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The hydrodynamic description of the Fermi arc surface states is proposed. In view of the strong
suppression of scattering on impurities, the hydrodynamic regime for Fermi arc states should be, in
principle, plausible. By using the kinetic theory, the Fermi arc hydrodynamics is derived and the
corresponding effects on the bulk flow and surface collective modes are studied. For the bulk flow,
the key effect of the proposed Fermi arc hydrodynamics is the modification of the corresponding
boundary conditions. In a slab geometry, it is shown that, depending on the transfer rates between
the surface and bulk, the hydrodynamic flow of the electron fluid inside the slab could be signifi-
cantly altered and even enhanced near the surfaces. As to the spectrum of the surface collective
modes, in agreement with earlier studies, it is found that the Fermi arcs allow for an additional
gapless spectrum branch and a strong anisotropy of the surface plasmon dispersion relations in
the momentum space. The gapped modes are characterized by closed elliptic contours of constant
frequency in momentum space.

I. INTRODUCTION

Weyl semimetals are materials with a relativisticlike energy spectrum in the vicinity of isolated Weyl nodes in the
Brillouin zone. (For recent reviews on Weyl semimetals, see Refs.1–3.) The nodes have nonzero topological charges
with the monopolelike Berry curvature4 and always occur in pairs of opposite chirality5,6. In each pair, the Weyl
nodes can be separated in energy and/or momentum, which indicates breaking of the parity-inversion (PI) and/or
time-reversal (TR) symmetries, respectively. The nontrivial topology and the relativisticlike nature of quasiparticles
also affect the transport properties of Weyl semimetals, e.g., leading to a negative longitudinal magnetoresistivity
that was first predicted in Ref.7. (For recent reviews of the transport phenomena, see Refs.8–10.)
The nontrivial bulk topology of Weyl semimetals is also reflected in unusual surface states known as the Fermi

arcs11. Unlike surface states in ordinary materials, the Fermi arcs form open segments in momentum space that
connect Weyl nodes of opposite chirality11,12. The surface states in Weyl semimetals were first observed via the
angle resolved photoemision spectroscopy13–19, as well as reconfirmed later by the observation of the quasiparticle
interference patterns20–23. It is important to note that the energy dispersion of the Fermi arc states is effectively
one-dimensional (see, e.g., Ref.24). This may suggest that their transport properties are similar to that of the one-
dimensional chiral fermions and should be nondissipative. However, as we showed in Ref.25, the Fermi arc transport is,
in fact, dissipative because of the scattering between the surface and bulk states in Weyl semimetals. The dissolution
of Fermi arcs in the presence of strong disorder was also confirmed numerically in Refs.26,27.
Electronic collective excitations provide additional powerful probes of the nontrivial properties of Weyl semimetals.

The topology is imprinted, for example, in anomalous helicons28, surface plasmon polaritons29,30, chiral magnetic
plasmons31–33, etc. The effect of the Fermi arcs on the surface plasmons was studied in Refs.34–36. The authors of
Ref.34 employed a simple phenomenological model valid in the long-wavelength limit. The hybridization of the Fermi
arc and conventional surface plasmons is controlled via the anomalous Hall conductivity and a phenomenologically
included Drude weight. Further, the surface plasmon excitation spectrum in Weyl semimetal within the random
phase approximation was determined in Ref.36. The treatment of the surface plasmons in Ref.35 is more sophisticated
and is based on the direct quantum-mechanical calculations. Despite the difference in their approaches, studies in
Refs.34,35 predict the open hyperbolic constant-frequency contours for the surface plasmons. The nontrivial patterns
of the surface plasmons can be measured by the scattering-type near-field optical spectroscopy (for a recent review, see
Refs.37,38) as well as the momentum-resolved electron energy loss spectroscopy (see e.g., Refs.39,40 and the references
therein). Experimentally, the electron energy loss in Weyl semimetals was recently studied in Ref.41.
Since Weyl semimetals are typically characterized by low impurity scattering rates (see, e.g., Refs.3,9,42–44 for the

scattering rates and crystal quality estimations), one might suggest that a hydrodynamic regime of electron transport
could be eventually realized in many such materials. Originally, the possibility of such a regime for charge carriers in
sufficiently clean solids was discussed in the pioneering papers by Gurzhi45,46. Electron hydrodynamics requires that
the electron-electron scattering rate dominates over the electron-impurity and electron-phonon ones. Recently, such a
regime was experimentally confirmed in the Weyl semimetal tungsten diphosphide (WP2)

47, where the characteristic
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quadratic dependence of the electrical resistivity on the cross section of the wire as well as a strong violation of the
Wiedemann–Franz law were observed.
Theoretically, the nontrivial topological properties of Weyl semimetals, connected with the energy and momen-

tum separations between Weyl nodes, are taken into account in the recently proposed framework of consistent
hydrodynamics48. The latter includes several types of Chern–Simons contributions in the electric current and
charge densities that affect not only the electron transport in Weyl semimetals49,50, but also their various collec-
tive excitations48,51. It is natural to ask, therefore, whether the hydrodynamic regime could be also realized for the
Fermi arc electrons and, if so, how it would affect the bulk electron fluid.
A low sensitivity of the surface Fermi arc states to disorder makes them promising candidates to sustain a surface

electron fluid in Weyl semimetals. If this is indeed the case, the Fermi arcs could realize not only the “Fermi level
plumbing”12, but act as true aqueducts for the surface electron fluid. Because of the inevitable surface-bulk transitions
and interactions, of course, such a surface electron fluid should be necessarily coupled to the bulk one.
In this study, we derive the hydrodynamic equations for the surface Fermi arc states from the kinetic theory and

phenomenologically describe the corresponding surface-bulk coupling. Our principal finding is that the Fermi arc
electron liquid modifies the boundary conditions for the bulk one. Depending on the coupling parameters, the bulk
flow in a slab of finite thickness could be noticeably altered and even enhanced near the surface. In addition, we
study the surface collective modes in the hydrodynamic approximation. In agreement with the earlier studies34–36,
the presence of the Fermi arcs is manifested in a strongly anisotropic dispersion relation of the surface plasmons.
Additionally, we find that while the constant-frequency contours of the surface modes are given only by the elongated
ellipses, the open hyperbolic contours correspond to the bulk modes hybridized with the surface excitations similarly
to the usual semi-infinite plasma52. Finally, there is also a gapless surface mode, which is related exclusively to the
Fermi arcs. While such a mode resembles a conventional surface acoustic plasmon53, which also has a linear dispersion
relation, the Fermi arc mode is different and its frequency is determined by the surface dispersion relation. These
qualitative effects can be potentially used to experimentally verify the realization of the electron hydrodynamics in
Weyl semimetals.
Our paper is organized as follows. In Sec. II, we introduce the phenomenological hydrodynamic model of the

Fermi arcs and discuss the coupling of the surface and bulk electron fluids. The explicit realization of the coupling
is given and the effects of the surface states on the hydrodynamic flow are studied in Sec. III. Sec. IV is devoted
to the investigation of the surface collective modes in the hydrodynamic approximation. Our results are discussed
and summarized in Sec. V. Technical details, including the derivation of the Fermi arc hydrodynamic equations and
some auxiliary formulas are given in Appendices A and B, respectively. Throughout this paper, we set the Boltzmann
constant kB = 1.

II. MODEL

In order to derive the hydrodynamic equations for the Fermi arc quasiparticles, we start from the kinetic theory.
As usual54,55, the Euler equation is obtained by calculating the appropriate moments of the kinetic equation. In the
presence of the electric field E, the latter reads

∂tf
(FA) − eE · ∂pf (FA) + v(FA)

p ·∇f (FA) = I
(FA)
coll , (1)

where −e is the electron charge, p = (px, pz) is the two-dimensional momentum of the surface quasiparticles, and

I
(FA)
coll denotes the collision integral, whose effects on the Fermi arcs will be discussed later. In the hydrodynamic
regime, the distribution function describes local equilibrium, i.e.,

f (FA) = δ(y − ys)
1

1 + exp

(

ǫ
(FA)
p −(u(FA)·p)−µ

T

) , (2)

where ys denotes the surface coordinate, s = ± labels the bottom and top surfaces, respectively, u(FA) is the Fermi
arcs fluid velocity, µ is the electric chemical potential, and T is temperature. For a slab of finite thickness Ly, the
coordinates of the top and bottom surfaces will be fixed at y− = Ly and y+ = 0, respectively. Here, for simplicity, we
assume that the Fermi arcs are strongly localized at the sample’s boundaries and, therefore, the dependence of the
distribution function on the transverse coordinate can be modeled by the δ-functions.
Further, we assume that the Weyl semimetal has a broken TR symmetry and contains two Weyl nodes separated

by 2b along the z direction in momentum space. Then, as can be verified in a simple model (see, e.g., Ref.24), the
dispersion relation for the Fermi arc states reads

ǫ(FA)
p = svF px, (3)
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where vF is the Fermi velocity. The linear energy dispersion implies that the Fermi arc quasiparticles have a constant
velocity

v(FA)
p = ∂pǫ

(FA)
p = svF x̂ (4)

parallel to the x axis. Therefore, it is reasonable to assume that their hydrodynamical velocity u(FA) also points in
the x direction. In other words, there is no hydrodynamic flow due to the Fermi arcs in the z direction. Of course,

the same is true for the surface electric current, which can only flow along v
(FA)
p , see Eq. (A15) in Appendix A 2.

We note that this is qualitatively different from the setup in Ref.34, where a diffusive surface transport along the z
direction was allowed.
The derivation of the hydrodynamic equation for the Fermi arc electron fluid is given in Appendix A. In the inviscid

limit, which might be justified in the case of relatively small electron-electron collision times, the Euler equation for
the surface hydrodynamic velocity reads

(∂t + svF∂x)
sw(FA)

vF

(

1 + 2
u
(FA)
x

svF

)

+ en(FA)

(

1 +
u
(FA)
x

svF

)

Ex = I(FA)
s , (5)

where I
(FA)
s stems from the collision integral I

(FA)
coll and describes the surface-bulk transitions. The enthalpy and the

fermion number density of the Fermi arc states in equilibrium are derived in Appendix A2. Their explicit expressions
read

w(FA) =
b

4π2vF~

(

µ2 +
π2T 2

3

)

, (6)

n(FA) =
µb

2π2vF~
. (7)

Now, let us briefly discuss the bulk hydrodynamics. In the absence of external magnetic fields and vorticity, the
Navier–Stokes equation for the quasiparticles in a Weyl semimetal reads49,56

∂t
w

v2F
u− η∆u−

(

ζ +
η

3

)

∇ (∇ · u) +∇P + enE+
w

v2F τ
u = Isurf . (8)

Here w = ǫ + P is the bulk enthalpy, ǫ is the bulk energy density, P is the pressure, u is the bulk fluid velocity, n
is the bulk fermion number density, η and ζ are the shear and bulk dynamic viscosities, respectively. Note that, in
the global equilibrium state without background electromagnetic fields and with vanishing fluid velocity, the energy
density, the pressure, and the fermion number density take the following explicit forms:

ǫ =
15µ4 + 30π2T 2µ2 + 7π4T 4

60π2~3v3F
, (9)

P =
ǫ

3
, (10)

n =
µ
(

µ2 + π2T 2
)

3π2~3v3F
. (11)

In relativistic-like systems, the shear and bulk viscosities can be estimated as η = wτee/4 (see, e.g., Refs.47,57) and
ζ ≈ 054. In our study, we use the electron-electron collision time τee = ~/T , which is consistent with the experimental
findings in Ref.47.
Compared to the conventional Navier–Stokes equation58, Eq. (8) contains a few additional contributions. While the

penultimate term on the left-hand side accounts for the charged nature of the electron fluid and describes the electrical
force, the term inversely proportional to the relaxation time τ is a hallmark feature of the solid-state hydrodynamics46.
It comes from the electron scattering on phonons and impurities and, as is clear from its explicit dependence on the
fluid velocity, it breaks the Galilean invariance. As for the term on the right-hand side of Eq. (8), it describes the
transfer of momentum between the surface and bulk fluids. By taking into account that the Fermi arcs are localized
on the surface, it can be modeled as follows:

Isurf = −
∑

s=±

δ(y − ys)I
(FA)
s x̂, (12)
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where y+ = 0 and y− = Ly are the coordinates of the two slab surfaces. The inclusion of the source term in Eq. (8)
implies that the boundary conditions (BCs) for the electron fluid should be modified. Instead of the usual free-surface
BCs, the fluid velocity and its derivatives should satisfy the following BCs at y = ys:

η∂yux(ys) +
(

ζ +
η

3

)

∂xuy(ys) = sI(FA)
s . (13)

Additionally, the normal components of the electron fluid velocity should vanish on both surfaces, i.e.,

uy(ys) = 0. (14)

In order to illustrate the nontrivial effects of the Fermi arcs, we will also consider the benchmark case, where the
chiral shift is absent or directed normal to the surfaces of the slab. In such a simplified setup, there are no Fermi arc
surface states and the BCs for the bulk fluid velocity take the standard no-slip form, i.e.,

ux(ys) = 0 (15)

or the free-surface form, i.e.,

∂yux(ys) = 0. (16)

Since the Fermi arc fluid velocity affects only the x component of the bulk flow, the z component of the bulk fluid
velocity always satisfies the standard no-slip or free-surface BCs similar to those in Eqs. (15) or (16). As we argue
below, this benchmark case is useful to identify the effects of the Fermi arcs on the hydrodynamic flow without making
a priori assumptions about the state of the surface.
It is worth noting that the Navier-Stokes equation should be amended by the energy conservation relation as well

as the electric current continuity relation. While the latter has a profound effect on both the charge transport and
collective excitations, the former is important only for the thermoelectric effects and can usually be neglected in
electron transport58. In general, however, the effect of the energy conservation on the electron hydrodynamics may
become important when the fluid velocity is not small compared to the speed of sound vsd (note that vsd is close

to vF /
√
3 in relativisticlike systems). Therefore, in what follows, we will assume that |u| ≪ vsd and the energy

conservation relation can be ignored.
The electric current continuity relations for the surface and bulk states read

∂tρ
(FA)
s +∇⊥ · J(FA)

s = Q(FA)
s , (17)

∂tρ+∇ · J = −
∑

s=±

δ (y − ys)Q
(FA)
s , (18)

respectively. Here Q
(FA)
s describes the electric charge transfer between the bulk and surface states of the semimetal.

Further, ρ
(FA)
s = −en(FA)

(

1 + su
(FA)
x /vF

)

is the surface electric charge density and ρ = −en is the bulk one. The

surface and bulk electric currents are given by

J(FA)
s = svF ρ

(FA)
s x̂, (19)

J = −enu+ σE− e2 [b×E]

2π2~
, (20)

respectively. The explicit expressions for the Fermi arc charge and current densities are derived in Appendix A 2.
Note that the expression for the bulk current (20) includes the intrinsic conductivity σ, which was discussed in the
holographic approach in Refs.59–63. While σ is important for a correct description of the normal flow in the presence
of a nonzero chiral shift49, it plays no role in the longitudinal flow. The last term in Eq. (20) corresponds to the
anomalous Hall effect64–70, where b = bẑ is the chiral shift.
By integrating Eq. (18) in the vicinity of the surfaces, we obtain the following boundary condition for the normal

component of the bulk current:

Jy(ys) = −sQ(FA)
s . (21)

Formally, this implies that, because of the transitions between the surface and bulk states, the normal component of
the bulk current does not vanish on the surface.
Before concluding this section, it is instructive to sum up the general features of the surface and bulk flows, as well

as to reiterate the critical role that the BCs play in their interplay. The surface u
(FA)
x and bulk u fluid velocities are
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determined by the hydrodynamic equations (5) and (8), respectively. The bulk equation should be also supplemented
by the appropriate BCs for the normal component of the fluid velocity, see Eq. (14), as well as the BCs for the
tangential components, see Eqs. (13) or, in the absence of the Fermi arcs, Eqs. (15) and (16). In addition, as we will
see below, the study of the longitudinal flow requires specifying either the Fermi arc fluid velocity at some contacts
or an explicit form of the transfer terms. In our study, we use the latter option that allows for a self-consistent
determination of the surface fluid velocity as well as the bulk flow. As for the collective excitations, the use of the
continuity relations (17) and (18) will be needed in order to determine the evolution of the electric charge. In this
connection, it should be emphasized that, because of the presence of the surface states, the normal component of the
bulk electric current (21) does not, in general, vanish at the boundary.

III. HYDRODYNAMIC FLOW

In this section, we investigate a steady hydrodynamic flow in a slab of finite width in the y direction and infinite in
the x and z directions. We assume that the slab is sufficiently thick so that the interaction between the Fermi arcs
on the opposite surfaces y+ = 0 and y− = Ly is negligible and the arcs could be considered as independent. At the
same time, the thickness should be small enough in order for the surface flow to have a noticeable effect on the net
hydrodynamic flow. Without loss of generality, we also assume that a uniform background electric field is applied in
the x direction. Incidentally, this is the same setup that we used in Ref.49, where, however, the effects of the Fermi
arcs were not taken into account.
Since the bulk electron fluid couples to the surface states, the transfer term on the right-hand side in Eq. (5) plays

an important role in the hydrodynamic flow. We model it as follows:

I(FA)
s = −w

(FA)u
(FA)
x

v2F τsb
+
αwux(ys)

vF
. (22)

Here the first term describes the transitions from the surface to the bulk with the rate determined by the relaxation
time τsb. The second term corresponds to the inflow from the bulk to the surface, where the rate is parameterized by
a small numerical coefficient α. These terms are derived by using the relaxation time approximation in Appendix A3
(see Eqs. (A12) and (A13)). For the surface to bulk transfer term, the relaxation time approximation might be indeed
physical because the dissipation of the Fermi arcs states is primarily due to the surface to bulk scatterings25. In
the hydrodynamic picture, this corresponds to the outflow to the bulk. As for the bulk to surface transfer term, it
is estimated in a similar way. In general, the transfer terms in Eq. (22) can be viewed as the leading terms in the
gradient expansion about the global equilibrium state.
Taking into account that the right-hand sides of the bulk Navier-Stokes (8) and continuity (18) equations are

nonzero only at the surfaces of the slab, it is reasonable to take them into account only via the BCs. In particular,
we will use Eq. (13) for the velocity on the surface and Eq. (21) for the normal component of the current. Since the
latter is not important for the longitudinal hydrodynamic transport, there is no need to specify the explicit form of

the transfer term Q
(FA)
s . Therefore, the steady longitudinal flow in the bulk is described by the following equation:

η∂2yux(y)− enEx −
w

v2F τ
ux(y) = 0. (23)

Here, as in Ref.49, we omitted ∇P in the flow equation. In view of the slab’s geometry, there is no dependence on x
and z. Then, the general solution to Eq. (23) reads

ux(y) = C1e
λxy + C2e

−λxy − env2F τEx
w

, (24)

where λx =
√

w/(ηv2F τ) and the constants C1 and C2 are determined from the BCs. In particular, Eq. (13) takes the
form

sη∂yux(ys) = ux(ys)
αw

vF

[

1− w(FA)

vF τsb

(

sen(FA)Ex +
w(FA)

vF τsb

)−1
]

+
en(FA)Exw

(FA)

vF τsb

(

sen(FA)Ex +
w(FA)

vF τsb

)−1

, (25)

where we used the following expression for u
(FA)
x obtained from Eqs. (5) and (22):

u(FA)
x (ys) = −

(

vF en
(FA)Ex − αwux(ys)

)

(

sen(FA)Ex +
w(FA)

vF τsb

)−1

. (26)
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It is instructive to consider the following two limiting cases: (i) no transfer of electrons from the surface to the bulk
τsb → ∞ and (ii) a very strong outflow from the surface to the bulk τsb → 0.
In the first case (i.e., τsb → ∞), we have

u(FA)
x (ys) = −svF + s

αwux(ys)

en(FA)Ex
, (27)

sη∂yux(ys) =
αwux(ys)

vF
. (28)

By noting that the velocity of the Fermi arcs might be as large as vF , we could argue that the realization of the
hydrodynamic regime for the surface quasiparticles is unlikely at large τsb. Also, in the limit α → 0, i.e., when the

Fermi arcs completely decouple, the BCs in Eq. (28) reduce to the usual free-surface ones and u
(FA)
x (ys) = −svF .

In the opposite limit, i.e., τsb → 0, we obtain

u(FA)
x = 0, (29)

sη∂yux(ys) = en(FA)Ex. (30)

In this case, there is a strong coupling between the surface and bulk fluids leading to the vanishing Fermi arc fluid
velocity. In addition, the boundary conditions for the bulk fluid are modified significantly and are affected by the
electric field and the chiral shift.
In a general case, the expression for the fluid velocity in the bulk of a Weyl semimetal can be obtained in an

analytical form by using the general solution in Eq. (24) and the BC in Eq. (25). The corresponding expression is,
however, rather cumbersome and not very informative. Therefore, instead of presenting it here, we illustrate the
key features of the flow, as well as the nontrivial effects of the Fermi arcs by using a representative set of model
parameters. In particular, we use the following material constants:

vF = 1.4× 107 cm/s, b = 3 nm−1, τ = 3× 10−10 s, εe = 13, (31)

which are comparable to those in Refs.47,71–73. (Note that the estimate for the electric permittivity εe is based on
the dielectric constants of tungsten74 and phosphorus75.) By default, we also use the following values of other model
parameters:

µ = 25 meV, T = 10 K, Ex = 1 V/m, Ly,0 = 10 µm, τsb = 1 ns, α = 10−4. (32)

In order to better clarify the role of the surface states, we start with the benchmark case without the Fermi arcs on
the surfaces of the slab. Such a situation is realized naturally when the chiral shift is absent (e.g., in Dirac semimetals)
or when its direction is perpendicular to the surfaces. In this special case, the bulk fluid velocity in a Weyl semimetal
slab is given by49

ux(y) = −v
2
F τenEx
w

(

1− δ
cosh (λxy − λxLy/2)

cosh (λxLy/2)

)

, (33)

where δ = 1 and δ = 0 correspond to the standard no-slip and free-surface BCs given in Eqs. (15) and (16), respectively.
The corresponding profile of the longitudinal bulk flow velocity as a function of the y coordinate is shown in the left
panel of Fig. 1. Additionally, in the right panel of Fig. 1, we show the dependence of the flow velocity integrated over

the channel width, i.e., Ux =
∫ Ly

0
ux(y)dy, on the slab width Ly.

Now, let us discuss the case of hydrodynamic flow with Fermi arcs on the surfaces. The longitudinal flow velocity
ux and the flow velocity integrated over the channel width Ux for a few values of the coupling parameter α are shown
in the left and right panels of Fig. 2, respectively. As we see, the presence of the Fermi arcs enhances the fluid velocity
near the boundaries when τsb is sufficiently small and the transitions from the bulk to the surface, quantified by α,
are weak. This is in a drastic contrast to the case of the conventional no-slip or free surface BCs presented in Fig. 1.
The increase of both fluid velocity and integrated fluid flow is caused by the Fermi arc fluid that tends to push the
bulk one near the surfaces. As expected, the net enhancement of the flow is noticeable only for sufficiently small
widths of the slab. It is interesting to note that the fluid velocity profile is rather sensitive to the value of α, which
parameterizes the rate of transitions from the bulk to the surface. At the same time, the dependence of Ux on α is
very weak. We checked that, with increasing τsb and/or α, the effect of the Fermi arcs on the bulk hydrodynamic
flow weakens and gradually changes to a suppression of the flow velocity near the surfaces. It should be noted that,
as expected on the basis of Eq. (27), the Fermi arc fluid velocity also grows with τsb and could eventually reach large
enough values so that the hydrodynamic approach for the surface states becomes unreliable. Therefore, τsb should
remain sufficiently small to allow for the Fermi arcs hydrodynamics.



7

No-slip
Free-surface

0.0 0.2 0.4 0.6 0.8 1.0

-200

-150

-100

-50

0

y/Ly,0

ux
m

s


No-slip

Free-surface

0 1 2 3 4 5

-200

-150

-100

-50

0

Ly/Ly,0

Ux

Ly
m
s


FIG. 1: The longitudinal flow velocity ux as a function of y (left panel) and the longitudinal flow velocity integrated over the

channel width, Ux =
∫ Ly

0
ux(y)dy, as a function of the slab width (right panel). Red solid and blue dashed lines correspond to

the standard no-slip (15) and free-surface (16) BCs, respectively.
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FIG. 2: The longitudinal flow velocity ux as a function of the y coordinate (left panel) and the longitudinal flow velocity

integrated over the channel width, Ux =
∫ Ly

0
ux(y)dy, as a function of the slab width (right panel) for a few fixed values of α.

To obtain the numerical results, we used the BC in Eq. (25) and set τsb = 1 ns.

IV. SURFACE COLLECTIVE MODES

In this section, we study the effect of the Fermi arcs on the collective modes in a semi-infinite Weyl semimetal in
the hydrodynamic regime. In particular, we focus on the surface plasmons. For simplicity, we assume that the Weyl
semimetal is located in the upper half-space (y > 0) and the vacuum in the lower half (y < 0). Therefore, in the
notation of Sec. II, s = +. Henceforth, for simplicity, we omit the corresponding subscript in the Fermi arc variables.
Previously, the Fermi arc plasmons have been already studied in Refs.34–36. While Ref.34 employs a simple phe-

nomenological model, the authors of35 provide a more rigorous quantum-mechanical non-local approach. In this study,
by following the approach similar to that used in Refs.52,76,77, we employ the hydrodynamic approximation without
the retardation effects in Maxwell’s equations. In this case, the oscillating electric potential is governed by Poisson’s
equation

∆φ(t, r) =
4πe

εe(y)
δn(t, r), (34)

where δn(t, r) describes the deviations of the electric charge density from its equilibrium value, εe(y) = θ(y)εe+θ(−y)
is the electric permittivity of the system, and θ(y) is the Heaviside step function. The omission of the retardation
effects is formally equivalent to setting c → ∞, which implies that the effects of oscillating magnetic fields can be
neglected as well.
By taking into account that the sought collective modes are localized on the surface of a Weyl semimetal, we look

for the solutions in the form of plain waves, δX(t, r) = δX(y) e−iωt+ik⊥r⊥ , where ω is the frequency, k⊥ = {kx, 0, kz}
is the surface wave vector, and δX is an oscillating hydrodynamic variable, e.g., δµ, whose amplitude may depend on



8

the y coordinate.
Following the arguments in Refs.52,76,77, we can neglect the effects of the energy conservation relation and set

δT = 0. Then, all oscillating thermodynamical variables can be expressed in terms of the electric charge density

δP = P̃ δn, δw = w̃δn, δw(FA) = w̃(FA)δn(FA), (35)

where

P̃ =
∂P

∂µ

(

∂n

∂µ

)−1

= µ
µ2 + π2T 2

3µ2 + π2T 2

T→0
=

µ

3
, (36)

w̃ =
∂w

∂µ

(

∂n

∂µ

)−1

= 4P̃ , (37)

w̃(FA) =
∂w(FA)

∂µ

(

∂n(FA)

∂µ

)−1

= µ. (38)

Furthermore, by assuming a gradient flow, which is consistent with the omission of vorticity, the oscillations of the
flow velocity can be expressed in terms of the velocity potential ψ(t, r) as follows:

δu(t, r) = −∇ψ(t, r). (39)

Then, the Navier-Stokes equation (8), where the surface-bulk transitions are accounted for by the BCs, takes the form

iω
w

v2F
∇ψ + P̃∇δn+

(

ζ +
4

3
η

)

∆∇ψ − en∇φ− w

v2F τ
∇ψ = 0. (40)

In order to obtain the solution for ψ(y), we will reexpress δn and φ in terms of the velocity potential. By using the
continuity relation (18), the oscillating electric charge density reads

δn =
in

ω
∆ψ − iσ

ωe
∆φ. (41)

This implies that the Poisson equation (34) inside the semimetal takes the form

∆φ = i
4πen

εeωσ̃
∆ψ, (42)

where σ̃ = [1 + i4πσ/(εeω)]. By making use of the last two equations, we can rewrite the Navier–Stokes equation (40)
as

∆

[

ω2 w

v2F
+
P̃ n

σ̃
∆− iω

(

ζ +
4

3
η

)

∆− 4πe2n2

εeσ̃
+ iω

w

v2F τ

]

ψ = 0. (43)

As is clear, the solution for ψ that decreases in the bulk of the semimetal has the following form:

ψ(y) = Cψ0 e
−k⊥y +

∑

j=±

Cψj e
−λjy, (44)

where

λ± = ±

√

3ω2
p + k2

⊥
(3K2 − 4iv2F ησ̃ω/w)− 3ωσ̃ (ω + i/τ)
√

3K2 − 4iηv2F σ̃ω/w
. (45)

Here, we used the shorthand notation K2 = v2FnP̃/w, which approaches v2F /3 as T → 0, and introduced the plasma
frequency ω2

p = 4πe2v2Fn
2/(εew). Note that when λ± are purely imaginary, the corresponding modes are hybridized

surface-bulk excitations. When the bulk viscosity, dissipation, and the intrinsic conductivity are ignored, the expres-
sion in Eq. (45) reads

λ
(0)
± = ±

√

ω2
p +K2k2

⊥
− ω2

K
. (46)
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As is clear, only λ
(0)
+ corresponds to a mode localized on the surface.

Having determined ψ(y), we can now find the expressions for the electric potentials both inside y > 0 and outside
y < 0 the semimetal

φy>0 = Cφe−k⊥y + i
4πen

εeωσ̃

∑

j=±

Cψj e
−λjy, (47)

φy<0 = C̃φek⊥y. (48)

Similarly to the fluid flow, the BCs are also important for the surface collective modes. For the oscillating fluid
velocity, we impose the same BCs as for the flow in Eqs. (13) and (14), i.e.,

η∂yδux(0) = −ikxη∂yψ(0) = I(FA), (49)

δuy(0) = −∂yψ(0) = 0. (50)

As is clear from the above equations, the transfer term I(FA) in Eq. (49) should be set to zero. It is worth noting that
in a general case where the gradient approximation cannot be employed, I(FA) 6= 0. In particular, an explicit form of
the transfer term should be defined in order to solve the hydrodynamic equations for the longitudinal flow in Sec. III.
The BCs for the electric potential have the following standard form:

φy>0(0) = φy<0(0), (51)

εe∂yφ
y>0(0)− ∂yφ

y<0(0) = 4πeδn(FA), (52)

where the normal component of the oscillating electric field δE(y) = −∇φ(y) has a jump connected with the singular
contribution of the Fermi arcs. According to Ref.52, the bulk states themselves should not induce a localized (singular)
surface charge density. The oscillations of the surface fermion number density δn(FA) can be obtained by using Eqs. (17)
and (21), i.e.,

δn(FA) = −vFkxn
(FA)eφy>0(0)

µ(ω − vF kx)
− i

σ∂yφ
y>0(0)

e(ω − vFkx)
. (53)

As for the oscillating Fermi arc fluid velocity δu
(FA)
x , it can be obtained from the surface Euler equation (5).

Another boundary condition can be derived from the y component of Eq. (40) after expressing ∆ψ in terms of δn,
see Eqs. (41) and (42), as well as utilizing the BC in Eq. (50). Its explicit form reads

[

P̃ − i
ωσ̃

n

(

ζ +
4

3
η

)]

∂yδn(0) = en∂yφ
y>0(0). (54)

Equations (50) through (54) are sufficient to reexpress all integration constants in Eqs. (44), (47), and (48) in terms
of a single constant that is then fixed by a normalization condition. Also, after satisfying all the boundary conditions,
one can determine the dispersion relations for the surface modes. As for the dispersion relations for the hybridized
surface-bulk modes, they are obtained from Eq. (45), where λ± → λ is a continuous variable52.
For the sake of simplicity, we neglect the effects of viscosity (η → 0), dissipation (τ → ∞), and intrinsic conductivity

(σ → 0) in the rest of this section. It is also instructive to start from the benchmark case without the Fermi arcs on
the surface of a Weyl semimetal. Then, after satisfying all BCs, Eq. (54) gives the following relation for the modes
localized on the surface:

K2λ
(0)
+

(

λ
(0)
+ + k⊥

)

=
ω2
p

1 + εe
, (55)

where K and ωp are defined after Eq. (45). The corresponding positive solution is given by

ω =
1√
2





2εeω
2
p

1 + εe
+K2k2⊥ +Kk⊥

√

4ω2
p

1 + εe
+K2k2

⊥





1/2

≈ ωp
√
εe√

1 + εe
+
Kk⊥
2
√
εe

+
K2k2

⊥

√
1 + εe(2εe − 1)

8ωpε
3/2
e

+O(k3⊥). (56)

Note that the long-wavelength approximation is well defined and consistent with the nonretarded regime, only at
ω < ck⊥. By taking into account the large value of c, the range of validity of the above result extends to rather small
values of the wave vector, k⊥ ≃ ωp/c. The surface plasmon frequency ω in Eq. (56) qualitatively agrees with the
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results obtained in Refs.52,76,77. As we see, the spectrum of the surface plasmons is isotropic and has a nonzero gap.
Moreover, the value of the gap agrees with that obtained in Ref.78 after one sets εe = 1.
Now let us analyze the effect of the Fermi arcs on the surface collective modes. Because of a nonzero surface charge

density in Eq. (52), the characteristic equation becomes more complicated

K2λ
(0)
+ (k⊥ + λ

(0)
+ ) =

ω2
p [ωb − (ω − vFkx)]

ωb − (1 + εe)(ω − vFkx)
, (57)

where ωb = 2e2bkx/(π~k⊥). By solving the characteristic equation in the long-wavelength approximation we obtain
the following dispersion relations:

ω± =
1

2(1 + εe)

(

ωb ±
√

ω2
b + 4εe(1 + εe)ω2

p

)

+O(k⊥), (58)

ω(FA) = vF kx +
k⊥Kωb
εeωp

+O(k2⊥). (59)

As in the simplified case without Fermi arcs, the long-wavelength approximation is well-defined and consistent with
the nonretarded regime for k⊥ & ω/c, which is obviously the case for ω(FA) in Eq. (59). In addition, as in usual
metals (see, e.g., Ref.77 and references therein), the hydrodynamic approximation is applicable even for the phase
velocities of order vF . It is worth noting, however, that the Landau damping, which is usually not captured in the
hydrodynamic approach, could become relevant when the phase velocity of the surface mode with the frequency ω(FA)

is smaller than the quasiparticle velocity vF (see, e.g., Ref.54). By making use of the approximate dispersion relation
in Eq. (59) (as well as the results in Figs. 3 and 4), we checked that this is not the case here because ω(FA)/kx > vF
at sufficiently small values of kx. In general, however, the Landau damping could provide an additional dissipation
mechanism and should be included in a more rigorous treatment beyond the hydrodynamic approximation.
The modes with ω± can be identified with the surface plasmons. Their frequencies are similar to those in Eq. (16) of

Ref.35. It can be also verified that, in agreement with the analysis in Ref.34, the dispersion relations in Eq. (58) have
discontinuities ∝ sign(kx) at kx = 0, namely (limkx→+0 − limkx→−0) limkz→0 ω± = |ωb|/(1 + εe). Such discontinuities
disappear at kz 6= 0. It is important to note that, depending on the chiral shift, ω+ (ω−) at kx < 0 (kx > 0)
could be significantly larger than ω2

p + K2k2
⊥
. Then, by taking into account that the characteristic root defined in

Eq. (46) becomes purely imaginary, the corresponding excitations should be identified with the hybridized surface-bulk
modes52,77 and, henceforth, will be omitted.
In contrast to the surface plasmons, which exist even in the absence of the Fermi arcs, the mode with the dispersion

relation in Eq. (59) originates exclusively from the surface states. It is somewhat reminiscent of the usual surface
acoustic plasmon53 with a linear dispersion relation. However, the new mode stemming from the Fermi arcs has a
rather unconventional directional dependence.
The frequencies of the surface plasmons and the Fermi arc mode are presented in Fig. 3, where the solid and dashed

lines correspond to the numerical solutions of Eq. (57) and the approximate dispersion relations in Eqs. (58) and
(59), respectively. Black dots indicate the frequencies at which the surface modes hybridize with the bulk ones. In
agreement with the previous analysis in Ref.34, we found three roots of the characteristic equation (57). Two of them
correspond to ω± in Eq. (58), which are related by the transformation ω → −ω and k⊥ → −k⊥ (the modes with
ω < 0 are not shown in the figures). The third solution describes a gapless Fermi arc surface mode with the dispersion
relation that, at leading order in small k⊥, is approximately given by Eq. (59). In addition, as one can see from
Fig. 3, the leading order approximate expressions (58) and (59) describe the collective modes rather well only when
the wave vector is sufficiently small.
In order to clarify the dependence of the surface mode frequencies on the wave vectors, we present the contour

plots in momentum space for the positive frequency plasmon and the Fermi arc surface mode in Fig. 4. As one can
see from the left panel in Fig. 4, the contour lines of the gapped surface plasmon are closed ellipses elongated in the
direction defined by the Fermi arcs dispersion relation, i.e., kx. The contours of the Fermi arc mode are bell-shaped
that, with increasing the momenta, gradually become parallel to kz.
By noting that the group velocities of the surface collective modes are given by the derivatives of their frequencies

with respect to momenta, they can be represented by the vectors normal to the contour lines. Then, as is clear from
Fig. 4, while there is a preferred direction defined by kx, the surface plasmons could also propagate radially similarly
to the conventional surface plasmons with the frequency given in Eq. (56). The gapless modes, on the other hand,
always propagate in one direction, although there is a noticeable spreading, especially when the chiral shift is large.
It should be emphasized that the constant-frequency contours for the plasmon modes obtained in this study are

closed ellipses. This may appear to be qualitatively different from the open hyperbolic contours in Refs.34,35. We
checked, however, that in the hydrodynamic approximation the latter correspond to the hybridized surface-bulk modes
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FIG. 3: The solutions for the surface collective modes in the presence of the Fermi arcs. Solid and dashed lines correspond to
the exact solutions of the characteristic equation and the approximate ones in Eqs. (58) and (59), respectively. The red lines
correspond to the gapped surface plasmons and the blue lines describe the Fermi arc surface mode. Left and right panels show
the results for kz = 0 and kz = 0.1ωp/vF . Black dots indicate the frequencies at which the surface modes hybridize with the
bulk ones.

FIG. 4: The contour plots for the surface plasmon (left panel) and the Fermi arc mode (right panel) frequencies. The group
velocity is normal to the contour lines and only the results for ω > 0 are presented.

with large frequencies. In addition, the open contours at large enough negative kx (or qy in the notation of Ref.35) in
Fig. 2(a) of Ref.35 could, presumably, stem from the hybridization of the gapped and gapless modes.
In general, we identify two qualitative features that could be used to analyze the effects of the Fermi arcs on the

surface collective modes in Weyl semimetals. First of all, unlike the conventional surface plasmons with the frequency
given in Eq. (56), the Fermi arc surface plasmons are described by a strongly anisotropic dispersion relation. Also,
unlike the gapped plasmon mode, which exists even in the absence of the surface Fermi arc states, the new gapless
collective mode appears only when the topological surface states are taken into account. Therefore, if experimentally
observed, the latter wave can be used to extract the information about the separation between the Weyl nodes as well
as the dispersion relation of the Fermi arcs.
Experimentally, the anisotropy induced by the surface states can be probed using the near-field optical spectroscopy

(for a review, see Ref.38), as well as the momentum-resolved electron energy loss spectroscopy (see, e.g., Ref.39).
Because of a possible interference between the surface modes from different pairs of Weyl nodes34, the most suitable
materials are the Weyl semimetals with a single pair of nodes. Therefore, the magnetic Heusler compounds with a
broken TR symmetry79,80 might be promising candidates for the study of the surface collective modes.
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V. SUMMARY

In this paper, we proposed that the Weyl semimetals with a broken TR symmetry may possess a hydrodynamic
regime with a nontrivial interplay between the bulk electron fluid and the fluid formed by the surface Fermi arc
quasiparticles. The hydrodynamic equations for the latter are derived from the kinetic theory under the assumptions
that the electron-electron scattering rate dominates over the electron-impurity and electron-phonon ones. Further,
we considered only the case where the hydrodynamic regime is achieved for both surface and bulk quasiparticles of
the semimetal. In principle, however, the regime where the electron fluid is formed only on the surface but not in the
bulk could be also realized. Such a scenario is likely to lead to unique features and deserves a separate study.
In the proposed two-fluid framework, we studied the role of the Fermi arc fluid on the bulk flow and on the spectrum

of surface collective modes. For simplicity, we assumed that the surface fluid is inviscid and couples to the bulk via
the phenomenological inflow and outflow terms. The latter describe the Fermi arc dissipation into the bulk and the
transitions from the bulk to the surface states. We found that the Fermi arcs modify the boundary conditions for the
bulk electron fluid. Depending on the rate of the surface-bulk transitions as well as the value of the chiral shift, the
bulk fluid velocity could change significantly near the boundaries. When the electrons are transferred to the surface
at a greater rate than to the bulk, the bulk fluid could be dragged by the surface one. Such a regime, however, is
characterized by large surface flow velocities at which the hydrodynamic description may become ill-defined. On the
other hand, an unconventional increase of the bulk fluid flow near the boundaries is seen when the surface to bulk
transitions dominate. Such a manifestation of the Fermi arc flow could be, in principle, observed via the decrease of
the resistivity in samples of small width.
In this study, we also demonstrated that the Fermi arcs profoundly affect the surface collective modes in the

hydrodynamic regime. In particular, we found that the dispersion relations of the surface plasmons become anisotropic
in the momentum space. This is in contrast to the conventional surface plasmons with the isotropic dispersion. The
origin of the anisotropy is the dispersion relation of the surface Fermi arc quasiparticles. In general, we identified
two types of surface modes. While one of them is a gapped surface plasmon slightly hybridized with the Fermi arc
oscillations, the other is a gapless mode triggered exclusively by the surface states. Similarly to the usual surface
acoustic plasmons53, the gapless Fermi arc mode has a linear dispersion relation, but it is sensitive to the sign of the
wave vector component along the direction of the Fermi arc velocity. While our results agree qualitatively with those
in Refs.34,35, we argue that the only true surface plasmon modes are those with the closed elliptic contours of constant
frequency.
In passing, let us discuss a few limitations of this study. The hydrodynamic model proposed in this paper is

phenomenological and the underlying reasons for the fluid formation have not been rigorously addressed. In addition,
the reliable estimate of the hydrodynamic window, i.e., the parameter region where the electron fluid can be formed,
is still lacking for many experimentally realized Weyl semimetals. In our analysis, we used a simplified model for the
Fermi arcs without any curvature. While we believe that the results will remain qualitatively the same for slightly
curved arcs, the precise role of a nonzero curvature should be addressed in the future. In our study of the surface
collective modes, we also neglected the viscosity and dissipation effects, which could be rigorously taken into account
via nonlocal corrections as in Ref.35. In the future, it would be interesting to address also the effects of multiple pairs
of Weyl nodes and, therefore, several Fermi arcs on the formation of the surface fluid. Such an investigation is beyond
the scope of this study however.
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Appendix A: Derivation of the Fermi arc hydrodynamics

In this appendix, we present the technical details of derivation of the hydrodynamic equation for the Fermi arc
surface states. We utilize a simple model of a time-reversal symmetry breaking Weyl semimetal with two Weyl nodes
separated in momentum space by 2b along the z direction, where b is the magnitude of the chiral shift. The semimetal
is finite along the y direction and infinite in the other two.
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1. Kinetic theory

Here we follow the standard approach54,55 of deriving the hydrodynamic equation from the kinetic theory. In the
presence of an electric field E, the kinetic equation reads

∂tf
(FA) − eE · ∂pf (FA) + v(FA)

p ·∇f (FA) = I
(FA)
coll , (A1)

where −e is the electron charge, p = (px, pz) is the momentum of the surface quasiparticles and I
(FA)
coll denotes the

collision integral, whose explicit form will be discussed latter.
Since hydrodynamics assumes a local equilibrium, we take the distribution function in the following form:

f (FA) = δ(y − ys)
1

1 + exp

(

ǫ
(FA)
p −(u(FA)·p)−µ

T

) , (A2)

where ys denotes the surface coordinate, s = ± denotes the bottom (+) or top (−) surface, u(FA) is the local fluid
velocity of the surface Fermi arc states, µ is the electric chemical potential, and T is temperature. For a slab of finite
thickness, y− = Ly and y+ = 0 denote the top and bottom surfaces, respectively. Here we assume that the Fermi arcs
are strongly localized at the surface and the dependence of the distribution function on the transverse coordinate can
be modeled by the δ-function.
The quasiparticle energy for the surface states reads

ǫ(FA)
p = svF px, (A3)

where vF is the Fermi velocity. (For the derivation of the Fermi arcs and their dispersion relation see, e.g., Refs.10,24,25.)
The corresponding quasiparticle velocity is given by

v(FA)
p = ∂pǫ

(FA)
p = svF x̂, (A4)

where x̂ is the unit vector in the x direction. Since the Fermi arc quasiparticles move only along the x axis, it is
reasonable to assume that the surface hydrodynamic motion is also possible only along that axis, i.e., u(FA) ‖ x̂. As
we will show in Sec. A 4, this is further justified by the fact that the Fermi arc electric current can only flow along
the x direction.
In the case of small fluid velocities, we can use the following expansion for the distribution function:

f (FA) ≈ f (FA,0) − pxu
(FA)
x

∂f (FA,0)

∂ǫp
, (A5)

where

f (FA,0) = δ(y − ys)
1

1 + e(svF px−µ)/T
(A6)

is the distribution function of the Fermi arc quasiparticles in global equilibrium.

2. The Euler equation for the Fermi arc fluid

In order to derive the Euler equation, we multiply Eq. (A1) with the x component of the momentum px and
integrate over px. (It should be noted that, because of the dispersion relation (A3), there is no independent energy
conservation equation.)
The integration of the first term in Eq. (A1) leads to the following result:

∫

d2p

(2π~)2
px∂tf

(FA) =

∫

d2p

(2π~)2
px∂t

(

f (FA,0) − pxu
(FA)
x

∂f (FA,0)

∂ǫp

)

= −∂t
∑

p,a

sFT 2

2πv2F~
2
Li2

(

−eµ/T
)

−
∑

p,a

∂t
FT 2u

(FA)
x

πv3F ~
2

[

π2

6
− Li2

(

1 + eµ/T
)

−
( µ

T
+ iπ

)

ln
(

1 + eµ/T
)

]

= ∂t
sF

4πv2F ~
2

(

µ2 +
π2T 2

3

)

(

1 +
2u

(FA)
x

svF

)

, (A7)
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where we took into account the small fluid velocity expansion in Eq. (A5) and use the formulas in Appendix B.
Further,

∑

p,a denotes the summation over particles (electrons) and antiparticles (holes). It should be noted that

µ → −µ and e → −e for holes and the limits of integration over px depends on the boundary label s, i.e.,
∫ s∞

0
dpx.

The overall coefficient F is defined by the integration over the length of the Fermi arc, i.e.,

F =

∫

~b

−~b

dpz
2π

=
~b

π
. (A8)

The integral with the term containing the electric field in Eq. (A1) can be calculated in a similar way. The result
reads

−e
∫

d2p

(2π~)2
px (E · ∂p) f (FA) =

∑

p,a

e

2π~2
ExFT

vF
ln
(

1 + eµ/T
)

+
∑

p,a

se

2π~2
u
(FA)
x ExFT

v2F
ln
(

1 + eµ/T
)

=
eExFµ

2πvF~2

(

1 +
u
(FA)
x

svF

)

. (A9)

The term with the spatial derivatives gives rise to the following result:
∫

d2p

(2π~)2
px

(

v(FA)
p ·∇

)

f (FA) = −
∑

p,a

svF∂x
FT 2

2πv2F~
2
Li2

(

−eµ/T
)

−
∑

p,a

svF ∂x
FT 2u

(FA)
x

πv3F~
2

[

π2

6
− Li2

(

1 + eµ/T
)

−
( µ

T
+ iπ

)

ln
(

1 + eµ/T
)

]

= ∂x
F

4πvF~2

(

µ2 +
π2T 2

3

)

(

1 + 2
u
(FA)
x

svF

)

. (A10)

By collecting all contributions together, we finally arrive at the following Euler equation for the Fermi arc fluid:

(∂t + svF ∂x)
sF

4πv2F~
2

(

µ2 +
π2T 2

3

)

(

1 + 2
u
(FA)
x

svF

)

+
eµF

2πvF~2

(

1 +
u
(FA)
x

svF

)

Ex = I(FA). (A11)

3. The transfer term

Here we present the derivation of the transfer term on the right hand side of the Euler equation (A11). In general,
it may contain two different parts: one describing the surface to bulk transitions and the other describing the inflow
from the bulk. By recalling that the dissipation of the Fermi arcs is primarily due to the surface to bulk scatterings25,
the first part of I(FA) can be obtained by using the relaxation time approximation as follows:

−
∫

d2p

(2π~)2
px
f (FA) − f (FA,0)

τsb
=

∫

d2p

(2π~)2
px
pxu

(FA)
x

τsb

∂f (FA,0)

∂ǫp

=
1

τsb

∑

p,a

FT 2u
(FA)
x

πv3F ~
2

[π2

6
− Li2

(

1 + eµ/T
)

−
( µ

T
+ iπ

)

ln
(

1 + eµ/T
)]

= −u
(FA)
x

τsb

F

2πv3F~
2

(

µ2 +
π2T 2

3

)

. (A12)

The term describing the bulk to surface transitions, on the other hand, can be calculated by using the method in the
Supplemental Material of Ref.48. Its explicit form reads

λB
wux(ys)

τbsv2F
, (A13)

where ux(ys) is the bulk fluid velocity on the surface, w in the bulk enthalpy density, λB is the dimensional coefficient,
and τbs is the relaxation time describing bulk to surface transitions. It might be more convenient to parameterize
the bulk inflow in terms of a single overall coefficient α = λBvF /τbs. Then, the final expression for the transfer term
I(FA) takes the form as in Eq. (22) in the main text.
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4. The electric charge and current densities of Fermi arcs

For completeness, here we present the explicit expressions for the electric charge and current densities for Fermi
arc quasiparticles. The corresponding expressions can be obtained by using the kinetic theory, i.e.,

ρ(FA) = −
∑

p,a

e

∫

d2p

(2π~)2
f (FA) = −

∑

p,a

e

∫

d2p

(2π~)2

[

f (FA,0) − pxu
(FA)
x

∂f (FA,0)

∂ǫp

]

= −
∑

p,a

seF

2π~2

[

T

svF
ln
(

1 + eµ/T
)

+ u(FA)
x

T

s2v2F
ln
(

1 + eµ/T
)

]

= − eµF

2πvF~2

(

1 +
u
(FA)
x

svF

)

(A14)

and

J(FA) = −
∑

p,a

e

∫

d2p

(2π~)2
v(FA)
p f (FA) = −

∑

p,a

esvF x̂

∫

d2p

(2π~)2

[

f (FA,0) − pxu
(FA)
x

∂f (FA,0)

∂ǫp

]

= −
∑

p,a

vF x̂
eF

2π~2

[

T

svF
ln
(

1 + eµ/T
)

+ u(FA)
x

T

s2v2F
ln
(

1 + eµ/T
)

]

= −sx̂ eµF
2π~2

(

1 +
u
(FA)
x

svF

)

, (A15)

respectively.

Appendix B: Polylogarithm functions

In this appendix, we present several definitions and identities for the polylogarithm functions used in the derivation
of the Euler equation. By making use of the short-hand notation f (0) = 1/[e(vFp−µ)/T + 1], it is straightforward to
derive the following formulas:

∫ ∞

0

dp pnf (0) = −T
n+1Γ(n+ 1)

vn+1
F

Lin+1

(

−eµ/T
)

, n ≥ 0, (B1)

∫ ∞

0

dp pn
∂f (0)

∂p
=

T nΓ(n+ 1)

vnF
Lin

(

−eµ/T
)

, n ≥ 0, (B2)

where Lin(x) is the polylogarithm function. The polylogarithm functions of order n = 0 and n = 1 can be expressed
in terms of elementary functions, i.e.,

Li0 (−ex) = − 1

1 + e−x
, (B3)

Li1 (−ex) = − ln (1 + ex). (B4)

Also, the following identities are useful

Li0(−ex) + Li0(−e−x) = −1, (B5)

Li1(−ex)− Li1(−e−x) = −x, (B6)

Li2(−ex) + Li2(−e−x) = −1

2

(

x2 +
π2

3

)

, (B7)

Li2(1 + ex) + Li2(1 + e−x) + iπ
[

ln (1 + ex) + ln
(

1 + e−x
)]

=
1

2

[

π2 − ln2 (ex)
]

. (B8)
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