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We calculate the thermoelectric response coefficients of three-dimensional Dirac or Weyl semimet-
als as a function of magnetic field, temperature, and Fermi energy. We focus in particular on the
thermoelectric Hall coefficient αxy and the Seebeck coefficient Sxx, which are well-defined even in the
dissipationless limit. We contrast the behaviors of αxy and Sxx with those of traditional Schrödinger
particle systems, such as doped semiconductors. Strikingly, we find that for Dirac materials αxy

acquires a constant, quantized value at sufficiently large magnetic field, which is independent of the
magnetic field or the Fermi energy, and this leads to unprecedented growth in the thermopower
and the thermoelectric figure of merit. We further show that even relatively small fields, such that
ωcτ ∼ 1 (where ωc is the cyclotron frequency and τ is the scattering time), are sufficient to produce
a more than 100% increase in the figure of merit.

I. INTRODUCTION

In an electrically conductive system at finite tempera-
ture, the quasiparticle excitations that carry electric cur-
rent also carry heat current. The magnitude of the heat
current density JQ at a particular value of the electric
field is described by the Peltier conductivity tensor α̂. In
particular, in the presence of an electric field E and a gra-
dient of temperature T , the electric and thermal current
densities are given by [S1]

J = σ̂E− α̂∇T (S1)

JQ = T α̂E− κ̂∇T. (S2)

Here, J is the electric current density, σ̂ is the electrical
conductivity tensor, and κ̂ is the thermal conductivity
tensor. The Peltier conductivity tensor α̂ is related to
the thermoelectric tensor Ŝ by Ŝ = σ̂−1α̂.

At temperatures much lower than the Fermi tem-
perature, the thermoelectric response coefficients α̂ and
Ŝ due to charge carriers are typically proportional to
kBT/EF � 1, where kB is the Boltzmann constant and
EF is the Fermi energy [S1]. EF is typically very large
in a good metal, which leads to a small magnitude of
the thermoelectric response. Thus the thermoelectric re-
sponse coefficients are typically appreciable only in sys-
tems with relatively low Fermi energy, for example in
doped semiconductors.

During the last decade there has been a surge of in-
terest in the thermoelectric properties of materials with
topological or otherwise unconventional band structure.
(See, for example, Refs. S2–S9.) The electronic contribu-

tion to the thermoelectric response coefficients α̂ and Ŝ
reflect the properties of the quasiparticle dispersion. In
this way, measuring α̂ or Ŝ provides a way of studying
the nature of electronic quasiparticles.

Experiments on transverse thermoelectric response
commonly focus on the Nernst effect, in which a volt-
age gradient is measured in the direction transverse to
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FIG. S1. Schematic illustration of electron (e−) and hole (h+)
currents along edge states in the dissipationless limit, where
the electric field E is perpendicular to the electric current J
and to the magnetic field B.

an applied temperature gradient (e.g. Refs. [S10–S12]).
However, in a sufficiently strong magnetic field even the
diagonal component of the thermopower (the Seebeck co-
efficient, Sxx) can take a value that is independent of the
disorder scattering. In fact, in a recent paper, we showed
that in three-dimensional Dirac or Weyl semimetals this
large-field value of Sxx can be enormously enhanced by
a sufficiently strong magnetic field. [S13]

The usefulness of the Nernst coefficient Sxy for study-
ing the intrinsic band structure, and the independence
of the Seebeck coefficient Sxx on disorder at large field,
can both be viewed as a consequence of the off-diagonal
component of α̂ having a large dissipationless contri-
bution. In this paper we study this off-diagonal com-
ponent αxy, which we refer to as the “thermoelectric
Hall coefficient”, in detail. We calculate its value for
three-dimensional Dirac/Weyl semimetals as a function
of magnetic field, temperature, and carrier density, and
we contrast the results with the behavior of αxy for con-
ventional Schrödinger quasiparticles (studied in detail in
Ref. [S16]), for which the kinetic energy varies quadrati-
cally with momentum. In both cases, the value of αxy at-
tains a maximum at a particular value of magnetic field.
Strikingly, however, for Dirac/Weyl semimetals the value
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of αxy settles into a plateau at large magnetic field, such
that the quantity αxyvF /T is quantized, where vF is the
Fermi velocity in the field direction. This is shown in
Fig. S4.

In the remainder of this paper we calculate αxy using
the relation

αxy =
JQy
TEx

, (S3)

in which the temperature is taken to be uniform across
the system and the electric field E is taken to be in the x
direction. We calculate the thermoelectric Hall response
using two complementary approaches. First, we consider
the dissipationless limit, where the transport scattering
time diverges and all heat current is provided by quan-
tum Hall edge channels (see Fig. S1). Second, we use
a quasiclassical Boltzmann equation description to con-
sider the case where the transport scattering time τ is
finite. These two descriptions agree in the case where
ωcτ � 1, where ωc is the cyclotron frequency, provided
that multiple Landau levels are occupied. Finally, we
also use the Boltzmann equation to study the Seebeck
coefficient Sxx. While Sxx in the dissipationless limit,
which corresponds to high fields ωcτ � 1, was exhaus-
tively studied in Ref. S13, here we focus on the the case
of small fields ωcτ ∼ 1. We show that even relatively
low fields are sufficient to enhance Sxx in Dirac materi-
als, increasing the figure of merit of thermoelectric de-
vices by ≈ 100%. This result is in contrast to the case
of Schrödinger materials, where Sxx remains constant at
small fields if one assumes an energy-independent value
of τ . We focus everywhere in this paper on the “electron
diffusion” contribution to the thermopower; the effects of
phonon drag are left for a future work.

The remainder of the paper is organized as follows.
Section II gives a general expression for αxy in the dissi-
pationless limit, which largely recapitulates the canonical
derivations in Refs. S14–S16. Section III discusses the
quasiclassical approximation, and gives a general expres-
sion for αxy in terms of the Hall conductivity, which we
describe using the Boltzmann equation. Section IV de-
scribes the results for Schrödinger particles, using both
approximations, and Sec. V gives the results for Dirac
quasiparticles. We close in Sec. VI with a summary and
discussion.

II. DISSIPATIONLESS LIMIT

In cases when the scattering rate is small compared
to the cyclotron frequency, ωcτ � 1, both the Hall con-
ductivity σxy and the thermoelectric Hall coefficient αxy
can be calculated using the quantum Hall edge formal-
ism developed by Halperin [S14] and by Girvin and Jon-
son [S15]. For simplicity, we focus here on the “Hall
brick” geometry (see Fig. S1), in which the sample is
taken to have a finite extent W in x-direction. The mag-
netic field is taken to be along the z-direction. We de-
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FIG. S2. Landau levels εn(ky, kz) in the presence of a con-
fining potential in the x-direction. In the Schrödinger case
the states with negative energies ε < 0 (red lines) are ab-
sent. Dashed lines denote momenta corresponding to states
located near the boundaries of the Hall brick, ky = ±W/2l2B .
We assume that the magnetic length is much smaller than
the width of the brick, lB �W , such that bulk bands remain
nearly flat.

scribe the electron eigenstates using the Landau gauge
A = xBŷ, where A is the vector potential, so that the
states are parameterized by their quasimomenta ky and
kz. The corresponding eigenfunctions are centered at a
lateral position x0(ky) = kyl

2
B , where lB = (h̄/eB)1/2 is

the magnetic length.
In the absence of a confining potential in the x-

direction, the energy levels are highly degenerate and
do not depend on ky. The corresponding electron en-
ergy is then given by ε = ε0

n(kz), where n is the Landau
level index. The function ε0

n(kz) depends on the quasi-
particle dispersion, as we describe below for the cases
of Schrödinger and Dirac particles. In the presence of
a confining potential in x-direction, however, the energy
levels disperse with ky also, so that ε = εn(ky, kz), as
illustrated in Fig. S2.

The total current in the y-direction is given by

Iy =
e

Ly

∑
all states

vynF (ε− µ), (S4)

where Ly is the size of the brick in the y-direction, vy
is the y-component of the velocity of a state with en-
ergy ε, nF (ε) = [1 + exp(ε/kBT )]−1 is the Fermi-Dirac
distribution, and µ is the electrochemical potential. To
derive an explicit expression for the current, we recall
that the electron velocity in y-direction is given simply
by vy = (1/h̄)∂ε(ky, kz)/∂ky. The presence of an elec-
trostatic potential difference Vx between the two edges of
the brick implies a spatial variation of the electrochemical
potential µ. Given that the states with different ky are
centered at different positions x0(ky) = kyl

2
B , this spatial
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variation can be cast into the effective dependence of µ
on ky, i.e., µ(ky) ' µ0 + eVxx/W = µ0 + eVxl

2
Bky/W .

Here µ0 is the electrochemical potential in the absence of
an electric field. Expanding then the Fermi distribution
to the first order in Vx, we find

Iy = −e
2

h̄

Vxl
2
B

WLy

∑
kz,ky,n

Nnky
∂εn(ky, kz)

∂ky
×

× ∂

∂ε
nF [εn(ky, kz)− µ0], (S5)

where Nn is the degeneracy of the level with energy εn
(for a given ky and kz), and for brevity we will suppress
the subscript 0 in µ0 hereafter.

If the magnetic field is sufficiently strong that W � lB ,
the energy bands in the bulk remain nearly flat as a func-
tion of ky (up to exponentially small corrections), and the
corresponding contribution to the total current Iy can be
neglected due to the smallness of the velocity vy. Conse-
quently, the most significant contribution to Iy is due to
the familiar quantum Hall edge states, and one can set
ky ≈ ±W/2l2B in Eq. (S5). This assumption allows us to
change the summation variable ky to ε. Performing then
the integration over ε explicitly, we find

σxy =
Iy

VxLz
= σexy − σhxy, (S6)

where Lz is the size of the brick in the z direction and
the electron and hole contributions to the conductivity,
σexy and σhxy, respectively, are given by

σexy =
e2

2πh̄

∫ ∞
−∞

dkz
2π

∑
n:ε0n>0

Nn · nF
[
ε0
n(kz)− µ

]
, (S7)

σhxy =
e2

2πh̄

∫ ∞
−∞

dkz
2π

∑
n:ε0n<0

Nn ·
(
1− nF

[
ε0
n(kz)− µ

])
.

Strictly speaking, the bulk value of the Landau level en-
ergy ε0

n(kz) in the above expression should be substi-
tuted with ε0

n(ky = 0, kz); however, in the limit W � lB
considered in this paper, they are approximately equal,
ε0
n(ky = 0, kz) ≈ ε0

n(kz). The second contribution in
Eq. (S7), σhxy, represents a sum over negative-energy Lan-
dau levels in the valence band. For Schrödinger particles,
where the valence band is very far from the chemical po-
tential, the contribution σhxy can be neglected. However,
the contribution from these negative Landau levels plays
a significant role for Dirac/Weyl semimetals at finite tem-
perature and sufficiently large magnetic field, as we show
below.

In order to describe the Hall conductivity σxy at a
given magnetic field and electron concentration n0, one
should introduce the self-consistency condition for the
chemical potential µ:∫ ∞

0

dε ν(ε)nF (ε−µ)−
∫ 0

−∞
dε ν(ε) [1− nF (ε− µ)] = n0.

(S8)

Here, the first term on the left-hand side represents the
number of electrons per unit volume, and the second term
is the number of holes. The bulk density of states ν(ε) is
given by

ν(ε) =
eB

2πh̄

∑
kz,n

Nn · δ
[
ε− ε0

n(kz)
]
, (S9)

where eB/2πh̄ is the number of flux quanta per unit area.
The second term in Eq. (S8) is absent for Schrödinger
particles, since ν(ε < 0) = 0 in that case.

Combining together Eqs. (S6)–(S9), one easily finds
the famous result for the Hall conductivity,

σxy =
en0

B
, (S10)

which is typically explained classically by noting that in
the dissipationless limit the electron current is entirely
due to the transverse E×B drift of all electrons with the
drift velocity vd = Ex/B in the y-direction.

Analogously, one can derive a general expression for
the thermoelectric Hall coefficient αxy. In the presence
of a potential difference Vx, the total heat current in y-
direction is equal to

IQy = − e
h̄

Vxl
2
B

WLy

∑
kz,ky,n

Nnky × [εn(ky, kz)− µ]

× ∂εn(ky, kz)

∂ky

∂

∂ε
nF [εn(ky, kz)− µ]. (S11)

This equation differs from Eq. (S5) by the factor
εn(ky, kz) − µ within the sum, which describes the en-
ergy carried by each electron or hole state. Assuming, as
with Iy, that the main contribution to the heat current is
due to the edges at ky ≈ ±W/2l2B , one can easily perform
integration over ky, resulting in

αxy(B, T ) =
IQy

TVxLy
=

e

2πh̄Lz

∑
n,kz

Nns

(
ε0
n(kz)− µ
kBT

)
.

(S12)
Here we have introduced the entropy per electron state

s(x) = −kB [nF lnnF + (1− nF ) ln(1− nF )] =

= kB

[
ln (1 + ex)− x

1 + e−x

]
. (S13)

This connection between αxy and entropy has previously
been discussed for Schrödinger particles [S16], and here
we demostrate that it is also valid more generically, and
can be applied, for example, to the case of Dirac particles.

Finally, we note that the Seebeck coefficient Sxx, which
plays a crucial role in determining the figure of merit of
thermoelectric devices [S13], is generally defined as

Sxx = Syy =
IQy
TIy

=
αxxσxx + αxyσxy

σ2
xx + σ2

xy

. (S14)
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In the dissipationless limit, where σxy � σxx, it has the
simple form [S13]

Sxx =
αxy
σxy

=
B

2πh̄n0

∑
n,kz

Nns

(
ε0
n(kz)− µ
kBT

)
. (S15)

III. QUASICLASSICAL APPROXIMATION

The approach used in the previous section is universal
in the strong magnetic field limit, ωcτ � 1. However, at
small magnetic field this condition is violated, and quasi-
particle scattering must be taken into account. The most
straightforward way to account for the finite scattering
rate is within the Boltzmann quasiclassical theory. In this
description the general expressions for the conductivity
and the thermoelectric coefficients (both longitudinal and
Hall parts) are

σxx(xy) =

∫
dε

(
−∂nF
∂ε

)
σxx(xy)(ε)

αxx(xy) =
1

eT

∫
dε (ε− µ)

(
−∂nF
∂ε

)
σxx(xy)(ε). (S16)

Within the Boltzmann approach, the energy-dependent
conductivity is given by(

σxx(ε)
σxy(ε)

)
=

1

3

e2ν(ε)v2
F (ε)τ(ε)

1 + ω2
c (ε)τ2(ε)

(
1

ωc(ε)τ(ε)

)
. (S17)

In should be emphasized that, in general, the Fermi ve-
locity vF , the cyclotron frequency ωc, and the scattering
time τ (in addition to the density of states ν) are func-
tions of energy, and they depend on the type of particle
dispersion and on the mechanism for quasiparticle scat-
tering. In what follows, however, we focus for simplicity
on a model with constant (energy-independent) scatter-
ing time τ .

In the limit when both the cyclotron energy and
the temperature are smaller than the Fermi energy,
h̄ωc, kBT � EF , one can evaluate the integrals in
Eqs. (S16) using a Sommerfeld expansion, yielding

σxx(xy) ≈ σxx(xy)(ε)
∣∣
ε=EF

, (S18)

αxx(xy) ≈
π2

3

k2
BT

e

d

dε
σxx(xy)(ε)

∣∣∣∣
ε=EF

.

The Seebeck coefficient can then be found by inserting
these equations into Eq. (S14). In the limit h̄ωc, kBT �
EF , the result can be written as

Sxx ≈
π2

6

k2
BT

e

d

dε
ln
(
σ2
xx(ε) + σ2

xy(ε)
)∣∣∣∣
ε=EF

=
π2

6

k2
BT

e

d

dε
ln

(
ν2(ε)v4

F (ε)τ2(ε)

1 + ω2
c (ε)τ2(ε)

)∣∣∣∣
ε=EF

(S19)

The first equation is equivalent to the longitudinal com-
ponent of the usual Mott formula for the thermopower
at low temperature,

Ŝ =
π2

3

k2
BT

e
σ̂−1 dσ̂

dε

∣∣∣∣
ε=EF

.

The quasiclassical expressions (S16)–(S19) are appli-
cable when a large number of Landau levels is filled,
i.e., at sufficiently weak magnetic fields that h̄ωc � EF .
However, if the scattering time τ is sufficiently long,
then there exists a window of magnetic fields such that
1/τ � ωc � EF /h̄. The first inequality in this chain im-
plies that transport is essentially dissipationless, while
the second implies that the quasiclassical approach is
valid. Thus, in this window of magnetic fields the qua-
siclassical result coincides with the dissipationless result
from Sec. II. By merging the two descriptions we can
therefore obtain the result for αxy and Sxx over the whole
range of magnetic field.

IV. SCHRÖDINGER PARTICLES

We now apply the general formalism from the previous
two sections to the familiar case of Schrodinger particles,
as considered, e.g., in Ref. S16. This scenario is realized,
for example, in heavily doped semiconductors. Assum-
ing, for simplicity, an isotropic band with mass m, the
bulk Landau levels have energy ε0

n(kz) given by

ε0
n(kz) = h̄ωc

(
n+

1

2

)
+
h̄2k2

z

2m
, (S20)

where n is a non-negative integer and the cyclotron fre-
quency ωc = eB/m. Here we also neglect the effects of
Zeeman splitting, which amounts to an assumption that
the effective g-factor is small. In this case, the degen-
eracies of all Landau levels (at fixed ky) are the same,
and are given simply by the number Nf of electron fla-
vors (which includes the spin degeneracy). The density
of states is then given by

νS(ε) =
NfBe

√
2m

(2πh̄)2
Re

∞∑
n=0

1√
ε− h̄ωc(n+ 1/2)

, (S21)

where the superscript S stands for “Schrödinger”.
Using the general expression (S12) for the dissipation-

less limit, we find for the thermoelectric Hall coefficient
αxy

αSxy =
eNf
2πh̄

∞∑
n=0

∫ ∞
0

dkz
π
s

(
ε0
n(kz)− µ
kBT

)
, (S22)

where the function s(x) is defined by Eq. (S13), and the
chemical potential µ as a function of density n0, temper-
ature T , and magnetic field B must be self-consistently
determined from Eq. (S8). The behavior of αSxy as a
function of magnetic field is shown in Fig. S3.
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FIG. S3. The thermoelectric Hall coefficient αxy of
Schrödinger particles in three dimensions as a function of
magnetic field B. (a) A double-logarithmic plot of αxy,
showing both the result in the dissipationless limit (thick
blue line) and the semiclassical result (thin red line) cor-

responding to a scattering time τ = 50(vFn
1/3
0 )−1, with

vF = h̄(6π2n0/Nf )1/3/m being the Fermi velocity at zero
magnetic field. The labeled dashed lines show the limiting
results of Eqs. (S30), (S23), and (S26), respectively. The tem-

perature is taken to be T = 0.1h̄vFn
1/3
0 /kB. (b) αxy versus B

in linear scale, as given by the semiclassical calculation, cal-
culated for a large enough temperature that quantum oscilla-

tions are washed out (T = 1× h̄vFn
1/3
0 /kB). Different curves

are labeled according to their value of the scattering time τ ,

with τ0 = (vFn
1/3
0 )−1. In both plots, the units of magnetic

field are B0 = h̄n
2/3
0 /e, and units of αxy are α0 = ekBn

1/3
0 /h̄.

Limiting cases of the general expression (S22) for the
dissipationless limit can be understood as follows. For
definiteness, we focus on the case when the tempera-
ture is much smaller than the Fermi energy, kBT �

EF =
(
3π2h̄3n0/Nfm

√
2m
)2/3

. At sufficiently small
magnetic fields that h̄ωc � EF , the density of states re-
mains unchanged to the leading order in magnetic field,
ν(ε � h̄ωc) ≈ Nfm

√
2mε/2π2h̄3, and the chemical po-

tential coincides with the Fermi energy, µ ≈ EF . In this
limit we find for the thermoelectric Hall coefficient

αSxy ≈
(
Nfπ

6

)2/3
n

1/3
0 mk2

BT

h̄2B
. (S23)

On the other hand, when the magnetic field is large
enough that h̄ωc becomes larger than the Fermi energy,
only the states within the zeroth Landau level contribute
to transport. In this case, the density of states associated
with the lowest Landau level is

ν =
NfBe

√
2m

(2πh̄)2
· 1√

ε− h̄ωc/2
(S24)

and the chemical potential is given by

µ− h̄ωc
2
≈ 2π4h̄4n2

0

me2B2N2
f

� h̄ωc. (S25)

In the limit of small temperatures kBT � µ− h̄ωc/2, the
entropy s ≈ (π2/3)k2

BTν(µ), so that the thermoelectric
Hall coefficient is

αSxy ≈
e2k2

BTN
2
fmB

12π2h̄4n0

. (S26)

This result is valid when the magnetic field is in the range

h̄n
2/3
0 /e� B � h̄2n0/e

√
mkBT .

When the magnetic field is increased even further, so
that B � h̄2n0/e

√
mkBT , the Fermi energy relative to

the bottom of the lowest Landau level becomes smaller
than kBT . In this limit the chemical potential becomes
negative (as in a classical ideal gas) with respect to the
bottom of the lowest band:

µ− h̄ωc
2
≈ kBT ln

[
(2πh̄)2n0

BeNf
√

2πmkBT

]
< 0. (S27)

In this limit electrons are well described by a classical
Boltzmann distribution, leading to

αSxy ≈
n0kB
B

ln

[
NfBe

√
2πmkBT

(2πh̄)2n0

]
. (S28)

Equations (S22)–(S28) are valid when electron scatter-
ing can be completely ignored. Equation (S23), in partic-
ular, implies that in this dissipationless limit the value of
αSxy diverges as 1/B in the limit of small magnetic field.

In reality, however, this divergence of αSxy is cut off by
the finite scattering time, which truncates the divergence
when the magnetic field is small enough that ωcτ < 1.
This truncation can be described using the quasiclassical
approach developed in Sec. III. The result at low tem-
peratures kBT � EF can be obtained directly from the
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Sommerfeld expansion, Eq. (S18), with the Fermi veloc-

ity given by vF (ε) =
√

2ε/m and the density of states

given by its zero-field value ν(ε) ≈ Nfm
√

2mε/2π2h̄3.
If one assumes an energy-independent scattering time τ ,
then αxy is given by

αSQCxy ≈
(
Nfπ

6

)2/3
n

1/3
0 k2

BTe

h̄2

ωcτ
2

1 + ω2
cτ

2
. (S29)

As expected, Eq. (S29) reproduces the dissipationless
result of Eq. (S23) in the limit of weak disorder, ωcτ � 1.
At lower magnetic fields, it smoothly crosses over to

αSQCxy ≈
(
Nfπ

6

)2/3
n

1/3
0 k2

BTe
2τ2B

h̄2m
. (S30)

Thus, the value of αxy attains a maximum at ωcτ = 1,
as can be seen in Fig. S3.

V. DIRAC PARTICLES

In this section, we discuss in detail the thermoelec-
tric Hall coefficient for three-dimensional Dirac materi-
als, which have an energy-independent Fermi velocity vF
and are the main focus of this paper. If one assumes, for
simplicity, that vF is isotropic, then the Landau levels in
the bulk are described by [S17]

ε0
n(kz) = sign(n) · vF

√
2eh̄B|n|+ h̄2k2

z , (S31)

where n is an integer (positive or negative). All levels
with n 6= 0 (and fixed ky and kz) have the same degen-
eracy Nf , which is equal to the number of Weyl nodes
in Weyl semimetals and is equal to twice the number of
nodes in Dirac semimetals. It should be noted that Nf
is always even because of the fermion doubling theorem.
The level with n = 0, however, requires extra care. At
non-zero kz, the n = 0 Landau level splits into two levels
ε0
±(kz) = ±vF h̄|kz|, each of which has degeneracy Nf/2.

With this precaution, the density of states is given by

νD(ε) =
NfBe

2π2h̄2vF

(
1

2
+ Re

∞∑
n=1

|ε|√
ε2 − 2h̄v2

F eBn

)
,

(S32)
where the index D stands for “Dirac”.

The general expression for αxy in the dissipationless
limit is given by

αDxy =
eNf
2πh̄

∞∑
n=0

′
∫ ∞

0

dkz
π

[
s

(
ε0
n(kz)− µ
kBT

)
+

+s

(
ε0
n(kz) + µ

kBT

)]
, (S33)

where the notation
∑∞
n=0

′
is used to mean that the n = 0

term should be treated as a half-sum of contributions

with ε0
+(kz) and ε0

−(kz), analogously to the density of
states. The first term inside the brackets of Eq. (S33) cor-
responds to the electron contribution, while the second
term is due to holes. The behavior of αDxy as a function
of magnetic field is shown in Fig. S4.

In the limit of sufficiently weak magnetic field that
many Landau levels are occupied, B � E2

F /(h̄ev
2
F ),

and of sufficiently low temperature that kBT � EF =
h̄vF (6π2n0/Nf )1/3, the density of states is well approx-
imated by its zero-field, zero-temperature value, ν(ε) ≈
Nfε

2/2π2h̄3v3
F , and the chemical potential coincides with

the Fermi energy at zero field, µ ≈ EF . The thermoelec-
tric Hall coefficient is then given by

αDxy =

(
Nfπ

4

6

)1/3
k2
BTn

2/3
0

h̄vFB
. (S34)

On the other hand, when the magnetic field is made
strong enough that B � E2

F /(h̄ev
2
F ), the system enters

the extreme quantum limit, in which only the zeroth Lan-
dau level contributes to αxy. In this limit the chemical
potential is given by

µ ≈ 2π2h̄2vFn0

NfBe
, (S35)

leading to a thermoelectric Hall coefficient

αDxy ≈
π2

3

ek2
BTNf

(2πh̄)2vF
. (S36)

Strikingly, and unlike in the Schrödinger case, at large
magnetic fields αDxy does not decay to zero and it retains
no dependence on the electron density or the Fermi en-
ergy. Instead, αxy plateaus at large magnetic field, with
the quantity αxyvF /T achieving a quantized value that
depends only on universal constants and on the number
Nf of fermion flavors. (In cases of anisotropic Fermi ve-
locity, the relevant value of vF in this expression is the
velocity in the magnetic field direction.) This quantized
result for αxy is valid so long as the Landau level spacing

vF
√
h̄eB is much larger than both the zero-field Fermi

energy EF and the thermal energy kBT .
Finally, at large enough temperatures that kBT

is larger than the Landau level spacing, kBT �
vF
√
h̄eB, EF , the chemical potential is given by

µ ≈ 6h̄3v3
Fn0

Nfk2
BT

2
� kBT, (S37)

leading to a thermoelectric Hall coefficient

αDxy ≈
7π2

90

k4
BT

3Nf

h̄3v3
FB

. (S38)

As in the low-temperature case, Eq. (S36), there is no
dependence on the electron concentration.

As in the case of Schrödinger particles, the thermo-
electric Hall coefficient varies as αDxy ∝ 1/B at small
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FIG. S4. The thermoelectric Hall coefficient αxy of a three-
dimensional Dirac/Weyl semimetal as a function of magnetic
field B. (a) A double-logarithmic plot of αxy, showing both
the result in the dissipationless limit (thick blue line) and the
semiclassical result (thin red line) corresponding to a scatter-

ing time τ = 50(vFn
1/3
0 )−1. The labeled dashed lines show

the limiting results of Eqs. (S40), (S34), and (S36), respec-

tively. The temperature is taken to be T = 0.1h̄vFn
1/3
0 /kB.

(b) αxy versus B in linear scale, as given by the semiclassical
calculation, calculated for a large enough temperature that

quantum oscillations are washed out (T = 1 × h̄vFn
1/3
0 /kB).

Different curves are labeled according to their value of the

scattering time τ , with τ0 = (vFn
1/3
0 )−1. At large B, αxy

saturates to the value given by Eq. (S36), indicated by the
dashed line. In both plots, the units of magnetic field are

B0 = h̄n
2/3
0 /e, and units of αxy are α0 = ekBn

1/3
0 /h̄.

fields in the dissipationless limit. This divergence is trun-
cated, however, at sufficiently small magnetic fields that
the ωcτ < 1. To describe this regime, we, again, use
the quasiclassical approach of Sec. III. Focusing on the
low-temperature limit kBT � EF , and assuming that

many Landau levels are filled, vF
√
h̄eB � EF , we di-

rectly apply the Sommerfeld expansion (S18) to extract
αDxy. The density of states in this regime is given by

ν(ε) ≈ Nfε2/2π2h̄3v3
F , while the Fermi velocity vF is an

energy-independent constant. An important difference
with the Schrödinger case is that the cyclotron frequency
for Dirac electrons depends on energy: ωc(ε) = eBv2

F /ε.
Collecting everything together, we find

αDQCxy ≈ Nf
18

e2k2
BTvF τ

2B

h̄3

1 + 3ω2
c (EF )τ2

(1 + ω2
c (EF )τ2)

2 , (S39)

where the Fermi energy is given by EF =
h̄vF (6π2n0/Nf )1/3. In the limit of weak scattering,
EF � eBv2

F τ , we reproduce Eq. (S34) obtained for
the dissipationless limit. On the other hand, when the
magnetic field is weak enough that ωc(EF )τ � 1, we
arrive at

αDQCxy ≈ Nf
18

e2k2
BTvF τ

2B

h̄3 . (S40)

Let us now discuss the behavior of the Seebeck coef-
ficient Sxx and the thermodynamic figure of merit ZT
in Dirac materials. As we show below, the energy-
dependence of the cyclotron frequency in these materials
has remarkable consequences for both Sxx and ZT . In-
deed, as is clear from Eq. (S19), the quasiclassical expres-
sion for the Seebeck coefficient in the low-temperature
and small-field limit is given by

SDQCxx ≈ π2k2
BT

3eEF
· 2 + 3ω2

c (EF )τ2

1 + ω2
c (EF )τ2

. (S41)

(Here we have again assumed a constant scattering
time τ .) From this expression one can immediately see
that the Seebeck coefficient at zero field is 3/2 times
smaller than that at ωc(EF )τ � 1. Since the figure
of merit ZT of thermoelectric devices is proportional to
S2
xx (see Ref. S13 for a detailed discussion), a magnetic

field for which ωcτ > 1 produces a value of ZT in Dirac
materials that is enhanced by more than 100% relative
to the zero-field case. Such a magnetic field is, in gen-
eral, much weaker than the value required to achieve the
extreme quantum limit, which was the primary focus of
Ref. S13. This enhancement of ZT at relatively low fields
should be contrasted with the case of Schrödinger mate-
rials. For such materials, as can be seen from Eq. (S19),
the Seebeck coefficient remains a constant at small fields
and low temperatures h̄ωc(EF ), kBT � EF , provided
the scattering time is a constant.

We emphasize that the enhancement of Sxx with mag-
netic field is a direct consequence of the dependence of
the cyclotron frequency on energy. In case of an ar-
bitrary (isotropic) dispersion relation ε(p), the solution
of the Boltzmann equation gives a cyclotron frequency
ωc(ε) = eB[ε′(p)/p]|p=p(ε). It is interesting to note, by

examining Eq. (S19), that in the case of a power-law dis-
persion ε(p) ∝ pγ , Sxx is enhanced by a weak (ωcτ ∼ 1)
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magnetic field if γ < 2, and suppressed if γ > 2. For
Schrödinger particles, γ = 2, the Seebeck coefficient re-
mains a constant at small magnetic fields.
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FIG. S5. The Seebeck coefficient Sxx of a three-dimensional
Dirac/Weyl semimetal as a function of magnetic field B. The
plot shows the result in the dissipationless limit (thick blue
line) and the semiclassical result (thin red line) corresponding

to a scattering time τ = 50(vFn
1/3
0 )−1. The labeled dashed

lines show the value of Eq. (S41) in the limits of ωcτ � 1
and ωcτ � 1, respectively. The temperature is taken to be

T = 0.1h̄vFn
1/3
0 /kB. In both plots, the units of magnetic field

are B0 = h̄n
2/3
0 /e, and units of αxy are α0 = ekBn

1/3
0 /h̄. The

linear increase in Sxx with B in the extreme quantum limit
is described in detail in Ref. S13.

Finally, in the limit of high temperature, kBT �
vF
√
h̄eB, EF , one cannot apply the Sommerfeld expan-

sion (S18) anymore, and one must use the general expres-
sion (S16) instead. Since chemical potential [Eq. (S37)]
is small in this case, it can be neglected, leading to

αDQCxy ≈ Nfk
2
BTvF e

2Bτ2

6π2h̄3

∫ ∞
−∞

x4ex

(1 + ex)2

dx

x2 + ω2
c (kBT )τ2

≈

{
7π2

90
k4BT

3Nf

h̄3v3FB
, ωc(kBT )τ � 1

Nfk
2
BTvF e

2Bτ2

18h̄3 , ωc(kBT )τ � 1
. (S42)

In the dissipationless limit, ωc(kBT )τ � 1, this expres-
sion agrees with the result of Eq. (S38).

VI. SUMMARY AND DISCUSSION

In this paper we have presented a calculation of the
thermoelectric reponse coefficients in Dirac and Weyl
semimetals, focusing in particular on the thermoelectric
Hall coefficient αxy and the thermopower Sxx. Our most
notable results concern the enhancement of αxy and Sxx
relative to the familiar case of Schrödinger particles. For
example, applying a sufficiently strong field that ωcτ >∼ 1
results in an enhancement of Sxx [see Eq. (S41)] that

corresponds to a more than 100% increase in the thermo-
electric figure of merit ZT (in a model where τ is energy-
independent). For Schrödinger particles, on the other
hand, there is no such enhancement. At even larger fields,
such that the chemical potential falls into the zeroth Lan-
dau level and the system enters the extreme quantum
limit, Sxx grows linearly with field without saturation.
This growth is accompanied by a striking plateau in αxy
[see Eq. (S36)], such that the quantity αxyvF /T takes
on a quantized value. This is qualitatively different from
the case of Schrödinger particles, for which αxy decays as
1/B at large fields and Sxx saturates at a value of order
kB/e.

So far we are unaware of any published experimental
measurements of αxy in a Dirac or Weyl semimetal at
large magnetic field. However, the predictions of this pa-
per should be readily testable in Dirac or Weyl semimet-
als with low electron density, such as Pb1−xSnxSe [S9] or
ZrTe5 [S18, S19]. The enhancement of Sxx with magnetic
field was observed in Pb1−xSnxSe in Ref. S9.

Throughout the work, we assumed that the main con-
tribution to the thermoelectric coefficients is either from
a single Dirac or Schrödinger band. For many materials,
however, there are multiple bands intersecting the Fermi
level, and each of these provides a contribution to the
thermoelectric response. Since the effects studied in our
work are essentially single-particle phenomena, the con-
tributions to αxy and Sxx from different bands simply
add up, so the generalization to this case is straightfor-
ward.

A natural extension of the work presented here is
to the case of a massive Dirac dispersion, for which
the zero-field dispersion relation has the form E± =

±
√

(∆/2)2 + h̄2v2
F k

2. (Here, the labels ± refer to the

conduction and valence bands, respectively, and ∆ is the
energy gap between them.) While an exact calculation
for this case is left for a later work, one can generally ex-
pect the thermoelectric behavior for such gapped Dirac
materials to be similar to either the gapless Dirac case
or the Schrödinger case, depending on whether the ther-
mal energy and the Fermi energy are large or small com-
pared to ∆. In particular, if kBT � ∆, then the band
gap is unimportant and one can describe both αxy and
Sxx using the results in Sec. V. On the other hand, if
both kBT and the zero-field Fermi energy EF are much
smaller than ∆, then the thermoelectric response is dom-
inated by the low-momentum states near the band edge,
for which the energy varies quadratically with momen-
tum, and the thermoelectric response is well-described by
the Schrödinger-case results of Sec. IV. In the case where
EF � ∆� kBT , then at zero magnetic field the chemi-
cal potential is high in the conduction band, and the sys-
tem behaves like a Dirac system (Sec. V). However, at
high enough magnetic field that B � h̄2vFn0/(Nfe∆),
the chemical potential falls and closely approaches the
bottom of the conduction band, and the system be-
haves as in the Schrödinger case (Sec. IV). We expect
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that this crossover from Dirac-like to Schrödinger-like be-
havior with increasing magnetic field can be relevant to
Pb1−xSnxTe and PbTe, where the band gap can reach
0.2-0.3 eV [S23]. It should be noted that the crossover
from a “massless” to a “massive” Dirac case may nat-
urally occur at sufficiently high magnetic fields in Weyl
semimetals, which necessarily host multiple nodes. In-
deed, when the inverse magnetic length l−1

B =
√
eB/h̄

becomes comparable to the separation between nodes
in the momentum space, the tunneling between the ze-
roth Landau levels associated with the Weyl points of
different chirality may cause splitting and open up an
energy gap [S24–S26]. In this case, the Dirac mass ∆
will strongly depend on the magnetic field B.

It is also worth commenting on the case of lay-
ered Dirac materials, which resemble a stack of two-
dimensional Dirac systems with a weak interlayer cou-
pling energy t. In cases where kBT � t, the interlayer
coupling can be neglected and the system is accurately
described as a stack of independent two-dimensional sys-
tems. In this case one can describe the thermoelectric
Hall conductivity by using the theory of Girvin and Jon-
son [S15] and dividing the value of αxy for the two-
dimensional case by the interlayer spacing. Such a de-
scription may be relevant to recent experiments in ZrTe5,
where a three-dimensional quantum Hall effect was re-
cently discovered [S19], and to graphite, in which a large
Nernst effect has been observed [S20].

Finally, let us comment in more detail on the depen-

dence of our results on disorder. In two-dimensional
quantum Hall systems, the values of αxy and Sxx are af-
fected by disorder, since the presence of disorder tends to
broaden the Landau levels and therefore reduce the elec-
tron entropy when a given Landau level is partially filled
[S21, S22]. In contrast, our results for αxy and Sxx in
Dirac/Weyl semimetals at large magnetic field are essen-
tially unaffected by disorder. This independence of αxy
and Sxx on disorder can be understood as a consequence
of a density of states that has no dependence on energy
in the high-field limit. Indeed, in the extreme quantum
limit in a Dirac/Weyl semimetal, the density of states be-
comes an energy-independent constant, ν ∼ 1/(h̄vF l

2
B).

Consequently no “broadening” of the Landau level by
disorder can affect its value, provided that the Landau
level spacing h̄vF /lB is much larger than the disorder
energy scale h̄/τ .
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