= ∑

{gri },{h
r
1},{h̃

r
1}

L−1

∏
r=0

exp( − i
π

2
(1 − 2hr1)(g

r
1 +

q

∑
i=2

gr−1
i ) + i

π

4
(1 − 2hr1) + i

π

2
(1 − 2h̃r1)

q

∑
i=1

gri − i
π

4
(1 − 2h̃r1))∣{g

r
i }⟩.

(J9)

This RBM can be casted into an MPS with bond dimension 2, and the matrix elements of the RBM-MPS are:

T
gr1 ,...,g

r
q

hr1,h
r+1
1

= exp( − i
π

2
(1 − 2hr1)g

r
1 − i

π

2
(1 − 2hr+1

1 )

q

∑
i=2

gri + i
π

4
(1 − 2hr1))

1

∑

h̃r1=0

exp(i
π

2
(1 − 2h̃r1)

q

∑
i=1

gri − i
π

4
(1 − 2h̃r1)).

(J10)

We also present the RBM for two examples in Fig. 14
and 15 corresponding to q = 3 and q = 4.

FIG. 14: RBM network for cocycle model with q = 3, P12 =

P13 = 1, P23 = 0.
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FIG. 15: RBM network for cocycle model with q = 4, P12 =

P13 = P14 = 1, P23 = P24 = P34 = 0.
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