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We study novel three-dimensional gapped quantum phases of matter which support quasiparticles
with restricted mobility, including immobile “fracton” excitations. So far, most existing fracton mod-
els may be instructively viewed as generalized Abelian lattice gauge theories. Here, by analogy with
Dijkgraaf-Witten topological gauge theories, we discover a natural generalization of fracton models,
obtained by twisting the gauge symmetries. Introducing generalized gauge transformation operators
carrying an extra phase factor depending on local configurations, we construct a plethora of exactly
solvable three-dimensional models, which we dub “twisted fracton models.” A key result of our
approach is to demonstrate the existence of rich non-Abelian fracton phases of distinct varieties in
a three-dimensional system with finite-range interactions. For an accurate characterization of these
novel phases, the notion of being inextricably non-Abelian is introduced for fractons and quasiparti-
cles with one-dimensional mobility, referring to their new behavior of displaying braiding statistics
that is, and remains, non-Abelian regardless of which quasiparticles with higher mobility are added
to or removed from them. We also analyze these models by embedding them on a three-torus and
computing their ground state degeneracies, which exhibit a surprising and novel dependence on the
system size in the non-Abelian fracton phases. Moreover, as an important advance in the study
of fracton order, we develop a general mathematical framework which systematically captures the

fusion and braiding properties of fractons and other quasiparticles with restricted mobility.

I. INTRODUCTION

The study of topological quantum phases of matter
has led to remarkable new discoveries, both theoretically
and experimentally, and has profoundly influenced our
understanding of quantum many-body physics. Start-
ing with the discovery of the fractional quantum Hall ef-
fect [1, 2|, it was realized that there exist quantum phases
of matter which lie outside Landau’s symmetry breaking
paradigm. One such class of phases are those with intrin-
sic topological order, which are gapped quantum phases
of matter distinguished by patterns of long-range entan-
glement in their ground states [3-5]. Nontrivial topo-
logical orders, examples of which include quantum Hall
states and gapped spin liquids, may exhibit striking phe-
nomena such as excitations with fractionalized statistics,
locally indistinguishable degenerate ground states, and
robust gapless edge states [2, 6-14]. The potential ap-
plication of topological states for fault-tolerant quantum
computation [15-18] has provided another main motiva-
tion for current intensive study on topological orders.

The landscape of topological quantum phases becomes
much richer in the presence of global symmetries. Even in
the absence of intrinsic topological order, distinct phases
protected by some unbroken symmetry are possible, lead-
ing to the modern notion of symmetry protected topolog-
ical (SPT) phases [19, 20], of which the 1D Haldane phase
for spin-1 chain [21-25] and topological insulators [26-34]
are paradigmatic examples. Further considering the in-
terplay between non-trivial topological order and global
symmetries leads to the concept of symmetry enriched
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topological (SET) phases, which have been of much re-
cent interest [35-42].

The topological nature of these phases is reflected in
the fact that their low-energy behavior is governed by a
topological quantum field theory (TQFT), which in turn
allows one to develop general mathematical frameworks
for understanding their physics. In particular, the lan-
guage of tensor category theory has proven hugely suc-
cessful in analyzing intrinsic topological orders in d = 2
spatial dimensions. It is now well-understood that the fu-
sion and braiding properties of quasiparticles—anyons—
in a topologically ordered spin system are described by a
unitary modular tensor category (UMTC) [14, 43]. For
instance, the UMTC describing the anyons in Kitaev’s
quantum double model (i.e., a lattice realization of gauge
theory for d = 2) based on a finite group G is given by
the representation theory of the quantum double algebra
D(G) |15, 44-46]. Rich topological orders also exist in
d = 3 spatial dimensions [47-50] and they may provide
fault-tolerant quantum computing schemes with advan-
tages over their d = 2 cousins as exemplified by the color
codes [16, 17, 51]. Since challenges vary with dimen-
sions as seen in classifying manifolds [52-55], the theory
of topological orders for d = 3 is less developed compared
to d = 2 and remains an active research topic [56, 57].

Recently, a new class of models have brought to light
novel gapped quantum phases of matter which lie be-
yond the conventional framework of topological order.
These phases, which are said to possess “fracton order,”
were originally discovered in exactly solvable d = 3 lat-
tice models and exhibit a rich phenomenology, including
a locally stable ground state degeneracy on the 3-torus
which depends sub-extensively (hence non-topologically)
on the system size and quasiparticles with restricted mo-
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bility [58-61]. In particular, these models strikingly host
quasiparticles—fractons—which are intrinsically immo-
bile (i.e., cannot be moved by string operators). This
peculiar and striking feature serves as a defining charac-
teristic of fracton phases and has recently led to a flurry
of theoretical interest in understanding these phases from
a variety of perspectives [58-93]. A recent review on cur-
rent progress in this field can be found in Ref. [94].

The gapped fracton models discovered and studied
thus far can be be broadly separated into type-I and
type-1II fracton phases, in the taxonomy of Ref. [61]. In
type-I (resp. type-1I) phases, fractons appear at the cor-
ners of membrane-like (fractal-like) operators. A fur-
ther distinguishing feature of type-I phases is the pres-
ence of topologically non-trivial excitations which are
mobile along sub-dimensional manifolds (lines or planes)
of the three-dimensional system, while all topologically
non-trivial excitations in type-II phases are strictly im-
mobile. Well-known examples of type-I phases are Cha-
mon’s model [58, 62|, the X-cube model [61], and the
checkerboard model [61], while Haah’s code [59] remains
the paradigmatic model for type-II fracton phases. In
this paper, we will restrict our attention to type-I frac-
ton phases.

A natural question to pose is whether existing models
exhaust the possible kinds of quasiparticles which a frac-
ton phase may harbor. In particular, is it possible for
fractons or excitations with restricted mobility to have a
multi-channel fusion rule, i.e., be non-Abelian? In type-I
fracton phases, certain topological excitations can move
only along sub-dimensional manifolds and may thus braid
non-trivially with each other, allowing some notion of
non-trivial statistics to survive even though the system is
three-dimensional. Thus, while in principle there appears
to be no obstruction to realizing non-Abelian statistics in
type-I fracton phases, a new framework is clearly needed
to capture this more general class of systems, which is a
primary motivation for this work.

Constructing and studying exactly solvable models has
proven a fruitful approach in exploring the landscape
of gapped quantum phases of matter [14-17, 45-48, 95—
107]. For conventional topological orders, a key insight
for constructing new exactly solvable models was pro-
vided by a gauging procedure relating (short-range en-
tangled) SPT states to (long-range entangled) topological
orders described by twisted gauge theories [98]. Specif-
ically, this gauging procedure relates lattice non-linear
o-models for SPT phases [20] to (lattice realizations
of) Dijkgraaf-Witten topological gauge theories [108] de-
scribing topological orders which host quasiparticle (resp.
loop) excitations in d = 2 (resp. d = 3) spatial dimen-
sions with rich statistical properties [49, 50, 109-112].
Dijkgraaf-Witten topological gauge theory (also referred
to as twisted gauge theory) generalizes standard lattice
gauge theory by “twisting” its gauge transformations, i.e.,
by allowing them to carry an extra phase factor specified
by a (d + 1)-cocycle w € Z41(G,U(1)) and local field
configurations, where G is the gauge group.

Similarly to the duality between SPT states and topo-
logical orders, it has been realized that certain (Abelian)
type-I fracton models, such as the X-cube, can be related
through a generalized gauging procedure to short-range
entangled states with subsystem symmetries [61, 91, 113].
Based on this observation, most exactly solvable fracton
models can be naturally interpreted as generalized lat-
tice gauge theories [61]. Motivated by this interpretation
of fracton models, and by the twisting procedure for ob-
taining Dijkgraaf-Witten theories from standard gauge
theories, here we consider twisting certain type-I frac-
ton models along planes by 3-cocycles. This allows us
to systematically generate a rich family of type-I fracton
models—dubbed “twisted fracton models”—which real-
ize non-Abelian excitations with restricted mobility, such
as non-Abelian fractons. In this paper we extensively
explore the properties of twisted fracton models, which
form a natural platform for realizing a wide variety of
novel quasiparticles, and elucidate the related notion of
braiding excitations with restricted mobility.

Given the length of this paper, we now highlight our
procedure and main results.

A. Summary of main results

In this paper, we develop a general procedure for sys-
tematically constructing exactly solvable models, which
we dub twisted fracton models, thereby greatly expanding
the set of type-I fracton phases and establishing a gen-
eral mathematical framework within which to study non-
Abelian fracton orders. We start by observing that the
X-cube and checkerboard models [61], as originally de-
fined, can both be viewed as generalized Abelian lattice
gauge theories. Then, in analogy with Dijkgraaf-Witten
topological gauge theory, we observe that the generalized
gauge transformations can be twisted as well. This leads
us to a plethora of exactly solvable three-dimensional
models exhibiting a landscape of rich and hitherto undis-
covered behaviors, of which we present the twisted X-
cube and twisted checkerboard models as paradigmatic
examples.

Importantly, these exactly solvable models establish
the existence of novel type-I fracton phases hosting in-
extricably mon-Abelian fractons, which we will define
shortly in this section before providing examples based on
concrete models in later sections. Moreover, in contrast
to other approaches for generalizing type-I fracton or-
ders [74, 92|, which are based on coupling stacks of d = 2
topological phases, our construction here has a cleaner
connection to TQFTs (explicitly, Dijkgraaf-Witten topo-
logical gauge theories) realizing similar braiding proper-
ties, which enables us to thoroughly analyze the resulting
fracton models. For instance, we compute their ground
state degeneracy (GSD) on a three-torus T3 explicitly, re-
vealing the novel dependence of this GSD on system size
in non-Abelian fracton phases for the first time.

In our analysis of the spectrum of twisted fracton mod-



els, there emerges a systematic route for describing the
braiding and fusion properties of quasiparticles, includ-
ing those with restricted mobility. Some key definitions
which intuitively reveal the structure of these phases are
as follows. A 0d (resp. 1d, 2d) mobile quasiparticle is an
excited finite region which can move as a whole in 0 (resp.
1, 2) dimensions. We further call it intrinsically 0d (resp.
1d, 2d) mobile if it is not a fusion result of quasiparticles
with higher mobility. For instance, a quasiparticle mo-
bile only along the x axis can be obtained by fusing two
anyons from two decoupled 2d topologically ordered sys-
tems lying along the zy and zx planes respectively, but
we do not call it intrinsically 1d mobile. In our terminol-
ogy, a fracton is then simply defined as an intrinsically
0d mobile (i.e., intrinsically immobile) quasiparticle.

To classify particle types in type-I fracton phases, we
introduce the x (resp. y, z) topological charges of a
quasiparticle, which are detected by braiding 2d mobile
quasiparticles around it in the yz (resp. zz, xy) planes.
Assuming no nontrivial 3d mobile quasiparticles [114],
the particle type of an excitation is then specified by its
x, vy, z topological charges, which may be subject to some
constraints. In addition, the quantum dimension of a
quasiparticle equals the product of quantum dimensions
associated with its topological charges in the three direc-
tions.

We now define what it means for quasiparticles with re-
stricted mobility to be inextricably non-Abelian. A quasi-
particle is Abelian (resp. non-Abelian) if its quantum di-
mension is 1 (resp. greater than 1). An inextricably non-
Abelian fracton is one which is not a fusion result of an
Abelian fracton with some mobile quasiparticles. Simi-
larly, an inextricably non-Abelian 1d mobile quasiparticle
is one which cannot be obtained by fusing an Abelian 1d
mobile quasiparticle with some 2d mobile quasiparticles.
Significantly, this implies that a fracton model hosting
either an inextricably non-Abelian fracton or an inex-
tricably non-Abelian 1d mobile quasiparticle cannot be
understood as some Abelian fracton order weakly cou-
pled to layers of conventional two-dimensional topologi-
cal states. This is one of the central results of our work,
as it demonstrates the existence of a fundamentally new
class of fracton orders.

Studying the excitations of twisted fracton models, we
show that both inextricably non-Abelian fractons and
inextricably non-Abelian 1d mobile quasiparticles may
be realized within twisted checkerboard models. On the
other hand, twisted X-cube models host only inextrica-
bly non-Abelian 1d mobile quasiparticles. Thus, we find
two basic types of non-Abelian fracton orders: one which
allows fractons (and 1d mobile quasiparticles simultane-
ously) inextricably non-Abelian and one which only hosts
inextricably non-Abelian 1d mobile quasiparticles. Ac-
tually, in our twisted fracton models, quasiparticles may
have inextricably non-Abelian topological charges in one,
two or three directions, which reveals a further distinc-
tion between varieties of fracton phases.

As a further technical contribution, we provide a de-

tailed derivation of the categorical description for anyons
in twisted discrete gauge theories directly from their lat-
tice models in two spatial dimensions, which is absent
in the literature. Necessary mathematical details are in-
cluded in appendices to make our derivation and discus-
sion self-contained. This treatment applies straightfor-
wardly to studying twisted fracton models as well.

B. Outline

We now outline the remainder of this paper. In Sec. II,
we treat lattice models of twisted gauge theories in two
spatial dimensions. While the results contained in the
section may be familiar to readers, we emphasize that our
treatment differs from previous approaches and is directly
applicable to the twisted fracton models introduced later.
We characterize conventional topological orders by deriv-
ing properties such as their ground state degeneracy on
a torus and the braiding and fusion properties of anyons.
The braiding of anyons is especially transparent in our
treatment, wherein anyons are represented as punctures
on a disk.

In Sec. I1II, we introduce new families of exactly solv-
able twisted fracton models. In particular, we introduce
twisted versions of two paradigmatic examples of three-
dimensional fracton order: twisted X-cube models and
twisted checkerboard models. Rather than reviewing the
untwisted Zs X-cube and checkerboard models, for which
the reader is referred to Refs. [60, 61], we first define these
models based on arbitrary finite Abelian groups G. We
then twist the gauge symmetry by non-trivial 3-cocycles
(i.e., elements of Z3 (G,U (1)) defined in Sec. A1) [115]
to arrive at the twisted fracton models.

Secs. IV and V are devoted to calculating the non-
trivial ground state degeneracies (GSD) of twisted frac-
ton models with the system defined on a three-torus. The
explicit calculations for both the twisted X-cube (Sec. IV)
and checkerboard (Sec. V) models serve three purposes.
Firstly, the sub-extensive system size dependence of the
GSD in all cases demonstrates clearly that the models
under consideration are gapped phases. In fact, it be-
comes clear from our later analysis of quasiparticles that
this GSD is stable against arbitrary local perturbations
and hence reveals that the system is non-trivially long-
range entangled. Secondly, the dependence of the GSD
on the system size in all models under consideration es-
tablishes the geometric nature of fracton phases: they
are sensitive not only to the global topology but also to
geometry. This provides a clear distinction between con-
ventional topological order and fracton order. Thirdly,
the new exotic dependence of GSD on system size (e.g.
Egs. (199), (209), (210), and (262)) strongly hints at the
existence of novel non-Abelian fracton phases.

In Secs. VI and VII, the quasiparticle spectra of the
twisted X-cube and checkerboard models are analyzed re-
spectively; here, we classify all particle types and study
their braiding and fusion properties. Importantly, our



analysis uncovers a systematic route for describing quasi-
particles in type-I fracton phases. First, we explain how
the particle type of an excited spot is labelled by its z, y, z
topological charges, which can be detected by braiding 2d
mobile quasiparticles around it in the yz, zz, xy planes
respectively. Further, we elucidate the notions of mobil-
ity and quantum dimension for quasiparticles and deter-
mine them through the topological charge data. We also
discuss certain fusion and braiding processes in general.
In order to illustrate the variety of novel fracton phases
which may be accessed through our construction, we ex-
amine certain examples explicitly. We find that semionic
or inextricably non-Abelian 1d mobile quasiparticles are
allowed in some twisted X-cube models (Sec. VI). On the
other hand, the twisted checkerboard models (Sec. VII)
are shown to realize a broader variety of excitations.
Specifically, we show the existence of inextricably non-
Abelian fractons in a twisted checkerboard model based
on the group G = Zy X Zo X Zs.

The paper concludes in Sec. VIII with a discussion
of avenues for future investigation and of open ques-
tions raised by the present results. To keep this pa-
per self-contained, necessary mathematical materials are
provided in the appendices. Specifically, Appendix A
contains the definitions of group cohomology, triangu-
lated manifolds, and the associated Dijkgraaf-Witten
weight and partition function. Appendix B reviews the
quasi-triangular quasi-Hopf algebra structure of a twisted
quantum double D¥(G) and the tensor category of its
representations.

II. 2D LATTICE MODELS OF TWISTED
GAUGE THEORIES

In this section, we will present a self-contained treat-
ment of exactly solvable lattice models motivated by the
gauge theory in two spatial dimensions based on a finite
group G, which are often called quantum double models,
and their twisted versions. Here G may be non-Abelian
and its identity element is denoted as e. Our treatment
generalizes to fracton models directly in later sections.

A. Description of lattice models
1. Untwisted models

As a warm-up, let us first recall the standard lattice
model of a gauge theory in two spatial dimensions [15],
based on a finite group G with identity element denoted
by e. To be concrete, we work on a square lattice (i.e.,
a two-dimensional manifold composed of square plaque-
ttes) X. The discussion in this section actually applies to
any other planar lattice.

Let E (X) be the set of its edges with a chosen orien-
tation each as shown by the black arrows in Fig. 1(a).
In addition, the sets of vertices and plaquettes of X are
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denoted by V (%) and F (X) respectively. Technically, all
the edges and plaquettes are thought to be closed, i.e.,
they include their boundaries. In particular, each pla-
quette contains all its edges. Moreover, for any region
(i.e., subspace) T' of X, let V (T'), E (T') and F (T") denote
the subsets of V' (3), E (X) and F (X) that collect all the
vertices, edges and plaquettes inside I' respectively.

A local Hilbert space (also called a spin for short) with
an orthonormal basis {|(, )} ., is assigned to each edge
¢ € E(X). Thus, the Hilbert space H (E (T'),G) associ-
ated with any region I' of ¥ is spanned by the vectors

0= & 16¢0) (1)

LEE(T)

labeled by ¢ € GFM) | where GFI) := Fun (E (T),G) is
the set of functions from E (') to G. Each element of
GEWM) specifies a spin configuration on T'. On the whole
lattice X, the total Hilbert space is H (E (X), G).

Suppose that O is an operator acting on H (E (X), G).
We say that O is supported on a region I' C ¥ if it
can be expressed as O = Or ® s\, where Or is an
operator acting on H (£ (I'),G) and 1x\p denotes the
identity operator acting on the rest of the spins. Usually,
Is\r is omitted in notations and the operators acting
on H(E(I'),G) are automatically viewed as operators
acting on H (E (2), Q) as well.

On each vertex v, we have a gauge transformation op-
erator

A= QLI (0) (2)

£3v

for each g € G, where ¢ 3 v means that ¢ connects to v.
In addition, for £ = [vgv1],

ZUEG ¢, go) (¢, 0],
ZO’GG |£’ U> <€70«g| ) Vo # v,V1 =0,
deG|€7gagil><gva‘7 Vg =V,V1 =,
L, v el

Vg = V,V1 #’Uv

LI (¢) =

3)
The third line in this definition of LY takes care of the
possibility ¢ being a loop, which happens when the size
of the square lattice with periodic boundary condition
reduces to 1 in one direction.
It is straightforward to check that

(A= 47", AgAlL = A (4)
[A9 Al ] =0, if vg # 1. (5)

vo?

Yv,vo,v1 € V (X), Vg, h € G. Thus, we have a set of mu-
tually commuting Hermitian local projectors, also known
as stabilizers in the quantum computation literature,

L g
A, = @l > Ay (6)

geG

labeled by vertices.



Figure 1. Lattice model of gauge theory in 2+1 dimensions.
(a) The physical degrees of freedom are on the black oriented
edges of the square lattice. Auxiliary grey edges are added to
give a complete triangulation. (b) PJ for v = 3 is presented
by a triangulated pyramid PJ with edges oriented according
to the local ordering of vertices 0 < 1 < 2 < 3 < 3 <
4 < 5 < 6 and [33'] colored by g € G. For each tetrahe-
dron, sgn ([vgv1v2vs]) equals the sign of the triple product
vovi - (Vo0 X vov3). For example, sgn ([0133']) = +1 and
sgn ([233'5]) = —1.

On each plaquette p, we have a projector which re-
quires the triviality of flux

By= Y Sc(uoni)c(ual)C v (iwsvol).e 1€) (€1
CEGEP)
(7)

where e is the identity element of G and vovivavs is a
sequence of vertices around the boundary of p. If the
orientation of an edge ¢ = [vgv;] is inverse to what is
picked in Fig. 1(a) (i.e., [vivg] € E (X)), then ((¢) =
(¢ (forwo]) ™!

It can be checked that all the projectors A, and B,
labeled by vertices and plaquettes commute with each
other. They form a set of stabilizers that completely fix

local degrees of freedom. In other words,
H=-) A,-) B, (8)
v P

is a gapped Hamiltonian. In particular, it has a finite
ground state degeneracy when embedded in a torus (i.e.,
with periodic boundary conditions), which is indepen-
dent of system size and robust to any local perturbations.

2.  Twisted models

Motivated by Dijkgraaf-Witten topological gauge theo-
ries [108], the above lattice model based on a finite group
G can be twisted by a 3-cocycle w € Z3 (G, U (1)), i.e., a
function w : G x G x G — U (1) satisfying the so-called
cocycle condition

w (92793,94) w (gla 9293,94) w (91, g2, 93)
w (91927 93,94) W (91, g2, 9394)

—1. (9)

The resulting twisted models are classified by the cor-
responding group cohomology [w] € H?3 (G,U (1)). De-
tails of Dijkgraaf-Witten topological gauge theories and
group cohomology are summarized in Appendix A. With-
out loss of generality, we will always require w to be nor-
malized, i.e., w(g1,92,93) = 1 whenever any one of gy,
g2, g3 equals the identity e € G in this paper.

In the twisted model, we will keep B, unchanged. For
any region I' of X, let

Gg(r) — {C c GE®) | Bp|¢) =1¢),Vp e F(F)}7 (10)

whose element are called locally flat spin configurations
on I Let Hp (E(I'),G) denote the Hilbert subspace
spanned by |¢) with ¢ € Gg(r).

In order to define twisted versions of gauge transfor-
mation operators, we pick a complete triangulation of X
by adding the grey oriented edges shown in Fig. 1(a).
The orientations of edges are picked such that there is
no triangle whose three edges form a closed walk; such
a choice is called a branching structure [20]. Then every
triangle 7 is ordered and should be labeled as [1o7172]
with vertices ordered such that the orientations of the
edges [1o71], [T172] and [1p72] coincide with the branching
structure.

Technically, the branched triangulation makes ¥ into
a A-complex. The definition of a A-complex is given in
Ref. [116]. For a general A-complex X, we denote the set
of n-simplices (i.e., vertices for n = 0, edges for n = 1,
triangles for n = 2, tetrahedrons for n = 3 and so on) in
X by A™ (X).

A function € € GA'® is called a G-coloring (or simply
coloring [36]) of X, if & ([ro71]) £ ([r172]) = & ([T072]) on
any triangle [1o7172] € A% (X). The set of G-colorings of
X is denoted Col (X; G) or simply Col (X) when G does not
need to be specified explicitly.



For each v € V (¥), let ¥ [v] be the region inside ¥
made of all plaquettes adjacent to v. Take the vertex
v = 3 shown in Fig. 1(a) for instance: X [v] contains
four plaquettes (around v) including their edges (twelve
in total). Then X[v] is a A-subcomplex of ¥ as well

and each ¢ € Gg(z[v]) determines a coloring of ¥ [v]. In
particular, the group element assigned to the edge [03] is
C((01]) ¢ ([13]) = ¢ (02]) ¢ ([23)).

Further, we construct a pyramid P,, over v like the one
in Fig. 1(b), whose bottom is the union of all triangles
adjacent to v. Let v’ denote the apex of P,,. With [vv'] =
g (i.e., [vv'] colored by g € G), the pyramid is denoted
P9 and presents an operator (supported on X[v])

P{= ) [Qwlc.Pgl(cl A, (11)
CeGE®ID
where w [¢,PJ] is the Dijkgraaf-Witten weight, defined by
Eq. (A7), on P, with the coloring specified by [vv'] = ¢
and ¢ on the bottom. Explicitly, for v = 3 in Fig. 1,
[0133'] [133'4] [33'46]

@GPl = 0233/] [233/5] [33/56]”

(12)

where each tetrahedron [vgvivavs] stands for the phase
factor w ([vov1], [v1v2], [Uaws]) with edges short for their
associated group elements. With the bottom of Pg colored
by ¢, its top has to be colored by (AY € GE(E
by (CAY| == ((| A9 and we have

specified

(0133 = w (¢ ([ ]) C([13]),9), (13)
[133'4] = w (¢ ([13]), g, g‘lC (34])) , (14)
[33'46] = (g 9 C 41),¢ ([46])) , (15)
0233 = w (¢ ([ ]) ([ 31),9), (16)
[233'5] = w (¢ ( ,9,97 ¢ ([35])) (17)
33'56] = w (9 9 _1C([35]) ¢ ([56))) - (18)

Since w is assumed to be normalized, g = e (the identity
of G) implies w [(,PY] = 1 for any locally flat spin con-

figuration ¢ € GE(Z[U]) Hence PS just requires the local
flatness near the vertex v. In other words, Py = Hpav
with p 3 v denoting that plaquette p is adjacent to v.

With this graphic representation of P¢ in Fig. 1(b), we
can demonstrate some crucial properties of these opera-
tors. First, on a single vertex, w[(,P4]w [(AY,P!] can
be presented as a stack of pyramids colored by ¢ on the
bottom and [33'] = ¢, [3/3"] = h as shown in Fig. 2.
Thus, it is the Dijkgraaf-Witten weight on this partic-
ular coloring of the stack, which is a pyramid over v
with a different bulk triangulation. Topologically, the
pyramid is just a ball with a particular surface trian-
gulation. The cocycle condition of w implies that the
Dijkgraaf-Witten weight assigned to a ball only depends
on its surface triangulation and coloring, which is dis-
cussed in Appendix A 3 in a general setting. Therefore,
w(¢,PY]w [CAY,Ph] = w [¢,PY"] and hence

vt v

pPIpP! = Pt (19)

Figure 2. Stacking two pyramids over a vertex as a graphic
representation of PJP".

Figure 3. Two orders of stacking two pyramids over two adja-
cent vertices, with (a) and (b) presenting P¢, P} and P PZ,
respectively.

Setting h = g~', we get w[(,PI|w {CA%,P{I} =1 and
hence w [CA%,P{I] = (w[¢,PY])". Thus,

1

(PO =pP¢ . (20)

Together, Egs. (19) and (20) imply that

P, = |G|Z (21)

geG

is a Hermitian projector.

Besides, PJ and thl commute for two vertices vg # vy.
This is clear if vy and vy are nonadjacent (i.e., not con-
nected by an edge in A'(X)). For adjacent vy and vy,

still PgOth = Pyhngo their nonzero matrix elements



(¢| Pg P |¢") and (¢| P! PY |C') equal the Dijkgraaf-
Witten weight on the topological balls (obtained by
stacking pyramids in two orders as in Fig. 3) with iden-
tical triangulation and G-coloring in surface. In short,
[Pg,P!] =0if vg # vy, (22)
Vg,h € G. As a result, the set of Hermitian projectors
{Po},ev () labeled by vertices commute with each other.
When the 3-cocycle is completely trivial (i.e., w = 1),
the operator PJ reduces to Af Hp% B,. So PY¢ is the
twisted version of Af with the projector [[ ., B, in-
cluded. The Hamiltonian can be simply expressed as

H=-%"P, (23)

whose ground states are specified by P, = 1. When w =
1, the ground states are the same as those specified by
A, =By, =1

In order to familiarize readers with our notations, let
us express PJ more concretely in the example based on
the twisted Za gauge theory. For G = Zy = {0, 1}, there
is only one nontrivial normalized 3-cocycle

. f=y _ h=1, (24)
1, otherwise.

WM$M—{

On each edge lies a qubit. In terms of Pauli operators,

Bp:% 1+ [ @i, (25)
LEE(p)
P&Q:O) - H By, (26)
p3v
P =1[B, Y 10w ]l [[er, 27
pov ¢ >v

where p 3 v (resp. £ 3 v) means that p (resp. £) connects
to v. The phase factor w [¢,P}] = +1 is given by Eq. (12)
for v = 3 in Fig. 1. The tetrahedron over each triangle
inside the hexagon O, centered at v contributes —1 to
w [C, Pi], if  colors the edges of the triangle in the same
way as (, in Fig. 4(a); otherwise, its contribution is +1.
It is straightforward to check that w [¢,P}] = —1 if and
only if ¢ colors two edges next nearest to each other, such
as [25] and [46] in Fig. 4(b) and (d), differently from the
rest four edges on 90, (i.e., the boundary of ©,).

We will see soon that this model gives rise to anyons
with topological spins +¢ and hence describes the double
semion topological phase [95, 117]. Yet it does not look
like the well-known double semion string-net model [95],
even after the degrees of freedom are matched by the
duality shown in Fig. 4. The phase factor contained by
) in the double semion
string-net model is — (—1) —iNe with N, the num-
ber of times that strings intersect with 00, (equivalently,
the number of edges colored by 1 along 00,). However,

the term corresponding to PS¢~
Nu/2 _

1 7 | 4 X 7 1 Pr 3
r r
> > o o o > > 5 o 6 >
o l o T 7 ol T m 7 ol
1O s / S/
ABl T B <
4 K& X__& 7 7 Y R |
r Y > Y
A VA | VN | V| VAR | R | Ve
7 Ao/ Ao ST o 7 -
T AYAS ) P A <
KA I o 7 | I S A &
> r Y r Y Y
> 0 o 1 o > o 0 o 1 o o
> » » > » » »
/ / ’ / / /
¢ A _ ¢ A
| D ¢ ! S A& I DO G
(a) Ca (b) G
1 4T XA 1 1 1
r Y
- ool 6L o ] R | R
> »- - - > - - -
/ / £
< . A _A ol <
I \V,JY 7 4 7 \V,JV \\v,"r \\v,"r e
R R A 200 3 A
1 7 | | 7  } 1
V] P | R V] P § -
i LA LA A S § S §
(c) Ce (d) Ca

Figure 4. Locally flat spin configurations ¢ = (4, (p, (e, Ca for
G =73 = {0,1} are presented by dashed strings (red online)
without termination on the dual lattice of the triangulation:
a spin is in state |1) if and only if its corresponding edge goes
cross a string. Inside the hexagon O, = [014652] centered
at v = 3, each triangle marked © (cyan online) is associated
with a tetrahedron contributing —1 to w [P},, §], while other
triangles contribute trivially.

w [CC,P}J = —w [Cd,P}}] =1 for v = 3, although N, = 2
in both Figs. 4(c) and (d). This discrepancy can be cured
by a basis transformation

u= @ 101l (28)

LEAL(T)

which is a tensor product of local unitary quantum gates.
For it to be well-defined, ¢ ([03]) is set to ¢ ([01]) ¢ ([13])
for auxiliary diagonal edges like [03] in Fig. 4 even when
¢ is not locally flat. In particular, it adds an extra —1
to POV acting on (4, since po=b changes the num-
ber of edges colored 1 in the triangulation by 2. By U,
the Hamiltonian in Eq. (23) is transformed into the well-
known form of double semion string-net model [95]. Ex-

plicitly, UPE= = i - T] ., By - [;5, 0F with

1—o07 1—0f 0% 1—o0F
N, = [01] (13]9(34] [46]
2 2 2
1—o0? 1—0f.,0% 1— ot
+ [02] [23]7[35] [56] (29)
2 2 2

counting how many of the edges [01], [14], [46], [02], [25]
and [56] (i.e., those along 00,) for v = 3 in Fig. 4
are colored by 1. Then UP,U' = PO oy plo=byt
and [[,UP,UT acting on &), |0), gives a ground state of
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Figure 5. Default triangulation of a prism over 7 X I, where
7 = [romi72] and I = [0,1]. The Dijkgraaf-Witten weight
on this prism is [roT17273] [ToToTi 73] /[ToT1TIT3], Where each
tetrahedron [vov1vavs] stands for w ([vovi], [v1v2] , [V2vs]) with
edges short for the group elements assigned by the coloring.

the form Y (=1)"P) | X), where loop (X) is the to-
tal number of loops (i.e., strings without termination) on
the dual lattice of locally flat spin configuration X.

Another important example of twisted gauge theory is
based on G = Zs X Zy X Zo with the 3-cocycle

w (f,g, h) _ em(f(l)g(z)h(s)), (30)

where f = (f0, @, f®) g = (g1, 9, ¢®), h =
(h(l), h(?), h(3)) € (. It describes a non-Abelian topolog-
ical phase [118], albeit G is Abelian. The corresponding
lattice model contains three qubits, manipulated by Pauli

operators a(j)” with j = 1,2,3 and p = z,v, 2, on each

edge £. Thus, Eq. (25) defines a B(j) for each j. Their
product B, = H] 1 B(] ) requires the flux triviality and

further defines P9 =[] »5v Bp- Elements of G are also
denoted 000, 100, - - - for short A generic PJ is generated
by P09, PBlO and PSOl, which can be simply expressed
in terms of Pauli operators as well. For example, only the
tetrahedrons in Eqgs. (15) and (18) contribute a nontrivial
factor to P at v = 3 in Fig. 1. Explicitly,

PlOO ( 1) (1 ‘7(32212)‘%(1 "fg] )
1
2

H B, 11 o7 (31)

pov {35v

(2),2 1 o3z

<(=1) (1*"[351 )* 7[56]

Then P, = & (P90 4 pl00) (p900 4 po10) (p000 4 poot),

Besides H = — )", P,, the model may be defined by al-
ternate Hamiltonians like H = — > (P04 pY104 pJoty;
they have the same ground states. The general theory in
Sec. ITC tells us that this model hosts anyons described
by the representation theory of the twisted quantum
algebra D*(G) with details in Appendix B. For the cur-
rent situation, there are 14 two-dimensional irreducible
representations shown in Table I and the corresponding
anyons would present non-Abelian braiding statistics.
To conclude this subsection, we would like to gener-
alize the above definition of PJ to take care of singular

triangulations, where vertices of a triangle may coincide.

This is done by replacing w[¢,Pf] in Eq. (11) with
w [Z v; ¢ g] — H < [7'07'17'27-5} [7-07_67_1/7_5] ) sgn(r)
TEA2(v,3) [ToT17{ T3]

(32)
where ¥ is a surface whose triangulation may be sin-
gular and A% (v,Y) denotes the set of triangles adja-
cent to the vertex v in X. For each triangle 7 =
[ToT172], the sign sgn () is +1 (resp. —1) if the branch-
ing structure orders its vertices in the counterclock-
wise (resp. clockwise) way. To define and compute
[roT1727s] [ToT)T 78] [[TomiTiTs] € U (1), we present it
graphically as a prism in Fig. 5 with bottom [r97172] col-
ored by ¢. Moreover, for i = 0,1, 2, we color [r;7/] by g if
7, =v and e 0therw1se Then the colorlng of the rest of
the edges is completely determined and each tetrahedron
stands for the phase factor assigned by w. For example,
by [ToT1T2T4] we mean w ([To71], [T172] , [T275]) with edges
[T071] , [T172] , [T275] short for the group elements assigned
to them by this coloring. It is easy to see that w [X, v; ¢, ¢
reduces back to w [¢,PY] if the triangulation is regular.

B. Ground state degeneracy on torus

Suppose that the lattice model of a twisted gauge the-
ory is defined with periodic boundary conditions in both
directions. In other words, the lattice 3 is embedded in
a topological torus T2.

Let us compute its ground state degeneracy. Techni-
cally, it equals trP, the trace of

II 7 (33)

veV (%)

over the physical Hilbert space H (E(X),G), or equiva-
lently over Hp (E(X), G). Hence,

Yo > WIIPE™Io., 64

trP =
| CeG,E(z) neGV (™) v

GV E)|

where V (X) is the set of vertices of ¥ and GV is the
set of functions from V (%) to G.

Pick a vertex u € V (¥) and two non-contractible loops
gz, ¢y based at u along the two spatial directions. For
any ¢ € Col(X,G), let hy and hy be the group elements
assigned by ¢ to ¢, and g, respectively. The choices of
n such that (C|[[, A7) IC) # 0 are labeled by hg =
n(u) € Zg (h1,ha), where Zg (h1, hz2) is the centralizer
of {h1,ho} in G. Actually, (¢| ], A7) |¢) can be thought
of as the Dijkgraaf-Witten weight w [T? x I;(,(, hs] on a
triangulated space T2 x I with its bottom T? x {0} and top
T2 x {1} both colored by ¢ and an edge [uu’] colored by
hs. Here I = [0, 1] and u, v’ stand for ux {0}, ux {1} re-
spectively. Further, since the bottom and top of T2 x I are
identically triangulated and colored, we can simply glue



Figure 6. A triangulation of a cube. The eight vertices are
ordered as 0 < 0’ < 1 < 1" < 2 < 2/ < 3 < 3'; their order-
ing assigns orientations to edges, triangles and tetrahedrons.
Gluing the three pairs of opposite faces of the cube gives a
triangulated three-dimensional torus T2.

them together and view (¢|]], A" (¢ as the Dijkgraaf-
Witten weight on the three dimensional torus T3, which
only depends on the group elements associated with the
three non-contractible loops based at a vertex. Thus,

CITT AT ) = w [T% ha, o, hs] (35)

when it is nonzero. Further, Eq. (34) reduces to
trP = 2, (T°). (36)

In other words, the ground state degeneracy on T? equals
the Dijkgraaf-Witten partition function on T3.

For the purpose of calculation, we can use the simplest
triangulation of T3 shown in Fig. 6 and get

(0133] [00'1'3]

19/
w [T% hy, ha, hg] = : 1022'3]

0113]  [0233][00'2'3]
Why (h1, he)
= Whs W, N2) 37
Why (ha, hy) (37)

where [01] = hyq, [02] = hg, [00'] = hg and for g, s,t € G,

w(g,s,t)w (s, t, (st)f1 gst)
w(s,s71gs,t)

wg (s,t) = (38)

Thus, we can compute the ground states degeneracy trP
on T? explicitly by

trP = 2, (T%) = ﬁ >

hi,h2,h3€G

6h1h2,h2h1

Why (h1, he)

on, (ha h)” (39)

: 5h1h37h3h1 ’ 5h2h37h3h2 ’

In particular, if G is Abelian and w = 1, then trP = |G|?.

1. Example: G = Z2 twisted

As an example of a twisted model, we consider G =
Z2 = {0,1} with a non-trivial 3-cocyle given by Eq. (24).
We will see soon that this model gives rise to anyons
with topological spins +¢ and hence describes the double
semion topological phase [95, 117]. Although [w] is non-

trivial in H? (G, U (1)), we still have 2020 — 4 apq

wng(h2,h1) =
hence trP = |G |2, the same ground state degeneracy on
T2 as in the untwisted model.

2. Ezample: G =78, with w (f,g,h) = i Mg

Another interesting model can be constructed with
G = Ly X Loy X Ly = 73, with a 3-cocyle

for f = (fO, @, @), g = (¢M,9?,¢®), h =
(h(1)7h(2)7h(3)) € G, where the product fMg@pG) ig
well-defined from the ring structure of Z,,. Now

(40)

h§1) hél) hgm
Why (h1, he)

2
et Koo Kyl | ICH
ha W T LB B )
1 2 3
2
= exp {zn: (hy X ha) - hg} (42)

is nontrivial, where we write

fxgi= (f@)g(a) _ (4@
@M _ 1) 3) 1)) _ f(z)gu)) o (43)
Fog= fWg) 4 f@g2 L ¢(3)3) (44)

for any g,h € G.
By noticing the identity
1 2w
— exp — (h1 X hg) . h3} = 5h h2,05 (45)
EPASE

we get an explicit formula for the ground state degener-
acy on T2

trP = Z, (T°) = Z Ohy xhs,0- (46)
hi,ha€G

In particular, for m = 2, we have
trP = Z, (T°) = 22, (47)

which is quite different from the untwisted case whose
ground state degeneracy on T? is |G|2 = 64.



C. Anyons and twisted quantum double algebra

It is well-known that the quasiparticles in these two-
dimensional models are anyons and that the total num-
ber of particle types equals the ground state degener-
acy on a torus T2. Explicitly, the particle types of
anyons can be labeled by irreducible representations (up
to isomorphism) of the twisted quantum double alge-
bra D¥ (G). Actually, D¥ (G) can be enhanced into a
quasi-triangular quasi-Hopf algebra equipped with a co-
product A : D¥ (G) @ D¥ (G) — D¥ (G) and a universal
R-matrix R € D¥ (G) ® D¥ (G); the extra structures en-
code the fusion and braiding properties of anyons. If
w = 1, then D¥ (G) reduces to the normal quantum
double D(G), which is a quasi-triangular Hopf algebra
and used in studying the standard gauge theories in two
spatial dimensions [15, 44-46]. The lattices models of
(twisted) gauge theories in two spatial dimensions are
thus also called (twisted) quantum double models. The
mathematical details of D* (G) and its representations
are summarized in Appendix B. Below, we will elucidate
the notion of anyon and its connection to the represen-
tation theory of D¥ (G) in the concrete lattice models.

1. Topological charge and representation

First, let us classify the particle types of an excited fi-
nite region (i.e., a localized quasiparticle), such as the
small white square region B at the center of Fig. 7(a).
For topologically ordered systems in two spatial dimen-
sions, we also use the terminology topological charge as
an synonym of particle type. To make it well-defined,
we suppose that B is an isolated excitation inside a much
larger region A. Then there is an excitation-free topolog-
ical annulus M := A — B°, such as the shaded region in
Fig. 7(a), separating B from the other excitations in A®.
Here X¢ (resp. X°) denotes the exterior (resp. interior)
of any topological space X. Such states lie in the Hilbert
subspace H (E (A°),G) @ Ho (M) ® H (E (B°),G), where
Ho (M) is the Hilbert subspace selected out of the locally
flat states Hp (E (M), G) by the projector

rm= [ P (48)

veV (M°)

Since hopping between states of H (A¢) (resp. H (B°)) can
be made by operators supported on A® (resp. B°), they
are irrelevant to the discussion of particle types. Below,
we only need to focus on Hg (M).

It is easy to see that the dimension of H (M) grows with
the number of spins along the boundary of M. To facilitate
the analysis of Ho (M), we embed M in a larger topological
annulus M which covers all shaded regions (grey and green
online) and add edges to finish a triangulation of M as
shown in Fig. 7(b). Obviously, each coloring of M extends
to M uniquely. We label the outer (resp. inner) boundary
of M by w (resp. %), which is a loop with base point
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(b)

Figure 7. Hilbert space used for classifying excitations within
a finite region B. (a) There is no excitation in the grey region
M = A — B°, where A is a larger region containing B and B°
is the interior of B. (b) Extra P7 operators for v € V (OM)
and g € G can be defined by embedding M into a topological
annulus M. The boundary of M is the disjoint union of two
loops; OM = (—w) U, where the minus sign means that the
orientation of w is opposite to the one induced from M.

ag (resp. bo). Let (apbp) be the thick path (blue online)
from ag to by in Fig. 7(b). Let Ty, T}, and T§a°b°> be
the Hermitian projectors requiring the group elements
associated with paths [agaias - - aszap], [bobibs - - - brbo]
and (agbg) to be g, h, s € G respectively.

As shown in Fig. 7(b), the vertices along the outer
and inner boundaries of M (i.e., OA and OB) are labeled
as ag, a1, - ,az3 and by, by, - - -, by respectively. Pick any
two functions

X 5{[aiai+1]}¢:o,1,---,22 -G, (49)
X: {[bibi+1]}i:0,1,---,6 —G. (50)



Let T [x] (resp. T [X]) be the Hermitian projector requir-
ing ¢ ([a;ai+1]) = x ([@iai41]) for ¢ = 0,1,---,22 (resp.
C([aiaiH]) = Y([bibi-&-l]) for ¢ = O, 1, Ty 6) ObViOuSly,
T [x] (resp. T [x]) is supported on the thick edges (green
online) along the outer (resp. inner) boundary of M.

The Hermitian projectors Ty, T** | T [y] and T [x]
commute with each other. It is a straightforward com-
putation to show that, on H (E (M), G),

tr (TgT§a0b0>T ] T[x] P (M)) =1 (51)

Therefore, we can label a basis of Ho (M) by g, s, x and X.

To give a graphic representation of the basis vectors,
let Dy be an annulus with colored triangulation (i.e., tri-
angulation in which some edges carry fixed group ele-
ments) as shown in Fig. 8(a). Gluing M with D} along the
outer and inner boundaries (.e., loops w and ) respec-
tively, we get a triangulated torus, denoted (—ﬁ) Uz D
Let GE™ (x,%) be the set of spin configurations coincid-
ing with x,¥ on the corresponding edges (green online
in Fig. 7(b)). Further, let Z, ({;Dz) be the Dijkgraaf-
Witten partition function on a solid torus whose surface
is (—M) Uz D;, like the one in Fig. 8(b), with £ (M) fixed
to ¢ € GPM (x,x). Explicitly, Z, (¢;D}) is the sum
of Dijkgraaf-Witten weight over colorings of the solid
torus coinciding with ¢, s and ( on the corresponding
edges. Details of Dijkgraaf-Witten partition function are
included in Appendix A. Here, if ¢ is locally flat (i.e.,
s Gg(M)) and assigns g, s to paths [agaias - - - az3ao],
(apbp) respectively, then Z,, (C;D;) € U (1); otherwise,
there is no valid coloring on the solid torus and hence
Z,(¢;D5) = 0. Then, the vectors

IS HENEDS

ceGe™ (x.x)

Z, (¢; D7
Zu(605) 1y (s

| 2

labeled by x,X, g, s form an orthonormal basis of Hg (M),
where Gg(M) (X)) = GF® (x, %) N Gg(M). For v € M°, it
is obvious P, = 1 (and hence P¢ = 1,Vg € G) on these
states by noticing

(€I Py | x:D5) = 2. (¢:DF) = (CIx, XDy (53)

using the graphic representation of P¢ given by Eq. (11)
and Fig. 1(b).

In general, we can consider states presented by other
triangulations of the annulus. Let DD} denote an trian-
gulated annulus carrying fixed group elements g, h, s, t €
G on its four edges as shown in Fig. 9; it is obtained by
connecting DY and Dj,. Similarly, gluing M and D} Dj, along
loops @ and @ gives a torus (—M) Uzz D;Dj,. Analogous
to Eq. (52), we can define

R ARCH

V()|

X X: DgD},) =
cecE® ) |Gl
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Figure 8. Graphic representation of ’ X X DZ>. (a) An annulus
(i.e., one-hole disk) with colored triangulation Dg. (b) A solid
torus whose surface is (—ﬁ) Uz D;. The minus sign empha-
sizes that the orientation of M points towards the inside of the
solid torus according to the right hand rule. The two annuli
M and D are drawn curved and flat respectively; their shared
boundary is the disjoint union of the two loops w and 7.
The state |x,X;Dj) is specified by (¢[x,X;D5) = N Z. (¢;Dj)
for ¢ € GF™ (x,x), where Z, (¢;Dy) is the Dijkgraaf-Witten
partition function on this solid torus and N is a normalization
factor.

where Z, (C ; D;D’;L) is the Dijkgraaf-Witten partition
function on a solid torus whose surface is (—M) Uz D3},
We notice

Z, (¢;DD}) = 2, (¢:D5f) 2, (DE5D3DE),  (55)

9179
2 (D33D3DL) = 0y ans-1g (5,1), (56)

where wy (s,t) is defined as

w(g,s,t)w (s, t, (st)_l g (st))

w(s,s71gs,t)

wg (8,t) =

Therefore, Vg, h, s,t € G, we have

|X7Y; DZD§L> = 6g,shs—1wg (Sat) |X»Y; th ) (58)



Figure 9. An annulus (i.e., one-hole disk) with colored trian-
gulation DSDj,. It determlnes a legitimate coloring and corre-
sponds to a nonzero state ’D Dh> if and only if g = shs™'.

which motivates the definition of an algebra D¥ (G),
called a twisted quantum double of G. Formally, D* (G)

is spanned by {D;}q s with multiplication rule

D} D}, = 0g sps-1wg (s,8) D3, Vg h,s,t € G (59)

More details about D¥ (G) are included in Appendix B.
We have seen that Hg (M) factors into

Ho (M) = H (0A) @ H (0B) ® H. (M), (60)

where H (OA), H (8B) and . (M) are the Hilbert spaces
spanned by orthonormal bases {|x)}, {|x)} and {‘D§>}
respectively. Using M and Eq. (11) with w [, PJ] replaced
by Eq. (32), we extend the definition of PJ to include
vertices on OM as well. Explicitly,

Pl= Y Qw

ceG 0™

[M,v;¢, 9] (CAY], (61)

Vg € G,Yv € V (M), where Mjv] = M[v] for v € M° while
Mv] = Mv] U OA (resp. M[v] = M[v] U 0B) for v € OA
(resp. v € OB) with M[v] the region made of all plaque-
ttes adjacent to v inside M. They still satisfy Eq. (22).
Except for v = ag and by, Egs. (19) and (20) also hold.
Hence {P, = ﬁ >y P Yutagb, are mutual commuting
Hermitian projectors. Let

PaA = H Pva (62)

veV(9M)\{ao}

Pe= [ P (63)

veV (0B)\{bo}

Then |G\|V(6A)‘71 T [x] PoaT [x'] realizes a generic oper-
ator |x) (x'| on H (OA). Thus, H (OA) describes only de-
grees of freedom near 9A (i.e., the outer boundary of M).
Similarly, H (0B) describes only degrees of freedom near
0B. Both #H (0A) and H (OB) are irrelevant to classifica-
tion of particle types.
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Moreover, the operators

w(Dg) = |GV OIS T N T, P P T [X],  (64)
7 (D}) = 16" PN TR (T PL) PosT X (65)

X

labeled by Dy, D} € D* (G) and supported near A, 0B
respectively, only act nontrivially on H. (M) Explicitly,

™ (Dy) [x:X:Dh) = X, X: DD, ) » (66)
7 (D},) [x,X:D5) = |x,X: DD, ) - (67)

Thus, 7 and 7 turn H, (M) into a regular D* (G)-D¥ (G)-
blmodule i.e., the left and right actions of D* (G) on
H. (ﬁ) speciﬁed by 7 and 7 respectively are the same as
how D¥ (G) acts on itself via algebra multiplication.

In addition, an x-algebra structure on D¥ (G) can be
specified by

([)2)1L = w; (S, 3_1) ‘::igs,

Vg,s € G, (68)

where w? (s, s71) is the complex conjugate of wy (s, s71).

Then it is straightforward to check that

by using the identity [119]

Wy (S,t) Wy (Stvu) = Wy (s,tu)w —lgs (t7u) ’ (71)

Vg,s,t,u € G. We also notice that setting ¢ = s~' and
u = s in BEq. (71) gives wy (s,571) = wy-1gs (s71,5),
which ensures ((D;)T)Jf =D;.

Since 7 is a left regular representation of a unital alge-
bra, it is faithful. So D (G) can be viewed as a subalge-
bra, closed under the Hermitian conjugate, of £ (’H* (ﬁ))
Here £ (V) denote the algebra of all linear operators on
a vector space V. Thus, D* (G) is a finite dimensional
C*-algebra and hence semisimple. Therefore, D“ (G) is
isomorphic to a direct sum of matrix algebras

Py (72)

aeN

e (G) L Dacare, p: Equm Pa
«—algebra =

where £ labels the isomorphism classes of irreducible
representations of D¥ (G) and Vy = (pa, V) is a finite
dimensional Hilbert space carrying an representation pg
corresponding to a € . Moreover, £ (V,) is the algebra
of linear operators on V,; it is isomorphic to the alge-
bra of ng X n, square matrices, where n, = dimg¢ V,.
More explanations about this isomorphism p are in-
cluded in Appendix B5. Let {[a;i)},_, ., be an or-
thonormal ba81s of V4. Via p in Eq. (72), we can view
{lasd) (a5 513552 2 9...n, 3 a basis of D¥ (G).



As a D¥ (G)-D¥ (G)-bimodule, H, (M) can be identi-
fied with D“ (G) and further get decomposed

DZ>'—>DS
—

H, (M)

~::®c| 181 a
M)@g(va):@va@gvg, (73)
~ ace aeN

=D (G)

where V; is the dual space (spanned by {{a;i|},_; ., )
of V,. The normalizations for p on each sector are picked
different from p such that inner product is also respected.
As a Hilbert space, it is convenient to write the basis
vectors of C(V) (resp. V) as |a;i,j> = la;1) (a; ]|
(resp. ’a j> (a;4]). The default inner product on
Vi is given by (a; j’|a; j) = (a;j|a; j). The tensor prod-
uct specifies the inner product on L (V,); equivalently,

(01]02) = tr (01(92), VO, 05 € L (V).

By construction, |q; k') (q; k| € D (G) acts as

T (la; k') (a; k) @54, ) = Scqu). i) |0 K, 7). (T4)
7 (la; &) (a; k]) |@34, ) = S(ag), by @58, k) - (75)

Clearly, each a € 9 labels a topological charge; it can be
detected but cannot be changed by operators supported
near either OA or B. Moreover, i and j in |a;,7), i.e
the two factors of V, ® V¥ in Eq. (73), describe the re-
maining degrees of freedom near JA and OB respectively.

Applying the above analysis of topological charges to
the reduced situation with B = () and M = A — B® =
we can prove that the ground states on any closed man-
ifold are locally indistinguishable. Now g (M) has only
the degrees of freedom labeled by x along OA. Further,
suppose that O is any local operator inside A (away from
0A). Then P (M) OP (M) (equal to the action of O on the
ground state subspace) must be a scalar, because it com-
mutes with 7' [x] and hence cannot flip x. Therefore, no
local operator can distinguish ground states.

To facilitate later discussions, let us describe Hg (M) in
more detail when B = (). The A-complex M used for defin-
ing P¢ for v € OM now reduces to a disk whose boundary
is a loop w. With no hole in M, the group element as-
signed to @ must be trivial. Thus, we may also view M
as a sphere by identifying all points of w without affect-
ing the definition of P¢. Then, analogous to Eq. (52), a
basis of Hg (M) can be specified by the Dijkgraaf-Witten
partition function on a ball with surface M.

2. Fusion and coproduct

The setup is similar to Fig. 7(a), but now A contains
two spatially separated excited spots By, Bs and we are
going to analyze the Hilbert space on the region M =
A—B7—B5. We embed Minto a slightly bigger triangulated
two-hole disk M with extra edges added along 9By, 9B
and JA, as we did for A — B°. The boundary of M is three
disjoint loops, i.e., OM = (—w)Uw Uwe, where the minus
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Figure 10. A two-hole disk with colored triangulation Dg ®DE.

sign means that the orientation of w is opposite to the
one induced from M as shown in Fig. 10.

Let Dy ® D! denote a two-hole disk with the colored
triangulation shown in Fig. 10. Analogous to the case of
one-hole disk (i.e., annulus), the Hilbert space ., (M)
relevant to topological charge analysis is spanned by
spanned by {‘DZ ® D§L>}g)h7s)teG. It describes the states
selected out of H(EM),G) by P, = 1,Yv € V (M°) up
to some compatible colorings x, X; and X, of OA, 0B;
and 0By, via the the analogue of Eq. (52) on a three-
dimensional manifold with surface (—ﬁ) Uwm,m, Dy ® D!
(i.e., the genus-two surface obtained by gluing M with
D ® D! along loops w, @; and @s). The minus sign em-
phasizes that the orientation of M points towards the in-
side of the three-dimensional manifold. In general, other
colored triangulations of a two-hole disk with boundary
(—w) U1 Uy can be used to present states in H. (ﬁ)
as well.

Using the isomorphism p in Eq. (73), we have
. t DS®Dt
H. (M) ">H T D (G2
® v(l) (1)* ® v(2) ® V(2)* (76)
al,azeﬂ

where Vc(l}) and Vg) are Hilbert spaces carrying irre-
ducible representations corresponding to ay, as € Q. The
degrees of freedom VC(&)* and ch)* (in particular, topo-
logical charges a; and ay) can be pinned by operators
supported near near 9By and 0By respectively. The oper-
ators W(Dr) for f,r € G defined by Eq. (64) specifies the
total topologlcal charge inside A. The action of W(D;) is
presented in Fig. 11(a). Explicitly,

m (D}) D ®Dt',> = Y W (g )|y ®D2D§,>,
gh=f
(77)
for fa g/v hla T, S/, t/ S CTY7 where
o (g h) = C@ R (g T )

w(g,r,r=Lhr)
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Figure 11. Graphic representations of (a)
and (b)

m(D})

DY ® Dg/,>

D;DS, @ D,ZD;,>

and

DZDZI, ®D’,”LD§;,> is presented by the colored trian-
gulation in Fig. 11(b). A quick way to check Eq. (77)
is to notice that (D} ® D, | m(D})

to a solid torus whose surface is the gluing result of the
two-hole disks in Fig. 10 and Fig. 11(a) along w, 751 and
wso. The sohd torus can be partitioned into two solid tori
relating Dgs ~ D;D;,, D;f/ ~ DZDZ, and a prism over the
triangle with edges w, w1, ws. The prism gives the factor
w" (g,h). Thus, W(D;) is specified by the coproduct

DS, ® Dh,> corresponds

A:D*(G) - D*(G)®D* (G);
P A(Df) = Y w'(g,h) Dy @ Dj. (79)
gh=f

On V&) ® ch) (i.e., a sector of H, (M) with local de-
grees of freedom at aBland 0By pinned) the operator

m(D}) acts as (P @ pPY o A, making VI @ V) a rep-
resentation of D¥ (G). In general, Vc(l} ®Vu2

~DVI= eV, (80)
a

is reducible

Ve @ vy

with spaces of intertwiners V1% := Hom(V,, Vﬁ})@)vé?),

Figure 12. A retriangulation of a three-hole disk is made by
replacing loop w12 with loop was.

where V), is a Hilbert space carrying an irreducible repre-
sentation of D“(G) corresponding to the total topological
charge a € Q. The dimension N ,, = dimc V1% counts
the number of ways to fuse ai, as into a and is called a
fusion rule.

To describe more than two quasiparticles, we need to
understand the associative property of any three topo-
logical charges. As before, the topological degrees of
freedom are encoded in the Hilbert space H.(M) with
a basis presented by colorings of a triangulated three-
hole disk. However, there are two natural triangulations
as shown in Fig. 12; we can either group holes 1,2 to-
gether by loop wis or group holes 2,3 together by loop
wogz. The two triangulations lead to two different bases
{05 D) @ D)} and {|o3; © (03 ©D22))). Notic-
ing that changing from the triangulation with w5 to the
one with ws3 corresponds to a tetrahedron whose edges
are loops wy, wsa, w3, Wiz, wa3z and wisz, We get the
basis transformation

’ gl ® (Dsz ®D83)>
w (91,92, 93)
In other words, H. (M) can be identified with (D* (G))*?

in two ways

|(pg) ©D32) @D33) = (81)

( ) ®3
|(D51 ® D52) D32) DS1 ® DS? ® D2, (82)
$1(23) * ( ) ®3
DS ® (D2 ®Df2)) > DS1 ® D52 ® D2, (83)

with the basis transformation encoded by the Drinfeld
associator ¢ = Z:fqhw(f,g7 h)~" D$ ® Dy @ Dy (i.e
¢A $1(23) © 30(12 (A) VA e Dw(G) )

Three copies of Eq. (73) give

~R3 3
@) @ QD evi), (1
aj,az,a3€Q n=1

where Vc(ln) (pan , Va(n )) is an irreducible representation

of D¥ (G) on a Hilbert space Va(n . Since ¢ does not act



Figure 13. Graphic representation of R ’D; ® D§L>.

on local degrees of freedom Vg:)*, we can safely fixed a
state of Vé::)* and just consider ®i:1 V( "™ for describing
fusion and braiding processes. But to interpret the states,
we need to specify whether we are using ((12)3 or ¢y (23)
by writing ®n 1 ( ) as either (Vﬁ) ® véf)) ® Vc(f;’)
V§}>®(v§§)®v(3)) Under ©(12)3 (resp. ©1(23)), the action
of D¥(G) defined by Eq. (64) is given by (A®id) o A
(resp. (id ® A)o A). Moreover, the basis transformation
is presented by the action of ¢ on ®i:1 VC(IZ).

The above discussion can be generalized to any finite
number of excitations. For example, the topological de-
grees of freedom associated with four topological charges
ap, ao, az and a, can be expressed in any one of the forms
(8 o vy g W) @i, () @iy @ i) @ Vi)
and VIV @ (VP @ (VP @ ViY).

8. Braiding and universal R-matriz

Let us define an operator R to decribe the braid-
ing of any two anyons. Graphically, R|DZ®DZ> is
presented by Fig. 13. Explicitly, in the original basis
{‘D; ® D§L>}g7h7s7teG labeled by the colorings of the tri-

angulated two-hole disk shown in Fig. 10, we have

R |D; @ D},) = | DD}, ® D), (85)

where DY := 3., D} acts on Dj, as DD, = Dghq_lDz,

describing the change of D} as it moves along loop ws.
The universal R-matrix of DY (Q) is

R=> D:® DY (86)
geG
In terms of R, the braiding operator can be express as
R = pR, (87)

where @ permutes the two factors of each basis vector
D5 @D}) (i-e., p|Df ®D}) = |D}, ®D;)). Under the ac-
tion of local operators near @, and @, the Hilbert space
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Figure 14. Creating four quasiparticles of topological charges
a, @, a, a at spots 1,2,3 4 (red onhne) respectively in two
different Ways B85535 and (a38)B%5. The operator 55 (resp.
2 (a3, B99) supported Wrthrn oval Bi2 (resp. oval Baa,
oval Bag, rectangle A) creates a pair of quasiparticles at spots
1,2 (resp. spots 3,4, spots 2, 3, spots 1,4) carrying the labeled
topological charges.

reduces into sectors labeled by particles types of the two
anyons.

To summarize, the quantum double algebra D* (G) is
a quasi-Hopf algebra and its representations form a uni-
tary modular tensor category—a special type of braided
tensor category—describing the behaviors of anyons that
appear in the lattice models of twisted gauge theories.
Explicit examples can be found in Appendix B 7.

D. Measuring invariants associated with
topological charges

To conclude the discussion of the lattice models based
on twisted gauge theories, we now explain how to define
and detect some key properties of topological charges by
simple and universal measurements.

1.  Quantum dimension

To define and measure the quantum dimension associ-
ated with a topological charge a, we consider two differ-
ent processes creating four quasiparticles of topological
charges a, @, a, @ at spots 1,2,3,4 as shown in Fig. 14.
Let Bio, Bog and Bsy be the three oval regions contain-
ing spots 1, 2, spots 2,3 and spots 3,4 respectively. Pick
an operator (39 (resp B85, 3%9) supported in oval Bjo
(resp. oval Bsy, rectangle A) that creates a pair of quasi-
particles with topological charges a, @ at spots 1,2 (resp.
spots 3,4, spots 1,4). Moreover, pick an operator a§
supported in oval Byg to annihilate a pair of anyons with
topological charges @, a at spots 2, 3. The choice of these
operators can be fixed up to some phase factors by the
normalization

0l (o) = g8 =1,v8 = BT, BT, 2T (88)

on the vacuum |Q2). Then a$§458 455 |Q) and B§F Q) are
the same state and hence there is u, € C such that

3315 855 192) = ua BT Q) - (89)



Let d, = ﬁ; it is called the quantum dimension asso-
ciated with the topological charge a.

In other words, the overlap between (agg)T B8 19) and
99857 |2) is uq. Let qog be the total topological charge
of quasiparticles at spots 2,3. Then in a basis labeled

by q23, the only component of 375358 |Q) with g3 trivial

is ugq (agg)T B9 |Q). Therefore, the quantum dimension
dy can be defined and measured by topological charge
projectors. Since topological charges can be detected by
braiding, there exists a projector Pg supported near OR
and commuting with the Hamiltonian requires that the
total topological charge inside a finite region R is q. If | )
is a state with four excited spots as in Fig. 14 satisfying
Py = PP = p22 = PBs — pBt = PBiz — PP = 1 then
dg can also be defined and measured by
Bag
1 e 0
da (W]w)

where o denotes the trivial topological charge and B; is
any oval region containing only spot j, for j = 1,2,3,4.
Now let us compute d, for a € 9 in a model of twisted
gauge theory. Pick a representation V, = (pq, V) for a.
Let ag : Vi ®Vqy = C and B, : C — V, ® VI be the
two intertwiners defined by Eqgs. (B19) and (B20). Using
the antipode (S, «, B) given in Egs. (B31-B33), we have
T

QqQg = Baﬁa dimV,. Thus, up to a phase factor,
a8§ B8 BSE acts on the vacuum as
—Ba g _Ba
4/dim Vg 4/dim Vg * *
C Va®@ V)@ Va®V]) =

(Ve @ V) @ V,) @ vt 281,

ido@—La_—

Va® (Vi@ Va)) V5

®id,

Ve Va®VE, (91)

where the equality in the first line is obtained by noticing
that the state in Vo ® V§ created from vacuum has trivial
total topological charge. It gets simplified to

(dim Va)~ 2 g,
— %

C Vo ® V5, (92)

by the fact that the composition in Eq. (B21) equals iden-

tity. Therefore, 0334958855 Q) = (dim V,) ™' AT [Q) up
to a phase factor and hence
dq = dim V. (93)

Roughly, the quantum dimension d, tells how strongly a
and a are entangled when they are restricted to a trivial
total topological charge.

The diagrammatic presentation used in tensor cate-
gories provides a useful tool in describing the splitting,
fusion, and braiding processes of anyons [14, 38]. Let

/\ = Qq, Cl\/ = O‘la (94)
N/ = ba o/ N\ =6 (99)
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The pair of linear maps «, and 3, are picked such that
the compositions in Eq. (B21) and (B22) equal identities,
which are graphically presented as

-1, -y . (96)

Here a vertical line with label a and an upward (resp.
downward) arrow is interpreted as the identity operator
on the topological charge a (resp. @). Convenient nor-
malizations compatible with Eq. (96) can be picked as

@ = agaf = @ BiBa =da. (97)

Notice that 0%, Ba € VI8 and hence they just differ by a

phase factor (i.e., B, = %ua£)7 where o0 denotes the trivial
topological charge. Further, if @ = a, then ag = a4 is
already fixed by the choice of S, via Eq. (96). In this
case, i, is well-defined. It takes values £1 and is called
the Frobenius-Schur indicator [14].

For @ = a, we can measure s, by

(853)" B35 19) = i‘ZIQ>~ (98)

in the setting of Fig. 14, where ( §§)T is supported in oval
Bos and annihilates a pair of anyons both of topological
charge a at spots 2, 3. The operators 375, 555, 554 can be
compared with 51“ by hopping operators. For ¢ = 1,2, 3,
let OF be an operators supported on the oval Bl(Hl)that
moves a quasiparticle of topological charge a from spot
i to spot i + 1. We can require Bi‘z = (0309)" gag,

59 = 0301811 and g5 = OF (0%)" 85 on |Q2). Then it
is easy to see that the measurement of s, via Eq. (98) is
well-defined, i.e., independent of the remaining freedom
of adding phase factors to Of, OF, Of and B7f.

2.  Braiding statistics

In Fig. 15, the hopping processes of a single quasipar-
ticle of topological charge q € Q between the three spots
(red, blue and grey online) can be made by operators U,
O3, U3 supported near the corresponding arrows. To re-
solve the phase factor ambiguity, we require UsU} OF = 1
in moving a single quasiparticle starting at spot 2. Then

usosu? VP o vl & v<3)®v‘2>, (99)

USOSUSUL O - VP o v® B p® o v® (100

braid topological charges a, b € £ initially at spots 2 and
3, where Vc(lQ) and V[E?’) are the corresponding represen-
tations. When a = b, the action of R, denoted R*", is



Figure 15. Two anyons of topological charge a and b at spots
2 and 3 are braided by Us O3UY, where U, O and US are the
hopping operators (for topological charge q) indicated by and
supported near the three arrows respectively.

precisely captured by Eq. (99). When a # b, we cannot

fixed the phase factor of Uf OSUL. Only R2?, called the

monodromy operator, is well-defined via Eq. (100).
Graphically, R®® : Vo @ Wy — Wy ® V, is presented as

bXa

where V, and W, are irreducible representations for
a,b € Q respectively.

In general, R®® is a matrix even when restricted to a
definite total topological charge ¢, because N;, may be
greater than 1. To get a simple scalar out of R*?, let us
consider a process beginning and ending with the vacuum
as follows. First, we create four anyons at the spots po-
sitioned as in Fig. 14; a pair of anyons with topological
charges @,a (resp. a,a) are created at spots 1,2 (resp.
3,4) with an operator (a$§)! (resp. B$§) supported in
oval Bya (resp. B3y4). We normalize these operators by

=R, (101)

aff (af3)" = (357) 337 =1

on the vacuum. Second, the anyons both with topolog-
ical charge a at spots 2,3 are braided by U$OSUT as in

(102)

Fig. 15. Finally, af$ ( gf)* annihilates the four anyons.
Then the topological spin 0, associated with a € £ is the
phase factor of

04

a f da\T pad
T 51) UTOSUs (013) S5 19),
a

= (Q] a3 ( (103)

whose amplitude specifies the quantum dimension d, as
well [120]. Graphically, this equation is presented as

0o _ 1
do 2\, ’

where d% on the right hand side comes from the different

)

(104)

normalization conventions set by Egs. (97) and (102).
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For the models of twisted gauge theories,

1
ba = -t (0R, Vo ® Va), (105)

where  : Vo ® Vo = Vo @ Vq; v @ 0@ — v@ @ oM
and tr (pR,V, ® V,) is the trace of pR over V, ® V.
For a # b, the monodromy operator R? = R**R°® is
diagonalized in the basis with definite total topological
charge. Explicitly,
R? = RIRY =

—idyae, (106)

0 0[,
on the sector with definite total topological charge ¢ [14].

Analogously to the discussion of topological spin, we
are interested in the following process. First, four anyons
with topological charges a, @, b, b are created at spots
1,2,3,4 positioned as in Fig. 14 by operators BeS 3oL
where 8§58, 85 are supported on ovals Bjg, B3y respec-
tively and normalized in a similar way as in Eq. (102).
Second, a monodromy operator braiding @ and b is real-
ized as in Eq. (100). Finally, the four anyons are annihi-
lated by (8§5859)T. The expectation value of the whole
process on the vacuum |Q) is

1 0. d
= NE, — ;
Sab dudb a@ ;} ube 0[‘1 d dh

where the factor

(107)

T d is from the normalization difference
between (399)T 358 = (B89)T 350 = 1 on |Q) and Eq. (97).
In the literature [14, 38] Sab are often rescaled to Sqp =
dede g - and put into a matrix form S = (Sab)a,be}.)’
called the topological S-matriz, which is closely related
to a modular transformation of torus [108, 109]. Here

= [> d
acQ

is called the total quantum dimension. For the models of
twisted gauge theories,

(108)

1
St =Sa0 = ——tr ((pR)*, Va® Vi), (109)
dadp
where p : VW — WRV;vQ@w — w v is the
permutation operator acting on the tensor product of any
two vectors spaces and tr((pR)”, Vy ® V) is the trace of

(pR)” over Vq ® Vy.

IIT. TWISTED FRACTON MODELS

We now introduce generalizations of two paradigmatic
three-dimensional gapped fracton phases: the X-cube
model [61] and the checkerboard model [60, 61]. Instead
of reviewing the Zs variants of these models, which have
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Figure 16. The cubic lattice A for X-cube models. Spins la-
beled by an Abelian group G lie on faces. The generalized
gauge transformation AJ flips spins by g (resp. —g) on the
faces marked @ (resp. ©). The 1cross section X7 is the inter-

section of A with the plane z = 5 (cyan online). The arrowed

arc (cyan online) indicates the z-flux of the associated cube.

been intensely studied recently, we will introduce gen-
eral versions of these models based on a finite Abelian
group G (with identity element denoted 0) and get them
generalized further by twisting. We note that in contrast
with the original formulation of the X-cube model, where
spins were defined to live on links of a cubic lattice, here
we formulate this model on the dual lattice, where spins
live on faces of the cubic lattice.

A. Twisted X-cube models

Given a simple cubic lattice A, we pick the coordinates
such that its vertices are in Z? as shown in Fig. 16. Each
edge (resp. face, cube) is labeled by the coordinates of
its center. Let A (resp. A!, A2, A®) be the label set for
vertices (resp. edges, faces, cubes), whose elements are
usually denoted as v (resp. ¢, p, ¢). Then

1 1 1 1
A=A UALUAL (110)

where AL = A? + (%,0,0), Allj =A%+ (07 %,O) and Al =
A0+ (0, 0, %) are the sets of 2-, y- and z-edges (i.e., edges
lying in the z-, y- and z-direction) respectively. Similarly,

A? = A2 UAZ UA?

zZx)

(111)

where Agy = A0+ (%,%70), A;z = A0 + (O, %, %) and
AL, =A%+ (3,0,3) are the sets of zy-, yz- and za-faces
(i.e., faces perpendicular to the z-, z- and y-direction)
respectively. In addition,

A3=A0+1(1,1,1).

5 (112)
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In the following, we would like to consider a cubic lattice
on a three-dimensional torus T2, obtained by identifying
(x,y,2) ~ (x+ Ly, y,2) ~ (2,9 + Lyvz) ~ (z,y,2+ L)
with Ly, Ly, L, € Z describing the system size. Such a
lattice has vertices A® = Zj,_ x Zr,, x Zr, and the infinite
case can be viewed as its thermodynamic limit.

Given any region I' of A, let A™ (T") for n =0,1,2,3 be
the label sets of the vertices, edges, faces, cubes contained
in T respectively. Similarly, we may define sets Al (T'),
A2, (T) and etc. For instance, ¢ € A3(T') means ¢ C T
with ¢ € A% viewed as the region occupied by the cube
¢ (boundary included). In particular, ¢ € A*(T") implies
A" (¢) CA™(T),Vn =0,1,2,3. For any cube ¢, A%(c) =
{c} and A?%(c) (resp. Al(c), A°(c)) is the set of the 6 faces
(resp. 12 edges, 8 vertices) of c.

1. X-cube model based on a finite Abelian group

Let G be a finite Abelian group [121], with 0 denot-
ing its identity element. A local Hilbert space (also
called a spin for short) spanned by an orthonoraml basis
{[p.9)},cq 1s assigned to each face p € A2, Then the
Hilbert space associated with any region I' of A, denoted
H (A2 (I, G), is spanned by

QR Ip.¥ (@),

pEA2(T)

|9) = (113)

with 9 € GA () where GA*(D) = Fun (A% ('), G) is the
set of functions from A2 (T') to G. Each element of GA* (1)

specifies a spin configuration on I'. On the whole lattice,
the total Hilbert space is H (A2, G).

For each vertex v, we define a function &, from A2 to
Z, which maps p = (p%,p¥,p*) € A? to

ST'JrSerSzpr*py*pz
> (-1 Os,v-

s€A%(p)

ro (p) = (114)

Graphically, , is presented in Fig. 16; its value is +1
(resp. —1) on faces marked @ (resp. ©) and zero on all
faces not adjacent to v.

In an untwisted X-cube model, Vg € G, a (generalized)
gauge transformation operator A9 associated with each
vertex v can be defined as

A9 = Z |9 + Kyg) (9.

YeGA?

(115)

Clearly, it is supported on the twelve faces adjacent to v.
If G = Zy = {0, 1}, then A} is the product of the Pauli
operators o on the twelve faces. As v labels a cube of
the dual lattice and the twelve faces corresponds to the
edges of this cube, Al is an X-cube operator in the dual
lattice. Thus, the original X-cube model [61] is a special
case of the family of models we are constructing here.



In addition, supported on each cube ¢ € A3, we have
(generalized) flux projectors

By = Z 80,9(c)-0,9(c),0 |U) (], (116)
YeGA?(e)

BYi= > bo.9(c)-0.0(c)00) (V] (117)
YEGAZ(e)

B:i= Y 8,0(0)-0,0(c000) (V] (118)
YeGAZ(e)

B, = B*BYB;, (119)

where 9,9 (¢) == ¢ (c—|— (%,0,0)) -9 (c— (%,0,0)) and
0yV, 0,9 are defined analogously. As in Fig. 16, the zx-
and yz-faces of cube ¢ can be thought as edges of the
square with an arrowed arc; thus, BZ can be understood
as a projector requiring the z-flux of cube ¢ to be trivial.

It is straightforward to check that Vv, v, vy € A®(A),
Ve, co,c1 € A2 (M), Vg, h € G, Vu,v € {z,y, 2},

AgAl = A, (49)F
A9, A7 ]

V0!

=A™, (B =B,
=[A9,BY] =[B!, Bl | = 0.

co’?

(120)
(121)

Thus, we have mutually commuting Hermitian operators

A, = |G|ZA

geqG

(122)

associated with vertices, which also commute with flux
projectors. Finally, we arrive at the Hamiltonian of the
X-cube model, which is

> A=) B

vEAO ceA3

(123)

with ground states specified by A, = BY = BY = B? = 1.
As we will compute, the ground state degeneracy of the
untwisted X-cube model on a lattice A with underlying
manifold T? and vertices A° = Zy, x Zy, x Zg,_ is

|G|2(Lz+Ly+Lz)—3 .

GSD (A) = (124)

As log GSD(A) is negligible compared to Ly L, L, in the
the thermodynamic limit, the model is gapped.

2. X-cube models twisted by 3-cocycles

The X-cube model based on an Abelian group G can
be twisted by 3-cocycles slice by slice. Let X7, E? and
Y} denote the intersection of A with the plane

1
v=i- g, Viel, (125)
N
y=7J— 55 v.] € ZLya (126)
1
e=k—g, Vkelr, (127)
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respectively. For example, the cross section X7 is shown
in Fig. 16.

Each cross section is a square lattice, whose vertices
(resp. edges, plaquettes) correspond to the edges (resp.
faces, cubes) of A intersected by the plane. Let E (X¥),
E (EZJ/) and E (Xf) be the set of edges with orientation
chosen as in Fig. 1. By restriction, each 19 6 G gives

e GEG), (S GE(Y) and V% € GER). We notice
that BY, BY and B? are then the ﬂux prOJectors for these
square lattices. A complete triangulation of each cross
section is made as in Fig. 1.

Let w be an assignment that assigns 3-cocycles wyf wi’,

wi € Z3(G,U (1)) to the slices X7, E?, X7 respectively.
For any region I' of A, let

Gy ™ = {9 e MO | B.Jo) = [9) Ve e A*(T) },
(128)

whose elements are called locally flat spin configurations
on I'. For each vertex v and g € G, we define an operator

Py = Z |Y) w

ﬂL9€G/\Z(A[w]

[A, 039, g] (¥ — Kog] (129)

supported on A [v] (i.e., the region made of cubes adja-
cent to v inside A), with

w[Eh_ tyv; 9, g]
w A v;9,g] = L ., (130)
uzlan_',[y, (204 tiv; 0 = Kug, g]
where tfv = v £ (3,0,0),v £ (0, 3,0),v = (0,0, 1) for

u = x,y,z respectively. In addition, X!, is the cross
section perpendicular to the p-direction and containing
tlﬂfv as a vertex. As an example, ¥Z_ = X% (cyan online)

for v = (1,1,1) in Fig. 16. A local colorlng of X!, near

tiv is made by both £ =9 and ¥ —k,g € GA Al Then

[Zvi, v; &, g} denotes the phase factor specified by
Eq. (32) as in the quantum double model on 3, twisted
by the 3-cocycle assigned to X, .

In a periodic lattice A with L, Ly, L. > 2, each vertex
is regular. Thus, w [ i tziv; £, g] can be represented as
a pyramid PY as in Fig. 1(b) with bottom colored by &
and computed by Eq. (12) with the replacement

v=23

¢Eys 1200 010 100 210 120 010 100 210
z -2 -2 2 2 2 2 =2 =2

[01] [13] [34] [46] [56] [35] [23] [02]7 (131)

i.e., replacing [01], [13],- - - by the vertical faces (colored

by &) centered at tFv — 3(1,2,0),t v—%(O,l,O),~--
respectively. Here iﬁ—Q is short for +1(i,j, k). For the
vertex labeled v in Fig. 16, t;v + {120, 919 ...} denote

the eight vertlcal faces (of the cubes ¢, c) that inter-
sect with z = 3 (cyan online) and tJv + {1&, %9 ...}
their translation results by one unit in the z direction.
Permuting the z,y, z coordinates in Eq. (131) gives the

expressions of w [Zvi, tu v; @g] for p =z, y.



Let PY denote the same pyramid over v as P¢ in Fig.1(b)
but with the middle edge oriented as [v'v] (i.e., pointing
downwards) and colored as [v'v] = g. We notice that

w [Bhy v — mvg,g]_l equals the Dijkgraaf-Witten
weight on ﬁff[v (over tfv on ¥4, ) with top colored by
¥ — Kyg. By graphic arguments similar to those given in
Figs. 2 and 3, we see that Vv, vg,v; € A°,Vg,h € G,

(Po)' = Pro, PEP = Pyt [Pg, Ph] =0, (132)

vor T vr
They actually hold with P¢ well-defined by Eqs. (129)
and (130) even if the periodic lattice A has L, = 1 for
some [ = x,y, 2.
Therefore, we have mutually commuting Hermitian lo-
cal projectors

1
P, = @l > Py (133)

geG

labeled by vertives. If all 3-cocycles are trivial, then P,
reduces to A, Hcau B., where ¢ > v means that ¢ con-
nects to v. The Hamiltonian of the twisted X-cube model
on a periodic lattice A is

H=-> P,

vEAO

(134)

with ground states specified by P, =1 for all vertices.

To help the reader get acquainted with our notations,
let us use Pauli operators to express two simple examples.
First, in an X-cube model based on G = Zy = {0,1},
there is a qubit on each face and a projector

1
z __ z z z z
Bc—5(1+Uc+1300'c_1800'0_’_0%00'0_0;0)a (135)
on each cube ¢, where ¢ + —130 (resp. ¢ — —130, c+ —0%0,

¢ — YY) denotes the front (resp. back, left and right)
face of the cube c. Physically, B? requires the z-flux of ¢
to be trivial, as illustrated by the arrowed arc in Fig. 16.
Moreover, the projectors BY and BY are expressed analo-
gously, B. = B?BYBZ, and P~ =[], B. with ¢ 3 v
denoting that ¢ connects to the vertex v.

Suppose that cross sections X7 for all £ are twisted by
w in Eq. (24) in the model based on G = Zy. Up to a
basis transformation ¢ = [], U with U} a finite-depth
quantum circuit defined analogously to Eq. (28) for X7,

=1
we can express qug ) as

plo=n) — <7iNs_) . (4N5+) TIB:-T]ot,  (136)

cov pov

where the factor —i™v= comes from the twisting of %2

and N7, is given by Eq. (29) with [01],[13], - - - replaced
by t£v — £ (1,2,0),tfv - 3(0,1,0),--- as in Eq. (131).

As another example, an X-cube model based on
G = Zy x Zs X Zo (with elements shortly denoted as
000,100, ---) contains three copies of Pauli operators

20

{U(j)u w=x,y,z )

P Jj=1,23
Then B, = H?Zl BY requires the flux triviality, P9 =
[1.5, B, and the untwisted P = P . | JZ()l)z.
Twisting each of ¥4, by w in Eq. (30) adds to P9
two more controlled-Z operators analogous to those in
Eq. (31). The other two generators P20, P9l of P¢ are
expressed similarly.

By analogy to quantum double models, we expect that
quasiparticles violating B, = 1 would show some features

of semions or non-Abelian anyons in these two examples,
which will be further studied in Sec. VI.

on each face p, leading to ng respectively.

B. Twisted checkerboard models

A three-dimensional checkerboard A, as shown in
Fig. 17(a), is obtained by coloring half of the cubes grey
in a cubic lattice. Let A? (resp. A2) be the set of grey
(resp. blank) cubes. Let A” be the set of vertices. We
also divide AY into two groups A? and A%, marked e and
o respectively in Fig. 17(a). In the chosen coordinates,

A ={(i,j, k) € A° | i+j+kis even},
A2 ={(i,j, k) € A° | i+ j+kisodd}.

(137)
(138)

Notice that all the grey (resp. uncolored) cubes are cen-
tered at A + 2 (1,1,1) (resp. AJ + 2 (1,1,1)).

For an infinite system, A° = Z3. In the following
discussion, however, we prefer to identify (x,y,z) ~
(x+ Ly,y,2) ~ (z,y+ Ly,2) ~ (z,y,2+ L,) and con-
sider the resulting checkerboard on T3, where L, Ly and
L, need to be even integers in order to be compatible
with the checker pattern. Such a lattice has vertices
A =7y, xZ, x Zy,, and the infinite case can be viewed
as its thermodynamic limit.

Since the checkerboard is just the cubic lattice with a
checker pattern, we can use notations introduced for the
cubic lattice with or without decoration. For instance,
A2 (') stands for the set of cubes inside region I' and its
subset of grey cubes is denoted by A3(T") :== A3 N A3(T).
In addition, X7 still denotes the intersection of A with
the plane z = i — %, but now it is not only a square
lattice but also a two-dimensional checkerboard.

1. Checkerboard model based on a finite Abelian group

Let G be a finite Abelian group, with 0 denoting its
identity element. A local Hilbert space (also called a spin
for short) spanned by an orthonormal basis {|v, g)} < is
assigned to each vertex v € AY. Thus, the Hilbert space
associated to any region I' of A, denoted H (A° ('), G),
is spanned by

9) =

X v, 0()

vEAO(T)

(139)



(a) Three-dimensional checkerboard A
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b) Triangulation of X} w1th k odd.

R
e

(¢) Triangulation of ¥} with k even.

Figure 17. (a) The three-dimensional checkerboard A with
vertices marked as either e or o. The cross section X} is the
intersection of A with the plane z = k — %7 such as ¥} (cyan
online). (b, ¢) A branched triangulation (red online) of 3}
with the positions of vertices of A on the plane z = k included.
Permuting x, y, z cyclically gives triangulations of X and Z;’.
Some vertices on z = 1 and some cubes intersecting with
1

z = = (cyan online in (a)) are labeled in (b).
5 (cy (a))
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with ¥ € G0 where GA’(™) .= Fun (A°(T'),G) is the
set of functions from A° (T') (i.e., the vertices in T') to G.
Each 9 € GA"(™ specifies a spin configuration on I'. On

the whole lattice, the total Hilbert space is H (AO7 G).
For each grey cube ¢, let 1, : A° — {0,1} be the
indicator function of AY(c), which has the value 1 on
each vertex of ¢ and 0 on any vertex not in c. For g € G,
we define a (generalized) gauge transformation operator
AL = 3" 9+ 1eg) (9)

YeGA?

(140)

to flip spins on all the vertices of ¢. Clearly, it is sup-
ported on c. In addition, let (—1)" : A — {1,—1} be
the function which has the value 1 on each v € A? and
—1 on each v € AJ. For each grey cube ¢ € A2, we define
a (generalized) flux projector (supported on c) as

Y 05 ernw (1m0 [9) (I (141)
9EGA®
It is straightforward to check that
(A9T = A79, A9A = A9t (B.) = B.,  (142)
[A9 Al ] = [A9 | B.,| = [Be. B, ] =0,  (143)

Ve, co,c1 € A3, Vg, h € G. Thus, we have mutually com-
muting Hermitian operators

A, = |G|ZA

geG

(144)

associated with grey cubes, which also commute with
flux projectors on grey cubes. The Hamiltonian of the
checkerboard model is then given by

H= _'ZE: 04c+‘£%)a

ceA?

(145)

whose ground states are specified by A, = B, = 1. As we
will compute later, the ground state degeneracy of this
model on a checkerboard A with underlying manifold T3
and vertices A° = Zp_ x Zr, X Lr, is

GSD (M) = |G|2(Lz+Ly+L2)—6 ’

(146)
As log GSD(A) is negligible compared to L,L, L. in the
the thermodynamic limit, the model is gapped.

For G = Z5, the model reduces to the original checker-
board model defined by Vijay, Haah, and Fu [61].

2. Checkerboard models twisted by 3-cocycles

To relate the checkerboard with a lattice model of
gauge theory, let us look at one cross section ¥ first
and triangulate it as in Fig. 17(b) or (c). Let A™ (£7) be
the set of n-simplices in this triangulation. In addition,



we denote the set of edges with e or o mark by E (X7),
which gives a new square lattice structure of the two-
dimensional checkerboard. Let A3 [£7] (resp. A2 [¥7])
be the set of grey (resp. blank) cubes intersecting with
Y7, which obviously labels the plaquettes (resp. vertices)
of the new square lattice structure of 7. Similarly, let
A'[¥%] be the set of edges in A that intersect with X7;
each ¢ € A'[¥7] is assumed oriented toward the positive
direction of z. Then there is a one-to-one correspon-
dence between E (¥7) and A' [¥7]; for example, the edge
[¢5cs] in 2% shown by Fig. 17(b) corresponds to [vgv;] in
Fig. 17(a). Hence we will simply write E (X7) = A' [X7]
and use them interchangeably.
Given ¥ € GM’ | if we color £ = [vv'] € A*[2F] by

9 (') —

Then, for ¥, we notice that B, at ¢ € A3 [X7] works as
a flux operator and that A7, with ¢ € A3 [XF] works as

a gauge transformation operator, where tjc (resp. t;c)
is the grey cube above (resp. below) ¢ € A2 [¥7]. Based
on this observation, we construct a twisted version of AY,
denoted P9, below.

To prepare for the definition, for any region I of A, let

99 (0) = 9 (V). (147)

Gl ® {19 e GAM) | B, |0) = |[9) ,Ye € A3 (r)} ,
(148)
whose elements are called locally flat spin configurations
on I'. Moreover, for each cube ¢ € A3, let Ac| be the
region made of the cubes whose intersection with ¢ is not
empty. Since A = @) here, A [c] is a cuboid region of size
3 x 3 x 3 centered at c¢. Translating ¢ by a unit in the
positive (resp. negative) p-direction gives a cube denoted
t:[c (resp. t, c) of color different from ¢, for p = z,y, 2.
For grey cube c centered at (¢*, ¢, c*) + %(1, 1,1), let

P= > |HwlAcd.g (-1, (149
9eGA AL
Vg € G, supported on A [c], with
w[Br e 00, (1) g]
wlA, ¢, 9] = —
w[SE 00 - 1), (1) ]
[23 sty ¢ 00, (—1) Tg}
u{m%@aaw—lw»enﬂd
w[E;’; o600, (— ) g
, (150)

w [E§+, the;0(0 —1eg), (1) g}

where X/ (resp. X!_) is the cross section of A passing
the center of t;‘;c (resp. t;c) and perpendicular to the

p-direction. The phase factors w [EE_, ¢ ¢; 99, (—1)° ]

and w S, tfc;0 (0 —1eg),(—1)g] are defined by
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Eq. (32
gauge transformation (—1)° g on ¥,
cocycle assigned to X4,

Analogous to Egs. (132), these operators satisfy

); they are the phase factors appearing in the
twisted by the 3-

(P))" = P;9, P9P! = Pgth, [Py, Ph] =0, (151)

Cco’ T C1

Vg,h € G, Ye,co,c; € A2. Thus, we have mutually com-
muting Hermitian local projectors labeled by grey cubes

e IGIZ

geG

(152)

and the Hamiltonian of twisted checkerboard model

-y R (153)

ceA3

with ground states specified by P, = 1 for all grey cubes.
In order to clarify our notations, let us express some
simple examples explicitly in terms of Pauli operators.
First, a checkerboard model based on G = Zy = {0,1}
contains a qubit at each vertex. For each grey cube ¢ €
A3, Be = (14 e, 02) and P~ = TLocns-erneso Be-
If the model is twisted by w in Eq. (24) along X7, Yk but
untwisted along any ¥ and Zg, then (up to a finite-depth
quantum circuit analogous to Eq. (28) for each ¥7)

(=) T o,

vee

Pl=1) = pla=0) . (_;Nc (154)

where NZ_ zéZj 2358( Uvjoufz)‘i' (1-0j,00, =

0z oz o)+ 3(1 — ok 0 _oi0i_,) and NZ_ is ex-
pressed snmlarly with v replaced by v+2z. We write z for
short (0,0,1) and the positions of vertices {v;};j=1,2,... 8
are shown in Figs. 17(a) and (b).

In addition, a checkerboard model based on G = Zy x
Zo X Zy (with elements often shortly denoted as 000, 100,

--) contains three qubits on each vertex v, manipulated

by Pauli operators {aﬁj o =03 We thus have BY) for

j =1,2,3 on each grey cube c. Together, B, = H?Zl BY
requires the flux triviality, P)° =], Agsemezo Bers and
P, = £(P00 plo0)(po00.y pOi0)(pooy piol)  Because
¢§ and ¢ are inequivalent in Fig. 17(b), the branching
structure there is inconvenient in defining P¢, although it
gives a simple gauge field interpretation of A, and B.. As
change of branching structure only alters the definition
of PY by an unimportant finite-depth quantum circuit,
we can use an alternate one that orders vertices of X7
(resp. X7, Eé’) by their x (resp. y, z) coordinate to get
P9 expressed uniformly. Now, for instance, ¢ < c§ < c§
in Fig. 17(b). Suppose only ¥%_ (cyan online) is twisted
by w in Eq. (30) for the cube ¢ in Fig. 17(a). Then

p1Loo _ pooo., (_1)—( o562 ) 4 (102092

.(_1)%(1 U(}z)zgg zz) ;(1 g<3>z £3>jz Hga)x (155)

veEce



Analogously, twisting each of ¥/ by this w adds two
similar (—1) factors to P10 P010 and P%1. For sim-
plicity, we may use H = — ZCEA’ (P100+P010+P001) in-
stead to get the same ground states as H = — ZceA% P..

Unlike X-cube models, a violation of B, = 1 cannot
always be removed by string operators in checkerboard
models [61], which are thus expected to realize richer fam-
ily of immobile quasiparticles (i.e., fractons) by twisting.
Details of their quasiparticles will be studied in Sec. VII.

IV. GROUND STATE DEGENERACY ON T
TWISTED X-CUBE MODELS

In this section, we consider a cubic lattice A embedded
on a three-torus (i.e., three-dimensional torus) T3, whose
vertex set is A = Zp,_ XLy, XLy, with Ly, Ly, L, € Z. A
general method is developed here to compute the ground
state degeneracy, denoted GSD (A), of a twisted X-cube
model on A. In other words, we are going to determine
GSD (A) of a twisted X-cube model of system size L, x
L, x L, with the periodic boundary condition identifying
(.I + Ly, y, Z) ~ ('Tay + Lyvz) ~ (x,y,z + LZ) ~ ($,y,2).

In particular, explicit computations will be given for
examples based on groups Zo and Zg =T X Ly X Zs.

A. Generic setting

The ground states are selected by the projector
H P,

Hence the ground state degeneracy GSD (A) equals the
trace of P (A). Explicitly,

trP (A |GA° >y 19|HP’7(“ |9)

veGd? negr?

(156)

(157)

where (9|]], P |9} is nonzero if and only if ¥ € Gﬁf
and [T, A7) [9) = [9) . Let

= {n e | I an@ (o) =
vEAO

We notice that Gﬁo

|19>} . (158)

is independent of 9 and that each

n e Gﬁo can be specified by the following data
10 :=1(0,0,0), (159)
ony =n(i,0,0) — n(z—lOO) Vi€ Zr,, (160)
877j _n(()a]? ) 77( - 7 )uVjEZLy7 (161)
3771§ =N (07 Oa k) n (Oa 07 k — 1) ,Vk € ZLz’ (162)

subject to >~ on) = 0,Y\ = z,y, 2 due to the periodic
boundary condition. Therefore,

— |G‘Lm+Ly+Lz—2 )

‘Gﬁ” (163)
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Any 9 € ng assigns group elements to the two non-
contractible loops of ¥ in the z and y directions respec-
tively as

. ) o1 1
i () .:‘Z 19<12,0,k2), (164)
1€LL,,
i (y) = > 0 ojelkf1 (165)
k A ) 27 9 )
JEZLL,
Vk € Zr.. Similarly, for f and X7, we have
101
:’Z 19(2—2,]—2,0>, (166)
J€LL,
VT (z) = Zﬁ(i—lok—l) (167)
1 27 ) 2 b
kE€Zy,
9 (2) = Zz9<0j1k1> (168)
J b 2’ 2 b
kEZL
9 ()= Y ¥ ifljf}() (169)
J ‘ 27 27 )
IEZLL,
Vi€ Zy,,Vj € Zg,. Clearly, they are subject to
9=y = Y 0 (x) (170)
i€Zr, J€ZL,
9= N ()= > i (y) (171)
JELL, k€Zr,
= > Ol =D Ui (2 (172)
k€EZr, ‘€L,

where ¥7Y (resp. ¥¥%, ¥*7) denotes the sum of ¥(p) over
faces lying in the plane z =0 (resp. x =0, y = 0).
Thus, there are |G|*F= T3 choices of {92 (1)}

(i.e., the group elements assigned to non-contractible
loops of X)) for all possible A, n). With {97 (u)} fixed,

we can pick: (1) ¥ (i— 3,5 —3,k) for 1 < i < Ly,
1 < j < Ly, Vk € Z; (2) 9(i—3,0,k—3) for
1 <i< Ly 1 <k<Ly; (3)9(0,j—3k—3) for

1<j< Ly, 1<k<L,. Intotal, there are

|G|(Lm71)(Ly71)Lz+(Lm71)(L271)+(L3171)(L271)

— |G‘LwLyszwaLy7LZ+2 (173)

different choices of ¥ € ng
{9} (1) }. Therefore,

corresponding to the same

‘G|2(Lm+Ly+Lz)—3 % |G|L1LyLz_Lz_Ly_Lz+2

A%
o3| =

_ ‘GleLyLz+L$+Ly+Lf1 .

(174)



1. Untwisted X-cube models

If the model is untwisted (i.e., w = 1), then Eq. (157)
reduces to

0 2

[Site

_ |G|2(LI+Ly+LZ)73

GSD (A) = trP (A) =

(175)
This ground state degeneracy was already mentioned in

Eq. (124) as we introduced the model.

2. Tuwisted X-cube models

In a twisted X-cube model, each n € Gﬁo makes a
gauge transformation labeled by 97} uniformly to each
vertex of ¥} for A = x,y, z. Therefore,

@ T P 1o)
= 11 «i 97 ),

95 (2), 07 -

€71,
T o [0 . % (). 0]

zEZLy

[T wi [T% 9% (@), 0% ), o] - (176)
€71,

We notice that (9| ]], Py |9) is a one-dimensional rep-
. 0 v
resentation of n € G4 . So ZneGﬁo (W11, prw |0) =0

unless the representation is trivial.
Let © be the set of all possible choices of {9# ()} mak-
ing (V[ [], P |)) a trivial representation of Gﬁo. Since

there are \G|LwLyLZ*Lw*Ly*LZ+2 choices of ¥ € Gﬁo for
each selected {9 (v)}, explicit computation shows that
the ground state degeneracy on A embedded in T2 is

GSD (A) = trP (A) =

‘Gﬁo |G|L1LyszszLy7Lz+2 E)

}GAO| =lef. (177)

So we can get GSD (A) by counting the cardinality of ©.
By definition, |©| < 2(L, + L, + L) —3. So the ground
state degeneracy of a twisted model is always less or equal
to that of its untwisted version.

Technically, the triviality of (J| [, P @) |¥) as a rep-

resentation of Gﬁo is equivalent to

I wn (1% 95 () 0% () s

nEZL,

- 77n71] =1, (178)
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V(N p,v) = (2,9,2), (y,2,2), (2,2,y), Vn € G, As

I @ (1595 (), 90 ()

LISYARN

- nn—l}

_ wp (T30 (u) 95 (v) 1]
= 11 woy [T359% (1) s 03 (V) s 1]

nEZL/\
)\ 3. A A
- 11 [;f oy <>ﬂnsv>,n,L] )
n€Zr, n+1 [T 197Z+1< > ?9n+1 <V>777n}

the condition is further equivalent to that 34> € G,
w7>z\ [TS; 192 <:u> vﬁ'r); <V> s _] = 7A7vn € ZLAa (180)

for \ ==z y, z separately, where G is the character group
of G and wy [T% 97 (u) 95 (v),—] is viewed as a one-
dimensional reprebentation of G with — denoting a place
holder for a group element.

To take the constraints given by Egs. (170-172) into
consideration, let

gh,y 7{ a,b) € GI» XGL*|Zanfg,anfh
wi [T% an,bn, —] =7,Vn € ZLA}, (181)

forg,h e G, v € G and \ = x,y, z. In addition, we write

=J oo (182)
'yea
Then it is clear that
o= |J 65,x6", x6; ;. (183)
f.9,h€G
Therefore, the cardinalities of these sets satisfy
=> |0 (184)
~e@
Bl= Y |65 l|ena|leis].  (s9)

f.9:heG

Below, we will explain how to use Eq. (185) to count

|©| in the example based on G = Z3 with w(f,g,h) =
pinf D g@ R

B. Example: G =7,

As discussed in Sec. II B 1, we always have

Wh (fag)
Wh (gaf)

Vf,g,h € G. Therefore, the ground state degeneracy
remains unchanged from Eq. (175), i.e

w [Tg;f,gah] = = 17 (186)

GSD (A) = 22(Latlytle) =3

(187)

no matter how we twist the model.



C. Example: G = Z3 with w(f,g,h) = eimt Mg Dn®

As seen in Sec. [IB2, Vf,g,h € G = Zs X Zo X Zo,
w [Tg; fr9.h] = el (fx9)h (188)

We identify G~ G} in particular, w [T3; fs9, —] €qis
identified with f x g € G.
To express GSD (A) = |©| in the form of Eq. (185),

_2\7h)~/ ) Vg,h,'y S Gv

VA =z,y, 2. To be concrete, we would like to take A = z
as an example. There are many ways to twist the model
with w. Let us discuss case by case.

let us illustrate the calculation of ‘9

1. Some simple cases

Case 1: none of X} are twisted.

Clearly, ©7 ), = 0 unless v = 0 = (0,0,0). For v =
0, there are |G|~ ways to pick {0% (@) }reg, subject
to >, U (x) = g and similarly |G)" " ways to pick
{9% (W) ez, subject to >, Uf (z) = h. Thus, in total

’@;hn/’ = |G|2Lz_2 6%0 = 82Lz_25%0-

050 =D @5 = 8772
Y

(189)
(190)

Case 2: ¥f partially twisted by w.

Suppose that 37 is twisted by w for k € Z with Z some
proper subset of Zy,, (i.e., Z C Zy,.). For convenience of
later discussions, let [g, k, ], be the cardinality of

[9.h,7]}, = {(a,b) € G* x GL‘
Za":g7zbn:h7a’n><bn:’y7vn}, (191)

for g,h,v € G and L a non-negative integer, where a,
and b,, are the components of a and b respectively. Then
[9,h, 7],z labels the choices of U5 () and ¥} (y) for k €

7, summed to g and h respectively. Each cross section

¥ with k € Zr\Z remains untwisted. Thus, 07, - =0
unless v = 0= (0,0,0). In detail,
2 2L.—|Z|-1
‘Qg,hﬁ‘ =00 Z [91,h1,0] 4 |G (bamlziy
g1,h1€G
(192)

where |G|2(L27‘Z|71) is the number of ways to pick 97 (x)
and V% (y) for k € Z;, \Z, summed to g — g1 and h — =y
respectively. Further, we notice that

L
Z [[gaha’Y]]L: Z Héanxbn,'y

g,heG a,beGL n=1
L
225, = (0,0,0)
- Z 6a1><b1,»y :{ B ’ y Yy 5 (193)
ay,b1€G 6%, v 7£ (0,0,0) .
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Therefore, Eq. (192) gives

|62 ), | = 22171 x 82(L==121= D)5 (194)
02 4| =10 ,] = 22171 x 820712170 - (195)
v

We notice that Eq. (195) does not depend on g,h at
all. We thus have a simple expression for the ground state
degeneracy if the model is twisted partially in all three
directions. Explicitly, if 37 (resp. E]y, ¥7) is twisted for
i€ X - ZLw (resp. jey - ZLya ke Z - ZLz)’ the
ground state degeneracy for a system of size Ly x Ly X L,
embedded on T2, given by Eq. (185), gets simplified to

GSD (A) =10] =
2 XIHIYI+12] . g2(LatLytLa—X[=[Y|=Z)=3  (196)
where | X|, |Y| and |Z| are the numbers of cross sections
¥ twisted by w in the three directions respectively.
Case 3: ¥f twisted by w for each k € Zy,.
By comparing definitions, we have

|6;,h,’y| = [[g,hvv]]Lz .

Suppose that the model is partially twisted in the x and

y directions. Then Qg”h‘ and ’83 h’ are given by the
analogues of Eq. (195). Together with Eqgs. (184), (185)

and (193), we get

(197)

GSD (A) = |©] = 22IXIFIYI.

82(L1+Ly7|X|7|Y\)73 . (22Lz 47 % 6Lz) . (198)

If both X and Y are empty, then the model is translation-
invariant and its ground state degeneracy is

GSD (M) = 82Letl)=3 (220 7 612)  (199)

on a system of size L, x L, x L, embedded in T3,

2. Computation of [g,h,v] .

If the model is fully twisted in more than one direction,
its ground state degeneracy is much more complicated.
To find an efficient algorithm to compute [g,h,v],, we
first notice that

[Lgahﬂf}/]]l :5(g><h7’7)7 (200)

[[ga h77ﬂL+L’ = Z [[p’q77]]L [[g 2 h - qa’y]]L’ ’ (201)
p,q€G

which follow from definitions.

To organize the data about [g, h, ], , let’s consider the
group ring ZG? := Z [G x G|, which admits a polynomial
representation

Z[s1,582,83,t1,t2,t3]

<{3§ 1,45 - l}j:1,2,3>

7G? ~ (202)



. M) o@ 4@ 1), 43
We write s% :=s{ 5§ "s§ ', t* :=1t0 t§ 't§  forshort,

2
Va = (a(l),a(z),a@)) € G = 73 and construct a polyno-
mial

Py (81a82783at1at27t3) = Z [g7h?’y]]18gth (203)

g,heG

for each v € G. Because of Eq. (201), p¥ as in ZG? (i.e.,
the L™ power of py modulo {s? — 1,t§ — 1}]_:1’2,3) is

L _ g+h
pr=> ouneg 190l 87t
2 2
mod {s — 1,45 -1}, ,,. (204)

J

For convenience of later discussions, we write

[[gvh]]L B Z ﬂg, hv'YﬂL'

By direct computation using Eq. (205), we get
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Thus, [g,h,7]; can be expressed as a linear combina-
tion of (p, (s, 1)) with s,¢ € Z3, where Zo = {1,—1}.
Explicitly,
1 g L
952l = 55 30 57 oy (s, 0)" L (209)
s,teZS
where p., (s,t) stands for the value of p., at s,t € Z3.
For example, po (1,1,1,1,1,1) = >, - [9.h,0], =
®)
22 and Po (1,1717131771) = Zg,hEG Hga hao]h (71)9 =
6. Then Eq. (205) gives

[0,0,0], = 2£=6 [42 x (—1)F +21 x 3% + 11L} , (206)

where each 0 is short for (0,0,0) € G = Z3.

(207)

9L—6 . 11L+49~3L+294-(—1)L+168), if g=h=0,

lg.n], = { 2L-¢. 11L+17-3L+6-(—1)L—24>,
2k=6. 11L+3L710~(71)L+8),

if gx h=0but (g,h) # (0,0),
ifgxh#£0,

(208)

where 0 is short for the identity element (0,0,0) of G = Zy X Zg X Zs.

8. Translation-invariant cases

The untwisted X-cube model has translation symme-
tries (z,y,2) = (x + 1,y,2), (x,y,2) = (z,y+1,2) and
(z,y,2) = (z,y,2+1). To keep the translational sym-
metries of the X-cube model, for each direction A\ =
z,y, z, we either twist all ¥} by w (f, g, h) = eim g

J

(

or twist none of them. We have seen the ground state
degeneracy Eq. (199) if the model is fully twisted by w in
one direction. Now with Eqgs. (184), (185) and (208), it is
straightforward to compute the ground state degeneracy
GSD (A) if the X-cube model is twisted by w in two and
three directions. Let us summarize the results below.

If we twist X¥,Vi € Zy,, and Z?,Vj € Zr, but none of 37, then the ground state degeneracy is

GSD(A) = G2 > [f.4l,. [9:h]y,
f.9,heG

= oLa+Ly+6L:—9 [252 (=) Ee e 7 s 3Bet e pq1betby g4 (—1)P L 30y 484 (—1)Fv . 3T

+ 7 x 3 x 118y 47 x 38y x 115+ | (209)

The result for twisting any other two directions, like y and z, can be obtained by permuting z, vy, z.
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If the model is twisted in all three directions, then the expression for its ground state degeneracy becomes

GSD (A) = Z [f, 9], Lo, h]]Ly [7, 1.

f.9.h€G

— 9LatLy+L.—9 {11L$+Ly+LZ 11155 x 3LetLutL: 4 49798 - (_1)LI+Ly+Lz

1)bvtls 4 3Ly .
z _3Ly+Lz + (_1)

+ 9156 [35 - (—
+2520 [(—1)F

( 1)LZ+LT + 3Lz
Y. 3Lz+Lz + (_1

(1)t
)LZ .3Lw+Ly]

+252 [115 - (=1)Fvthe 1100 - (—1)Petle 4 110 (—1)Pet ]

+ 84 [115 . glv . (—1)Es 118w L 38 (—1)
+11kv gl (—1)Es 4 118= 300 L (20)
+ 77 [11Fe - 3hvthe 11ty 3ethe g Fe

Ly 4 11L= . gLs .

L, + 11LI . 3Lz
. 3L1+Ly]

(1)
(=12

7 [11Ee By ghe Bt e g 1Bt e ghe] 4 97552 [(—1)Pe o (<) g (et

+3360 [3Le - (—1)Fv 4+ 35 - (—1)F

s 3l (—1)Pe 430 ()P

+ 35 (=1)tv 4 350 - (—1)<]

+ 672 [3Eehy 4 3lutle 4 gLetle] 4 17472 [(—1)“ (=) 4 (—1)“}

+1344 [3%+ 4 3% 4-3%+] + 13440} .

Both Egs. (209) and Eq. (210) are much more com-
plicated than we originally expected. In order to double
check the validity of Egs. (199), (209), and (210), we
can plug in L, = Ly, = L, = 1 and find that all of

them give GSD (A) = |G|>. This is what we would ex-
pect, as in this reduced case all operators A,, B. and
P9 become the identity operator by definition. Thus,
GSD (A) is just the dimension of the total Hilbert space
for L, = L, = L, = 1, which is |G|3 as there are three
faces in total. Despite the complexity of the GSD in
the twisted case, it could be calculated straightforwardly
within our framework. As in the second-to-last para-
graph of Sec. IIC1, it can also be proved stable to local
perturbations with using the results in Sec. VIA. The
key point here is that the GSD for twisted fracton mod-
els depends explicitly on the system size, thus revealing
the dependence of these phases on the geometry of the
system. Moreover, we have noticed a dramatic change
of GSD from partially twisted fracton models to fully
twisted ones. As we will see in Sec. VIE 2, the quali-
tive difference are reflected on their excitations as well,
for which we introduce the notion of inextricably non-
Abelian 1d mobile quasiparticles.

V. GROUND STATE DEGENERACY ON T%:
TWISTED CHECKERBOARD MODELS

In this section, we consider a checkerboard A embedded
on a three-torus (i.e., three-dimensional torus) T3, whose
vertex set is A = Zp x Zr, x Ly, with Ly, Ly, L, even
integers. A general method is developed here to com-
pute the ground state degeneracy, denoted GSD (A), of
a twisted checkerboard model on A. In other words, we

(210)

(

are going to determine GSD (A) of a twisted checker-
board model of system size L, x L, x L, with the pe-
riodic boundary condition identifying (x 4+ L., y,2) ~
(*T7y + Lyu Z) ~ (xa Y,z + Lz) ~ (x7y7 Z)

Below, let us first describe our calculation method in a
generic setting and later illustrate it by explicit examples
based on groups Zs and Zg’ = 7o X Ly X Zs.

A. Generic setting

As a reminder, spins labeled by group elements of
G are on vertices and the projectors P, are associated
with grey cubes ¢ € A2. In this section, we will use a
triple of integers (c*, ¢¥, ¢*) to label the cube centered at
(c",¢¥,c) + 1 (1,1,1).

The ground state Hilbert subspace is the image of the

projector
= I[ ~
cEA3

(211)
So the ground state degeneracy GSD (A) equals the trace
of P (A). Explicitly,

trP (A)

> ¥ o I 7w,

9eGA’ neght  cEeA?

|GA° (212)

where (9|]], P |9} is nonzero if and only if ¥ € GAB°
and [T,z A7 [9) = [9) . Let

Gh = {nea™| I A1) =

ceA3

[9) (213)



3
We notice that Gﬁ’ is independent of ¥ and that each
3
n e Gf}l' can be specified by

=1 (Oa 13 1) y T2 =1 (1707 1) y T3 =1 (17 170) ) (214)
ond ==n(1,0,0) —n (i —2,0,0),Vi even, (215)
onf =n(,1,0) —n (i —2,1,0),Vi odd, (216)
on? =n(0,5,0) =1 (0,5 —2,0),Vj even,  (217)
oY =n(0,j,1) —n(0,j —2,1),¥j odd,  (218)
on; =n(0,0,k) —n(0,0,k —2),Vk even, (219)
on; =n(1,0,k) —n(1,0,k —2),Vk odd, (220)
subject to the constraints
o= o =0Yu=ua,y,z (221)
n odd n even
Therefore,
65| = |G thotEe, (222)

Each 9 € Ggo assigns group elements to the two non-

contractible loops of ¥} in the « and (—1)’c y directions
respectively as

O (x) = ()" Y (—1)'0.0(5,0,k),  (223)
1€LL,,

0i () = (=DM YT (17 0.0(0,5, k), (224)
J€LL,

Vk € Zy,., where 0,9 (1,5, k) =9 (i,5,k) — 9 (i, 4,k — 1).
The branching structure is shown in Fig. 17. Similarly,
the group elements along the non-contractible loops of
2 in the y and (—1)%z directions are

97 () = (=) Y (17 0.9(6,4,0),  (225)
J€LL,

07 (z) = (-1 YT ()" 0.0 (i,0,k),  (226)
kEZL,

Vi € Zr,,, where 0,9 (3, j, k) == 9 (i,5,k) — 9 (i — 1,4, k).
The group elements along the non-contractible loops of
Y% in the z and (—1)’z directions are

09 (2) = (=17 N (=) 9,0 (0,4, k),  (227)
kE€Zy,

9% (z) = (=1’ D (=1)' 9,9 (4,0, k) , (228)
1€ZLL,

Vj € Zr,, where 9,9 (i, j, k) =9 (i, 5, k) =9 (i, 5 — 1, k).
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Clearly, they are subject to

9= Y07y = > 0 (x),

1 even J even
=Y U= ), (229)
4 odd j odd
= S e = 3 i),
j even k even
=D W)=Y iy, (230)
7 odd k odd
0= Y Oile) =Y 97 (a),
k even i even
— Y i) =S 0. (231)
k odd i odd

where ¥*¥ (resp. ¥Y*, 9°*) denotes the sum of (—1)" 9 (v)
over vertices in the plane z = 0 (resp. x =0, y = 0). So
there are |G\2(L””'|rLy+LZ)_9 choices of {9# (v)} (i.e., the
group elements assigned to non-contractible loops of X#
for all possible u, n).

There are GLeLyle—(La—1)(Ly—1)(L.—1)=2(Ly+Ly+L:)+9
ways to color vertices on the planes x = 0, y = 0 and
z = 0 for each chosen {9* (v)}. Further, the number of
choices of 9,9 to complete the coloring of 7 for each k =

1,2,---,L, — 2 equals |G|%(L”_2)(L”_2), where %(LT —
2)(Ly — 2) is the number of cubes in A2 cut by X but
not touching the planes x = 0 and y = 0. At this point

we have actually specified 9 € G/E‘;O already; in total

(G| = |G| e 2B Rt
|G| B Ev L= (L =D)Ly 1) (L2 —1)=2(La+ Ly +L)F0 (939
which simplifies to
‘G%O _ ‘GI%LmLyLz+Lz+Ly+Lz—3. (233)

1. Untwisted checkerboard models

If the model is untwisted (i.e., w = 1), then Eq. (212)
reduces to

AL | n®
o
G
2(Ly+Ly+L.)—6

:‘G|( +Ly+L:)—6

GSD (A) = trP (A) =

(234)

This ground state degeneracy was already mentioned in
Eq. (146) as we introduced the model.

2. Tuwisted checkerboard models

3
In a twisted checkerboard model, each n € Gg' makes
a gauge transformation labeled by 95, uniformly to ¥}



for A = z,y, z. Therefore,

o T P2 o)

ceA?
= I wf [17%97 (). 97 (=) 0] -
€21,
IT «¥ [1%0Y (2), 9 (z), om!] -
’LGZLy
[T wi [1% 95 (2), 05 ) omi] . (235)
i€LL,
We can view  (9|]].cas P [¥) as a one-

3
dimensional representation of n € Gg . Therefore,

s I = unless the representa-
3 et (W Tleeag PV 10) = 0 unless the rep
tion is tr1V1al.
Let © collect all possible choices of {9, (1)} making
3
3 e the trivial representation o *. As
(9] TTocag PX [0) the trivial fon of G*. A
there are |G LalyLe—(La—1)(Ly—1)(Lz =D =2(Lo+Ly+L:)+9 |

3
|G|%(L””_2)(L?’_2)(Lz_2) choices of ¥ € Gﬁ‘ for each cho-
sen {9# (v)}, explicit computation shows that the ground
state degeneracy on A with underlying space T? is

GSD (A) =trP(A) =
‘GILmLyLZ—(Lm—1)(Ly—1)(LZ—1)—2(L$+Ly+Lz)+9 )
AS

Gylle
|G|;<L$—2>(Ly—2)<Lz—2),’ a| 1]
|G|

=lal’le]. (236)

Therefore, we can get GSD (A) by counting the cardinal-
ity of ©. By definition, |©| < 2(L,+ L, + L.) —9. So
the ground state degeneracy of a twisted model is always
less or equal to that of its untwisted version.
Technically, the triviality of (J]]] ez pre [9) as a

representation of Gﬁo is equivalent to requiring that

I @i [T%59) (1), 9) () sm — 2] =1, (237)
nEZL)\
v()‘vlf"a V) = (a:,y,z) ) (y,Z,J?) ) (Za'ray)v V’I] S GL)‘- Since

I ) [7%0) (), 9 (v)

nEZL)\

- nn72}

_ wp [T595 (W), 97 (v) 1]
B H w% [Ts; ﬂi\z <:u> aﬂ% <V> 777n—2}

neZLA
- 10 wpy [T307 (1), 93 (v) ] 235)
nélr, Wi o [T 0010 (1), O n (V) 1]

the condition is further equivalent to that 376\, 7 e é,

wr);, [T?’; 19;\1 <:u> 7192 <I/> ’ _] = ’yfz\ (mod 2),Vn € ZL/\v (239)
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for A = z,y, z separately, where w) [T3; 97 (1) , U (v), —]
is viewed as a one-dimensional representation of G with
— denoting a place holder for a group element and G
stands for the character group of G.

To take the constraints given by Egs. (229-231) into
consideration, let

8)\,/1

g.h,y

={(a.b) e GH x o

D an =9 bu=h
wf; [Ts;an,bn, —] =~,Vn € 272, + /@}, (240)
forg,h € G, v € CA?, A==z,y,z and kK = 0, 1. In addition,

we write
MNK o AR
Qg,h — U QQJW’

veG

(241)

It is straightforward to see that
0= |J O7)x07,x0%) x0%, xOr | xO5 . (242)
f.9.heG

Therefore, the cardinalities of these sets satisfy

A\ K
o= e, (243)
~eG
ol= > TII less|levil|eis] @
f.9,h€G KEZ2

Below, we will explain how to use Eq. (244) to count

|©| in the example based on G = Z3 with w(f,g,h) =
eiwf(1>g(2)ll(3>

B. Example: G =7,

As discussed in Sec. [I B 1, we always have

o[rinadl = 208

Vf,g,h € G. Therefore, @ includes all possible choices of
{9 (1)} and hence |6] = \G|2(L$+L’9+LZ)_9. Then
GSD (A) = |G] |0 = 23 et Lyt L) =6,

which remains unchanged, no matter how we twist the
model.

=1, (245)

(246)

C. Example: G =73 with w(f,g,h) = imf Mg Dr®

As seen in Sec. [IB2,Vf, g, h € G =7 X Zy X Zo,
w [T f,g, h] = emXDN, (247)
We identify G =~ G; in particular, w [T?’;f,g7 —] € G is
identified with f x g € G.

First, let us illustrate the calculation of ‘8

g,hyy
Vg,h,v € G, Vk = 0,1 for some simple cases. The com-
putation of @;\;v‘ for A\ =,y is similar.




1. Some simple cases

Case 1: none of ¥ are twisted.
Clearly, @g hv = 0) unless v = 0 = (0,0,0). For v =0,

there are |G| L= " ways to pick {0; <x>}ke22Lz+m subject

t0 Y reoz, +r Vi (z) = g and similarly |G|%LF1 ways to
pick {97 <y>}k€2ZLZJ”i subject to ZkGQZLern V7 (z) = h.
In total, Vk € {0, 1}, Vg,h € G,

= 1GI" 7 by0 = 8500,

Z (@g hﬁ] 8L==2,

Case 2: ¥ partially twisted by w.
Suppose that X7 is twisted by w for k € Z,; C 2Zj,_ +~,

‘9 (248)

g.h,y

‘@g; (249)

where Kk = 0, 1. in

g.h,y
terms of [g,h,v],, the cardinality of the set [g,h,7],
defined by Eq. (191). We notice that [g1, h1,7], | labels
the choices of 97 (z) and 9} (y) for k € Z,, satisfying
9% (x) x V% (y) = v and summed to g, and hq respectively.
The remaining untwisted ¥} with k € (2Zr, + k) \Zx
still requires v =0 = (0,0,0). Thus,

We would like to express )9

Z,K L,—-2|Z,|-2
O] =000 3 Tt Ol G252,
91,h1€G
(250)
L.—2|Z.|-2 . 1 os
where |G| is the number of ways to pick ¥ (z)

and 9% (y) for k € (2Z1, + k) \Z,, summed to g — g7 and
h — hy respectively. With Eq. (193), it gets simplified to
o5

‘ = 2912l  gL=2Zal-25 (251)

g.h,y

‘Qg:h

‘@g ,W’ = 9912x|  gL==21Zx1=2 (252)

We notice that Eq. (252) does not depend on g,h at
all. Thus, if XF (resp. XY, Xf) is twisted for i € X,; C
27y, + k (resp. j €Y, CQZL +r, k€Z, QL. + k),
then GSD (A) for a system of size L, xLyxL, embedded
on T3, given by Eqs. (236) and (244), getb simplified to

GSD(A) =G’ 6] =
22 XIHIYI+12] | g2(LatLy+L:~IX|=|Y|=IZ])=6  (953)
where X = XoU X,,Y =YyUY,, Z2 =2,UZ;. In
particular, it reduces to Eq. (234) as expected, if X,Y, Z
are all empty.
Case 3: ¥ twisted by w for each k € 2Zp, .
By comparing definitions, we have
030, = lo.hl. (254)
In addition, X} (resp. X7 , ¥¥) may be twisted by w
for k € Zy € 2Zy_ + 1 (vesp. ¢ € X, € 2Z1, + K,
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Jj €Y, C2Z, +r with K = 0,1) as well. Then ‘92,11‘
(resp. ‘@;:; and ‘93;” )
analogue for the z and y direction). In total, Egs. (193)
and (244) give

is given by Eq. (252) (resp. its

(0] = 82La+Ly=IXI=I¥ =1 Z1D+L =0 | g0l XI+IY [+]2]
: (QQ%LZ 7 x G%Lz) . (255)

where X = XgU Xy and Y = Yy U Y.
ground state degeneracy is

Therefore, the

(Lot Ly—|X|=|Y|=|Z1])+L-~6

GSD (1) = |G’ o] =

. 22|X\+|Y\+\Zn : (22%Lz +7x6HE) L (256)

If | X| = |Y] = |Z1] = 0, the model is translation-
invariant and its ground state degeneracy reduces to

GSD (A) = 82(La+Ly)+L:=6 (22%Lz 17 x 6%L2> (257)

with system size L, x L, x L, embedded on T3.

2. Translation-invariant cases

The untwisted checkerboard model has the transla-
tion symmetries (z,y,z) — (z+2,y,2), (z,y,2) —
(x,y+2,2) and (x,y,2) = (x,y,z +2). To keep these
translation symmetries, we either twist all ¥ for n €
271, + k together or twist none of them, where x = 0, 1.
With Egs. (205), (208), (236), (243), and (244), we can
compute the ground state degeneracies GSD (A) of each
translation-invariant case. Let us list the results for some
examples below.

Case 1: half of X% ’s are twisted by w (e.g., X3 is twisted
by w for k € 2Zr,_ ).

The ground state degeneracy is given by Eq. (257).

Case 2: half of ¥ ’s are twisted by w in both the x and
y directions (e.g., both £7 and E? are twisted by w for
i€2Zy, and j € 271, ).

The ground state degeneracy is

GSD (8) =|GI* @)

3 Ly+L,+2L.—8
=G Y [figlip, lg: by, G177
f,9,he€G
Ly+L

— 9% Lo+3L,+6L.—18 [252 (1) y

Ly

Ly
+T77Tx3 2

L +Ly 1 1 1
= 484 (—1)3Le —1)3Lv . g3ls

+7x38Le 1135y £ 7 % 335y x 11%Le

330y 484 (
(258)

The result for twisting by half any other two directions,
like y and z, can be obtained by permuting x, vy, 2.



Case 3: half of ¥\ ’s are twisted in all the three direc-
tions.
The ground state degeneracy in this case is

GSD (M) = |GI*|6)
=IG* > 190 [g.h] ey [h, fleg |G 50070

f.9.h€G

=glotbutla= N T [f gl [g M ey [h, Sl (259)
f.9,heG

where 3 . ,cqlf, g]]%Lm lg, h}]%Ly [k, f]]%chan either
be calculated with Eq. (208) directly or be expressed by
Eq. (210) with L,, L, and L, replaced by 1L,, 1L, and
1L, respectively.

Case 4: each X7, is twisted by w for k € Zr,,.

Here, the ground state degeneracy is give by

GSD (A) =G| |6

3 2 2L,+2L,—8
—6* Y [l (G
f.9.h€CG

—Q2La+2Ly—6 . oL= (11L= 4 14 % 335 4 133 x 3=

Lz Lz
2 2

+1344 - (1) 504 - (—1) 35 4 2100) , (260)
where [f, g]]2LTz is the square of [f, g]]LTZ specified by
Eq. (208).

Case 5: both X7 and E? twisted by w fori € Zy, and
] € ZLy .

The ground state degeneracy for this case is

GSD (A) = |G| 10|

=IGI* Y 1f.9l% [o. D%, |G
f,9,h€G

SO W V) e P

f.9,h€G

(261)

where [f, g] L. and [g,h]z, are given by Eq. (208). Ex-
2 =

plicitly, GSD (A) can be expressed as a long polynomial
in terms of 28, (—1)5L*, 3202 11255 with A = z, y and
2L,

Case 6: all X7, E? and X7 twisted by w for i € Zr,
j e ZLy and k € ZL;,

The ground state degeneracy is

GSD (A) = |G |6
=GcP > If g}]g%m [[g,h]]QLTy [[h,f]]QLTz :

f.9,h€eG

(262)

where [f,g]z., [g,h]r, and [h,f]r. are given by
2 - )
Eq. (208). Explicitly, GSD (A) can be expressed as a long
polynomial in terms of 25, (—1)§L*7 3205 and 1125
with A =z, y, z.
To conclude, we note that our formalism allows us to
explicitly calculate the GSD of each twisted checkerboard

31

model, which is also stable to local perturbations by the
argument in the second-to-last paragraph of Sec. IIC1
using the results in Sec. VII' A. Once again, we empha-
size that the dependence of the GSD on the system
size clearly reflect the geometric nature of gapped three-
dimensional fracton orders. Also, a dramatic change from
partially twisted model to fully twisted model is already
observed in GSD. As we will see in Sec. VIIE5, this
qualitative difference is reflected on excitations as well;
in particular, fully twisted checkerboard model may host
inextricably non-Abelian fractons.

VI. QUASIPARTICLES IN TWISTED X-CUBE
MODELS

We have seen that there is a lot of freedom in twisting
the X-cube model by 3-cocycles. Below, by an X-cube
model based on an Abelian group G, we refer to any of
these twisted versions, including the original untwisted
one. We are going to develop a universal method for
analyzing the properties of quasiparticles in these models.
Technically, by a quasiparticle, we mean a finite excited
region. Without loss of generality, we can simply study
excited cuboids.

To study all possible excited states of a cuboid C, such
as the grey one of size 2 X 2 x 2 in the center of Fig. 18,
we remove all the requirements P, = 1 for v € C. In
addition, we would like that the other excitations are
far away from C. So we pick a much larger cuboid C’
containing C deep inside, as shown in Fig. 18, and study
the Hilbert subspace selected by P, = 1 for v € ¢’ — C°,
where C° is the interior of C.

Such a Hilbert subspace describes an isolated excited
cuboid C and it may be decomposed into more than one
irreducible sector according to the actions of all local op-
erators near C, which leads to the notation of particle
type. An excited spot (i.e., quasiparticle) is called sim-
ple if it is already projected into a definite particle type,
which cannot be changed locally. In the following, we will
work out the classification of particle types in the twisted
fracton models. It turns out that each particle type can
be labeled by the x, y and z topological charges subject to
some constraints. Then the fusion of topological charges
can be described by the coproduct of D¥ (G).

Further, we notice that a quasiparticle is mobile in the
x (resp. y, z) direction if and only if its x (resp. y, 2)
topological charge is trivial. A quasiparticle is called a
fracton if it is not a fusion result of mobile quasiparti-
cles. Necessarily, a fracton has to be immobile; it has
non-trivial topological charges in all three directions. In
addition, we will also describe some novel braiding pro-
cesses of mobile quasiparticles with restricted mobilities
in this section.



Figure 18. An excited cuboid C = [0, x1] X [yo, y1] X [20, 21]
isolated from other excitations outside C’ in an X-cube model.
The Hilbert space is spanned by the states !X,X; s, D;> with
sand s = (’Si:(rl*l? ) Si17550+17 Tty 851 ) S§0+17 Ty 521) spec-
ifying the sums of group elements on the faces in the corre-
sponding membranes (colored orange, blue, green and red on-

hne)a g = (gio-ﬁ—la e 7.9:%17950-’-17 e agglmgjo-&-h e 7921) de-
scribing fluxes around 9C, and x (resp. X) being a spin con-
figuration on OC’ (resp. OC) compatible with g.

A. Particle type and topological charges

Let C = [xo, 1] X [yo,y1] X [20, 21] be a generic cuboid
and C' = [x(, 2] X[y}, ¥1] %[z}, #;] a much larger cube con-
taining C, as shown in Fig. 18. Further, let M = ¢’ — C°,
where X° denotes the interior of any topological space
X. Then M is a three-dimensional manifold with bound-
ary. We denote the set of cubes (resp. faces, edges, ver-
tices) inside M by A3 (M) (resp. A% (M), Al (M), AY (M)).
Let H(AZ% (M), G) be the Hilbert space describing all the
physical degrees of freedom on M. To classify generic ex-
citations within C, we need to analyze the subspace of
H(A? (M), G) selected by the projector

I ~-

veEAO(M°)

P (M) = (263)

Let Ho (M) denote this subspace, i.e., the image of P (M).

Let M7 with ¢ € {zp+1,25+2,---,21} (vesp.
Mg with 7 € {yy+1,y0+2,---,91}, M with k& €
{zb+ 1,2, +2,---,2]}) be the intersection of M with the
plane z = i — % (resp. y = j — , z=k— 5)7 i.e., the
region of X7 (resp. Eé-’, x7) in81de M. As in Fig. 7(b),
we embed M? (resp. M?, M7) into a triangulated annulus
M, (resp. W;, M;). If the plane does not cut C, then M;
(resp. Wj, M;) reduces to a topological sphere. We pick
the base point of the outer/inner boundary of M; (resp.
M, M) to be in the line (y,2) = (y§,20) /(yo, z0) (resp.

(Z,$) = (Zéa xé) /(207x0)7 ((E, y) = ("Té)?yé)) /(an yO))'
For convenience, we write C* := {zg+1,20+2, -+, 21},
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CY = {yO + 17y0 + 2)"'73/1} and C* := {ZO + 1720 +
2,--+,21}. Let g7 (resp. g;’, g%) be the group element
associated with the inner boundary of M; (resp. ﬁy Mz)
For ¢ §§ c” (resp jEcY k¢ CZ)7 we write gl =0
(resp. gj =0, gi = 0) because oMy =0 (resp. oM =0,
OM;, = ()). Hence, to describe the fluxes, we need

= (g%, 9%,9°) € G x G% x G%, (264)
= (g%, 41, 9% 40, 9% ) € GY, (265)
(gzl;/oﬂ-l’gyo-i-Z7 T 7gy1) € ch? (266)
(9z0+1>9z0+27 T 7921) €G%. (267)

Often, g (resp. g*) is also written as (gh)h=0,"" (resp.

(97 );ccx)- These data are subject to the constraint

> Yo g
n=x,y,z nECH
We denote the set of all allowed values of g by F'(C). As

a group, F'(C) is isomorphic to G¥1~%o+y1—yotz1—20—1
Using the triangulations of M; , ﬁg and M;, we define a
set of vectors forming an orthonormal basis of Ho(M) by

}X?Y753D3> = Z

2
9eay ™ (s,x,%)

Z (ﬂ;DZ)

— e [0 (269)
|G|§|A (M°)]

with g € F(C), s € G, s € G x G x G, and x €
GA*(99) (resp. ¥ € GA(99)) being a spin configuration
on 9C’ (resp. OC) compatible with g. In detail, s specifies
the sum of group elements on the faces in the lower left

square region (orange online) and G (s X, X) denotes

the set of ¥ € G4 B ‘0 compatlble with s and coinciding
with ¥, x on 9C, C’. In addition,

Z (9;D5) H z¢ (9;D3)
i= a:0+1
Y1
II 2 (v:pg)- H Z; (9;D5), (270)
j:y6+l k= zO—I—l

where Z}/(9;Dj) is the Dijkgraaf-Witten partition func-
tion of a ball with surface —M, for n ¢ C* or a solid torus
o DZE (as in Fig. 8(b)) for n € C*
in the coloring specified by 9. The minus sign before M,
means that the orientation of W,i is pointing toward the
inside of the solid according to the right hand rule.

To manipulate the states within Hg (M), we can define
a collection of operators P¢ for v € A% (9C) (resp. v €
A% (8C")), commuting with P(M) and supported near 9C
(reps. OC'), by Eq. (129) with A replaced by M and using
the triangulations of M; Mg, M;. Clearly, ¥ and x can
be manipulated by PJ for v € A°(9C) and v € A° (aC)
respectively. Thus, they are local degrees of freedom and

with surface (—M.)



can be neglected in the discussion of particle types. The
reduced Hilbert space, denoted by H.(M), is spanned by
|s,D5) with g € F(C), s € G and s € G x G% x G%.

As in the twisted quantum double models, we can de-
fine states |s, D5DE, ) by replacing D by DD}, in Eqs. (269)
and (270). Analogously, we have

|5, D5D) = dgn [ [l i (sh,t) |s,D5™) . (271)
s

This motivates us to consider the algebra

D] =CG®D,[C]®D,[Cl®D,|[C] (272)
with each factor D, [C] and its basis given by
w st — ‘SZ

| = QD" (G), Dg.= D (273)

neck neck
Vi = z,y, z. For short, we write Dg = DS; ®D55 ®D§z,

where g = (g*%,g%,g9%),s = (s%,8Y,8%) € G x G% x
G% .
In addition, Vt € G, we have operators

Pl = 11 P, (274)
vEAC(OC" k<z<z1)
Poo= ] @), (275)

vEAC(8C,z>k)
with A%(8C,z > k) = {(z,y,2) € A°(0C)|z > k} and
A0 (8C k<2< 21) = {(z,y,2) € A (OC") [k < 2 < 21 }.
which do not change x, X¥. They act on H, (ﬁ) as

|t+$’D§>’ k < zo,

Pl |s,Dg) = S,D?’in,>, w<k<z, (276)
|57DZ>7 k >z,
|5+t’DZ>’ k < zo,

Ply|s,D5) = s,D;D;5i>, o <k<z, (277)
|s,D5) k> 2.

Similarly, replacing z > k by « > 4 and y > j, we have
7h —

operators Px>z, Pyh>J supported near 9C" and Poisis Pys;

supported near dC. Moreover, there is clearly a projector

Ty, (resp. Th) supported on OC" (resp. IC) that acts as
Th|57DZ> :Th|S,DZ> :5}1’9 |S,DZ>. (278)

In terms of these operators, we can define a left action
7 and a right action T of D (C) on Hg (ﬁ) as

(S®DS z>zo H‘Pacl>1 H y>y szikv
1€CT JEecy kec*
(279)
ﬁ(S@)]);) =T Pz>z0 H Pr>1 H Py>] H Pz>k7
1€CT Jecy kec*
(280)
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Vs e G,Vs,g € G x G® x G® . By construction,

7 (s® DF)|t,D},) = |s + t,DED},) (281)

7 (s® D) |t,D},) = |t + s,D,D5) . (282)
Thus, H. (M) is equivalent to A[C] as a D (C)-D (C) bi-
module by the obvious map

H. (M) = A[C]: |s,D5) — s ® DS, (283)

where A [C] is the subalgebra of D [C] spanned by s ® Dg
with g constrained by Eq. (268), i.e., g € F' (C).
Since both CG and D“» (G) are semisimple,

p= D w2@rw (284)
(g,ah)hcon” e
gives an isomorphism of algebras
D~ @ L)LV, (285)
(g,ah)hcon®” 1

In detail, the character group G ofa group G collects all
its one-dimensional representations and V, = (g4, Vy) is a
representation corresponding to q € G acting on Hilbert
space V;. Moreover, a” labels equivalent classes of irre-
ducible representations of D*» (G) and Ve = (pau, Var)
is an explicit representation on a Hilbert space Vu cor-
responding to a?. Explicitly, a? is specified by a pair
(gt o) with g € G describing the flux and g# an irre-
ducible w” u-representation (up to isomorphism) of G.
Refer to Appendlx B 5 for details of these representations.

Denote the set of a = (g, at )/ 2" = mal®

n necH (q gnvgn)necﬂ
with (gi)hze.””” € F(C) by Q[C|. Then the composition

H, (M) M A[d] %}
@ L ®®£ = P VeV (286)
ac(c acQ|c]

is an ismorphism of Hilbert spaces respecting both left
and right actions of D [C], where

p= aEB

€n(c]

dimg Ve

mg‘@@ Ter
Va =V, ® Q) Vas.
w,n

The normalization for each sector in p is picked such that
the inner product structure is respected. Clearly, £ [C]
labels particle types of the excited cuboid C and V, (resp.
V#) describes the degrees of freedom near 9C" (resp. 9C).
Physically, ai = (g7, 0;) can be detected by braiding a
pair of quasiparticles in the x and y directions via op-
erator supported near grey region in dC’ as in Fig. 19.
Thus, af, is called a 2z topological charge. Actually, ¢ can

(287)

(288)
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Figure 19. A z topological charge aj of an excited cuboid
C = [zo, z1] X [yo,y1] X [20, 21] can be detected by braiding a
pair of quasiparticles along C’ with operator supported near
the grey region in C’. Quasiparticle 1 is kept above z = 21
and quasiparticle 2 moves near the plane z = k (cyan online).

also be viewed as a z topological charge, since aj reduces
to (0, 04) when quasiparticle 2 is lowered below z = z.
Similarly, a¥ (resp. a?j) can be detected by braiding pro-
cesses in the y, z (resp. z,x) directions and is called a z
(resp. y) topological charge. Also, ¢ can be viewed as an
z and a y topological charge.

Distinct from conventional topological orders, the
number of allowed particle types of a finite excited re-
gion C in a fracton model increases/decreases as the size
of C grows/shrinks. If a quasiparticle can be localized in
a smaller cuboid C, = [a{,af] x [a¥,a}] x [a§,ai] C C,
then its particle type a = (g, a)h25:Y"* € Q|C] satisfies

ap, — (07 Qq) I
n 0’

Yu = x,y,z, where o denotes the trivial representa-
tion (i.e., the counit) of any D“»(G). In other words,
Q[C,] can be viewed as a subset of 9 [C]; each V, for
a € Q]C,] carries an irreducible representation of D [C]
for any cuboid C containing C,.

< M
"=t (289)
n > ay,

B. Fusion of quasiparticles

Suppose that there are two spatially separated excited
cuboids C, and C, containing deep inside a much larger
cuboid C'. Let M := C’ — €S — Cp. The discussion in the
above subsection can be repeated here for the two-hole
manifold M. With the spin configuration on dC’ and the
local degrees of freedom near C, and C; fixed, we are left
with Hilbert spaces V[a,b] labeled by a € Q][C,] and
b € 9Q[Cy]. Using two copies of Eq. (287), we have

Via,b] ~ Vo ® Ve, (290)
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where V, and Vy are defined by Eq. (288).

All these states can be viewed as an excited cuboid
C, where C is cuboid containing both C, and C; inside
C¢’. With operators supported on C, the Hilbert space
Va ® Vp may be further reduced. To determine the total
charge of C, we study the action of D [C] on via 7 defined
in Eq. (279). Analogous to Sec. IIC2, it is specified by
the coproduct

A=40 @ & AL

n=x,y,z nECH

(291)

where A, : CG —- CG®CG, g — g ® g is the default co-
product of CG. The vector space of intertwiners between
the representations V. and V4, ® Vy of D (C)
VA = Hom (Ve, Vo @ Vp) (292)
encodes the ways of fusing @ and b into ¢ € Q|[C]. In
particular, N&, := dimc VAP is the corresponding fusion
rule. It is possible to fuse a and b into ¢ if and only if
Ng, > 1. Moreover, N5 > 1 implies q. = g4 + qp, where
a= (Qtza a%)ZECZL’ b= (qba bl’rji)zecg‘ and ¢ = (qc’ cﬁ)%ecu-
Similarly to the discussion in Sec. IIC2, in order to
describe three or more excitations, we need to be careful
with their associations.

C. DMobility of quasiparticles

Now let us think about moving a quasiparticle from
one cuboid C, = [af,af] x [af,al] X [a§,ai] to another
Cy, = [b3,b7] x [bY,bY] x [b§,b7]. The movement can be
made by a local operator if and only if the initial and final
states have the same particle type (¢, g4, ol)hce?” €
9 (C) as an excited cuboid C, where C is a larger cuboid
containing both C, and C,. Because C, NC, = @), we have
lay,al] N [bg,bY] = 0 for at least one of pu = x,y,z, in
which case we say that the quasiparticle is mobile in the
u direction.

For instance, suppose af > b5i. Then the position of
C, implies that Pzt>ag acts as g, (t), while the position

of Cp implies that P§>a5 acts trivially. Hence q € G has
to be trivial. Obviously, it follows that ¢ is trivial if the
excited cuboid C of type (¢, g%, ol)hce”” € Q[C] is a
fusion result of mobile quasiparticles. In fact, it is not
hard to see that the converse is true as well. Therefore,
an excitation is a fracton (i.e., a finite excited region that
is not a fusion result of mobile quasiparticles) if and only
if ¢ is not trivial.

In fact, the mobility of an excited cuboid C, in the z
direction implies that af is trivial for all k& € C* as well.
To see this, we notice that the operators 7 (D, [C4]) in
Eq. (279) are supported near ¢’ N{(x, y,2) |20 < z < 21},
the excitation can be moved away along the z direction
without touching the support region of 7(D, [C,]) and
hence z topological charges af are conserved. Thus, if af;
is nontrivial, then it is not possible to move the excitation



away along the z direction. In general, all ;1 topological
charges must be trivial in order for a quasiparticle to be
mobile in the p direction. In addition, if a quasiparticle
is mobile in two directions, then only topological charges
in the third direction can be nontrivial. This is an im-
portant result of our work, since it relates the mobility of
quasiparticles to their topological charges.

D. Braiding of mobile quasiparticles

If an excited spot is mobile in the p direction (resp. in
both the p and v directions), we call it a p-particle (resp.
uv-particle).

1. Braiding of 2d mobile quasiparticles

For braiding of 2d mobile quasiparticles (i.e., exci-
tations mobile in two dimensions), the discussion in
Sec. IID can be repeated. For example, the result of
the measurement described by Eq. (103) involving an ex-
change of two identical xy-particles with z topological
charges {0} }xec- is

H dlm(c Vaz - H

kec* kec=

tr (PR}, Va: ® Vaz)
(dimg Ve: )

;o (293)

where R} is the universal R-matrix for D*k (G) and Oz
is the topological spin associated with the representation
Va; defined in Eq. (B64). The quantum dimension and
topological spin of the xy-particle are

di = [] dimc Ve, (294)
kec?
tr (pR:, Vaz ® Vaz)
0 =TT 6, = k ke 295
¢ H i H dimg Vg= (295)
kec? kec= k

The results for yz-particles and zz-particles are analo-
gous.

In general, the topological charges of a quasiparticle
can be detected by braiding 2d particles around it. We
may measure the quantum dimension d,x associated with
each p topological charge a# through Eq. (89). Further,
this leads to a notion of quantum dimension of any par-
ticle type a = (g, al;) = (¢, g%, o), defined by

dy = Hduq.
m,n

For twisted fracton models based on an Abelian group,
the quantum dimension of a? = (g¥, o) equals the de-
gree (i.e., the dimension) of the representation .
Crucially, the quantum dimension of fracton (g, o) (i.e.,
with a# = o0,Vn € CH,Vu = x,y,z but ¢ # 0) is one,
where o denote trivial topological chz}\rge and 0 the iden-
tity element of the character group G ~ G. Thus, every

(296)
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Figure 20. Arrows 1,3 (resp. 2,4) indicate that the move-

ments of quasiparticle b (resp. a) made by operators O,
(0N (resp. OF, (08)") supported near the y (resp. z) axis.
A full braiding of the z topological charges can be realized by

ot (08 os0os.

fracton (g, at)h c. is a fusion result of a fracton with
quantum dimension 1 and some mobile particles; explic-
itly, (¢;a})hecn = (¢:0) x [, ,,(0,af). Therefore, there
is no inextricably non-Abelian fracton in any tw1sted X-
cube model.

2. Full braiding of 1d mobile quasiparticles

Given two quasiparticles of types a and b mobile along
two different directions (e.g., the z and y directions) re-
spectively, a full braiding of them can be easily made, as
depicted in Fig. 20. Let O2 be an operator supported
near the z-axis that moves the z-particle in the way in-
dicated by arrow 1 pointing towards the positive x direc-
tion. This operator is normalized such that (02)' 02 =1
on the z-particle. Similarly, we have operators (9;’ and

((975‘)Jr supported near the y-axis that move the y-particle
forth and back as indicated by arrows 1,3 in Fig. 20;
they are normalized by (OE)T (95 =1 on the initial state
of the y-particle. Then ((’);E‘)T (OZ)T (9;(93 describes a
full braiding of the z topological charges of a and b. If
the two quasiparticles carry z topological charges aj, b

separately and a definite total z topological charge ¢
together, then the full braiding acts as a scalar

(Oa) (Ob) anb H

2
eake,,z (297)

where Quz , 9bz and ch are the topological spins associated
with the representation Vg:, Vpz, and Vcz respectively,
defined in Eq. (B64).

Similarly, we can make the S-matrix measurements.
For example, S7%, is the expectation value (on the vac-

uum) of the process shown in Fig. 21, in the normaliza-
tion that OTO = 1 for any step O on its initial state.

The result is
ub - H S

where Sqzp: can be computed by Eq. (109) on represen-
tations V = and Vp: of D¥s (G). Analogously, we have

7o (resp. Sz ) for braidings in the yz directions (resp.
zx directions).

(298)



Figure 21. An S-matrix measurement SZ, is associated with
the process made of three steps: (1) creating a pair of z-
particles a, @ and a pair of y-particles b, b from vacuum; (2)
a full braiding of @ and b, i.e., moving them according to
arrows 1,2,3,4 in order; (3) annihilating the pairs a,a@ and
b, b back to vacuum.

Figure 22. Two y-particles both of type a are braided by
U3 OSUT, where UT splits the y-particle of type a on the right
into an z-particle and a z-particle, U35 fuses the z-particle and
the z-particle into the y-particle of type a on the left and O3
is hopping operator for the y-particle of type a. In addition,
U, Us and O3 are supported near the corresponding arrows
respectively.

8. Half braiding of 1d mobile quasiparticles

It is also possible to make a half braiding in order to
exchange two 1d mobile particles. For example, two y-
particles, both of type a, can be braided by U$OSUT as
illustrated in Fig. 22. Naturally, we require U$US OF =1
on a single y-particle of type a on the left. All frac-
ton models considered in this paper allow splitting a 1d
mobile quasiparticle into two 1d mobile quasiparticles in
the other two directions (e.g. a particle mobile along
the x direction can split into one mobile along y and
another mobile along z). Thus, we can make a topologi-
cal spin measurement described by the expression on the
right hand side of Eq. (103). The result for the situation
shown in Fig. 22 is % : %, where dZ, 07, di, and 6%
are computed by Eqgs. (294), (295) and their analogues.
In particular, the quantum dimension of a y-particle is
d%dZ, which can also be simply defined in the same way
as in Eq. (89).

E. Examples

For concreteness, we now consider examples of twisted
X-cube models which host quasiparticles exhibiting novel
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and interesting behaviors. In particular, we will study
models wherein the one-dimensional particles carry ei-
ther semionic or non-Abelian statistics. But there is no
inextricably non-Abelian fracton in these models; each
fracton can split into a fracton of quantum dimension
one and several mobile particles.

1. G =Zs: 1d mobile semions

Let us start with the simplest nontrivial group G =

Zo = {0,1}. It is well-known [20] that H? (Z,,U (1)) =
Zo and its nontrivial element is presented by the 3-cocyle

w(f9h) = {1‘1’

The group structure of H? (Zy,U (1)) is given by [w] +
[w] = [w?] = 0, where [w] and [w?] denotes the el-
ements of the cohomolo%y group presented by w and

w? (f,g,h) = (w(f,g,h))” respectively. Obviously, w? =
1 presents the identity element 0 of H3 (Zg, U (1)).

Along each cross section X# of the lattice A, the model
can be either untwisted or twisted. The pure charges
(i.e., the flux is trivial everywhere) behave in the same
way, no matter whether the model is twisted or not.
Thus, we are more interested in excitations that violate
B. =1 below.

To compare the untwisted case (i.e., the original X-
cube model [61]) with the fully twisted case, we may
consider the braiding of an z-particle of type a and a y-
particle of type b. In either case, we can identify their z
topological charges by requiring that they fuse into a z-
particle. In other words, af x b} = o implies that aj = b},
where o denote the trivial topological charge. Then we
may braid them as in Fig. 21 and use this as a diagnostic
of the effect of twisting on S%Z,. When aj x b} = o,

f=9g=h=1,

299
otherwise. (299)

0o

Sukbi - 9 sz -

= 0.2 (300)

In the untwisted case, 9;;2 is always 1 and hence SZ, =1
if af x b7 = o, Vk.

In the tw1bted case, 0q: may be +i. Explicitly, in the
notation used in Sec. B7Db, 6,0y = i and 0(1,1) = —i.
Further, we may imagine an z-particle of type a cen-
tered at (l’ + 2, 5 yz) whose only nontrivial topological
charges are af = aj = (1,0) and a y-particle of type b
at (%, Y+ %, %) whose only nontrivial topological charges
are b = b7 = (1,0). The braiding is made on the plane
z = 5. Then we have SZ, = —1 even when af x b} = o,
Vk. This behavior demonstrates the effect of twisting
along the plane z = %, thereby revealing the existence
of excitations with semionic mutual statistics, which are
restricted to move along one-dimensional sub-manifolds.

We note that this twisted X-cube model, based on
G = Zs, can also be realized by coupling interpenetrating
layers of doubled semion string-net models [70].



2. G =172 X Z2 X Za: non-Abelian 1d mobile quasiparticles

An example of a twisted X-cube model with non-
Abelian one-dimensional particles can be constructed
based on the group G = Zy X Zg X Zy with the 3-cocycle

w (f7 g, h) _ eivr(f(l)g(2>h(3))7 (301)

where f = (f(l),f@), f(S)) g = (9(1)’9(2),9(3)) Jh =
(h(l),h(Q),h(3)) € G. We also write the elements of G
simply as 000, 100, 110 and so on for short. As examples,
we have w (100,010,001) = —1 and w (100,001,010) = 1
in these notations.

Clearly, we may have an z-particle whose nontrivial
fluxes are g{ = gi = 100. It cannot be a 2d mobile
particle or a fusion result of 2d mobile particles, because
the fluxes of any 2d mobile particle satisfy the constraint

dDgi=>g'=> gi=0
i P %

which easily follows from Eq. (268). Thus, it is intrinsi-
cally 1d mobile in the terminology introduced in Sec. T A.
Further, if either 3¢ or X7 is twisted by the 3-cocycle in
Eq. (301), then either p{ or pf has to be two-dimensional,
as shown in Table I. Thus, this z-particle has quantum di-
mension greater than 1, clearly reflecting its non-Abelian
character. The braiding properties of such non-Abelian
1d particles can be computed following the methods de-
scribed in Sec. VID. Details of a similar calculation will
be given later for the twisted checkerboard based on the
same group and the same 3-cocycle.

However, this z-particle is still not inextricably non-
Abelian if the model is only partially twisted. Suppose
that the non-Abelian behavior comes from the twisting
of X% and that there is a nearby parallel plane, say X3,
which remains untwisted. Then the z-particle can be
split into an Abelian z-particle with fluxes ¢ = g5 = 100
and a non-Abelian zy-particle with fluxes g7 = g5 = 100,
implying that it is not inextricably non-Abelian accord-
ing to the definition in Sec. I A. Contrarily, if the model
is fully twisted in at least one direction, then such a
splitting is no longer possible and hence the z-particle
becomes inextricably non-Abelian. In this case, we call
the corresponding fracton phase non-Abelian; it is clearly
distinct from an Abelian fracton phase with some layers
of conventional non-Abelian topological states inserted.
This dramatic change between the fully and partially
twisted cases is also reflected in their GSD on T2, which
is explicitly given by Egs. (199), (209), (210) for three
fully twisted cases and Eq. (196) for any partially twisted
case. In particular, Eq. (199) is larger than Eq. (196)
with |X| = |Y| = 0 and |Z] = L,; thus, fully twisted
case looks more entangled than partially twisted cases,
wherein twisted layers are less entangled due to the sep-
aration by untwisted layers. Therefore, both the presence
of inextricably non-Abelian 1d mobile quasiparticles and
their exotic GSD establishes that these non-Abelian frac-
ton phases are a completely new type of quantum states.

(302)
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Moreover, we emphasize that no twisted X-cube
model, defined in Sec. IIT A, hosts inextricably non-
Abelian fractons. To see this, we notice that a quasi-
particle (g,a#) is a fracton if and only if ¢ # 0. How-
ever, such excitations can always be viewed as a fusion
result of a fracton (g, 0) of quantum dimension 1—thus,
an Abelian fracton—and some mobile quasiparticles. In
other words, there is no inextricably non-Abelian frac-
ton in twisted X-cube models. Thus, in order to find a
model with inextricably non-Abelian fractons, we look to
the twisted checkerboard models next.

VII. QUASIPARTICLES IN TWISTED
CHECKERBOARD MODELS

We now study quasiparticles in the twisted checker-
board models, proceeding analogously to the previous
section. Here, the particle types can also be labeled by
their z, y, and z topological charges, subject to certain
constraints. After systematically analyzing the mobility,
fusion and braiding of quasiparticles in terms of their
topological charges, we will then study specific examples
to elucidate the plethora of novel phenomena which may
occur in the twisted checkerboard models.

A. Particle type and topological charges

Any excited spot (i.e., quasiparticle) can be en-
closed in a finite cuboid C = [zg,z1] X [yo,¥1] X
[20,21]. Let C" = [z, 2] % [yh,vi] X [20, 21] be a much
larger cuboid containing C. Without loss of general-
ity, zo,%1,Y0, Y1, 20, 21, (s T, Y§, Y1, 20, 71 are picked to
be even integers. In the following, we use Fig. 23(a) for
illustration, where C = [4,6] x [4, 6] x [4, 6], C' = [0, 10] x
[0,10] x [0, 10] and the coordinates are chosen such that
the grey unit cubes are centered at (z,y,z) + % (1,1,1)
with z,y,2 € Z and x + y + z even.

For convenience, we write C* = {xg, 2o+ 1,---,21},
CY == {yo,y0o+1,---,y1} and C* := {z0,20 + 1, -+, 21}
Let M = ¢’ — C°, where X° denotes the interior of any
topological space X. Then M is a three-dimensional man-
ifold with boundary. Let H (A°(M),G) be the Hilbert
space describing all the physical degrees of freedom on
Mand GA ™ = {9 GVO|B,|9) = |0),Vc e A (M)},
To classify excitations inside C, we analyze the subspace
Ho (M) selected out of H (A°(M),G) by the projector

PM) = P,

cE€AF (M)

(303)

where c¢ labels grey cubes in the interior of M.
The Hilbert space H (A°(M), G) has an orthonormal

basis {|19> |9 € GAM }, where AY (M) is the set of vertices
in M and GA"®™ s the set of functions from A° (M) to G.



Let M7, MJ and Mj be the intersection of M with the plane

1

x:i—?Vi:x6+1,x6+2,'--,x'1; (304)
1 /

y=J— §7V3—90+1yo+2"'7y15 (305)
1

z:k—i,Vk:z6+1,z6+2,~-~7zi; (306)

(i.e., the region of X3F, X3¢ and Xj inside M) respectively.
Each of them is elther a dlsk or an annulus as a topo-
logical space and a region of two-dimensional checker-
board. Respectively, we can embed it into either a trian-
gulated sphere or a triangulated annulus with two loops
as boundary, denoted M}, for 1 = x,y, z. Let A™ (M])) be
the set of m-simplices in this triangulation.

Examples of M, are given in Fig. 23(b) and (c). Marks
e and o are added to show the positions of vertices of M on
the plane z = k and the value of (—1)" on these vertices.
Let E (M7) be the subset of A! (M) containing the edges
with a e or o mark; it has a one-to-one correspondence
with A [MZ] (i.e., the set of edges of M intersecting with

the plane z = k — 1). Given ¥ € G , we color A![MZ]
and hence E (M}) by 0¢ as in Eq. (147) which extends
unlquely to a colorlng of M;. The triangulation and color-
ing for MZ and M] are obtained analogously. After picking

M, (resp. ﬁ?, M) for each cross section M? (resp. MY, Mp),
we can define P¢ for ¢ touching OM.

To give a basis of Hg (M), we pick paths (going inwards)
connecting base points of the outer and inner boundaries
of each annulus M; , 79 and M. Let s? for zgp < i < 2y,

y foryo < j < and sy for zp < i < z; be the group
elements associated with these paths. Examples of such
paths are shown by the zigzag sequences of thick (red

online) edges in Fig. 23(b) and (c); correspondingly,

i= Y

(x,y)€Epath
= > (D)W (k) — 0 (z,y. k- 1),
S

(308)

1) 9z (2, y) (307)

where (x,y) € Z x Z labels vertices of Mj.

In Fig. 23(a), a choice of such paths for all annuli M;
(resp. Mj, My) is illustrated as a rectangular ribbon, col-
ored orange (resp. blue, red) online, connecting 6C and
dC’. The ribbon shows the positions of spins (inside M°)
in terms of which s7 (resp. sg, s}) can be expressed; for
cleanness, we do not draw the part of these paths on OM.
In addition, we need

o= 0, > (DU Gyk),  (309)
$0<z<zo z0<k<z0
SZO = Z Z (Z’yO: v (7” Yo, k) ) (310)
() <i<wo 2)<k<zo
o= . >, (NPt k), (31D)

z(<i<wo 2)<k<z0
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(c) M} with k = 6

Figure 23. (a) An excited cuboid C = [4,6] x [4,6] x [4,6]
isolated from other excitations outside C’ in a checkerboard
model. The membranes (orange, blue, green and red online)
between OC and OC’ indicates the bulk degrees of freedom
used for defining s7, 37; and s in the main text. (b, ¢) A
triangulation of cross section M. Some edges are thickened
to highlight the outer and inner boundaries (purple online) of
M; and a path (red online) in between.



in terms of spins on the square (green online) sheet in
Fig. 23(a). Collectively, we write

= (s%,8Y,5") € G x G% x G, (312)

= (8505 8041072 55 €G”, (313)

= (5o Spo410 o 5,) € G7 (314)

8% = (85,8541, 5 55,) € G°. (315)

Moreover, we need to label fluxes as well. Let g¥ (resp.
g;-’, g7) be the group element associated with either the
inner or the outer boundary of M (resp. M7, M). By
assumption, B. = 1 for ¢ outside C = [zq, 21] X [yo, y1] X
20, 21], so we write gf = 0 (resp. g§ = 0, gi = 0) unless
2o < i<z (resp. Yo < j < w1, 20 < k < z1). The data
needed for describing fluxes are collected as

g:=1(g"9".9") € G° x G x G%, (316)
g = (0,g% 1.+, g%) € GZ, (317)
g’ = (0,9% .1, 9%) € G, (318)
9" = (0,071, 9%,) € G (319)

Not all of them are independent; they are subject to the

constraints
dDG=> 9> 4, (320)
k even i odd j odd
SNoa=>9"-> g (321)
i even j odd k odd
D 9= 2 g di (322)
j even k odd i odd

Let F[C] be the set of g in the form of Eqs. (316-319)
satisfying Eqgs. (320-322). As a group, F' (C) is isomorphic
to G*1— onerl Yot+z1—20—3

LetG ()(s X X)bethesetofﬁeG

with s and coinciding with y € G2 (%) and X € GA°(99)
on OM = 9CUAC’. Now we have enough notations to give
the basis vectors of Hg (M); they are defined by

XDg) = Y

9eG ™ (s,x.X)

compatlble

Z (9;D3) |0 (323)

with s € GS x G x G, g € F(C), x € G**(%) and
X € GA’(09) T complete the definition, the phase factor
Z (ﬂ;D;) is given by

Z (9;D3) H Z7 (9;D)
= £0+1
Y1
II 2 (o) - H Zi (9;D5), (324)
j:y6+1 k= zo+1

where Z¥ (19; Dg) is the Dijkgraaf-Witten partition func-
tion of a ball with surface colored by 97 if M; is a sphere
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or a solid torus with surface colored by (19?, g° ) if M
a annulus. Clearly, the vector |D3;x, %) # 0 if and only
if x € A’ (0¢) and X € GM(99 are compatible with
g € F(C). Analogously, Z (9;D8) and Zf (9;D5) are
defined.

For the purposes of finding all local operators, let

‘X,y; D;D;/,> = > (19,DQDZ ) 19)
ﬁeGgO(M)(S+SI7X:Y)
(325)

where Z (19, DDy, ) is given by Eq. (324) with Dj replaced

by DSDS
X (resp. X) can be changed by PJ on OC’ (resp. OC) and
hence describes degrees of freedom near 9C’ (resp. 9C).
To classify particles, we can keep x, X fixed and consider
the subspace H. (M) spanned by |Dg, X, X > for g € F(C)
and s € G x G x G°. Since x, Y are fixed, we omit
them in notation and simply write |DZ>.

Next, let us construct a set of operators supported near
either OC or AC’ to distinguish states in H., (ﬁ) Fort € G,
we have gauge transformation operators given by

Clearly, ‘X,X; DZDZ/,> =01if g # g'. Moreover,

zZt = 11 PO (326)
c~(8C’,z:k+%)

—t —1)%y T

Zv= ]I (PC( D f) (327)

cw((?C,z:k-i-%)

where ¢ ~ (9C',z =k + 1) (resp. ¢ ~ (9C,z=k+ 1))
means that the cube ¢ is cut by plane z = k + % and
touches 9C’ (resp. OC). They act as the identity on
H., (M) unless zg — 1 < k < 2. In addition, for h € G, let
Ty, MZ] (vesp. T, [M7]) be the projector supported on 9C’
(resp. OC) requiring that the group element associated
with the outer (resp. inner) boundary of M is h.
Then the two sets of operators

DL =T I[ 4, (328)
l€k+2N
z,t 2 t
Dy = Thn [Mf] H Z (329)
lek+2N

commute with P (M), keep x,X fixed and hence act on
H. (M), where N denotes the set of non-negative integers.
For zp < k < 2y,

zZ,t |ns to; s
Dk h ’D > = 6h,gi Dg kDg> ’ (330)
D ID5) = ong DSDg‘Si>, (331)
where the component of hdi € G x G’ x G corre-

sponding to k € C* is h and the other components are



zero. For k > 21 or k < 2z, these operators act as

z,t
Dy, [pg) = Dk n|Dg)
Sn,0[D5) k> 2,
t67
=< 6no ‘Dg “Dg k < zy even, (332)
téi() tlsg() S
3.0 D3), k< 2 0dd
Analogously, we can define operators Dz ’:, Dl o D]yj;

and Dj,n' Their actions on H. ( ) are obtained by per-
muting z,y, z cyclically in Egs. (330-332). In particular,
for i > x1,1 < xg and j > y1,j < yp, we have

Dszf|D> Dzh|Ds>

5}170 > 7> T
={ 6o Dg ‘“Ds i < xg even, (333)
toY 45; .
5h,0 Dg 0Ds> (3 S Zo Odd7
, Yt
DYy |pg) = Dj), [Dg)
dn,0|D5) J>%
toY .
= { 0,0 |Dg "D ) J < Yo even, (334)
t6Z —toy .
5h,0 Dg 0 OD;>, J S Yo Odd

To get these operators organized, we consider the al-
gebra D [C] = D, [C] ® D, [C] ® D, [C] with each factor
D,, [C] and its basis given by

cl :®’Dw£(G)a ﬁt‘ '*®Dh#»

necH 1ECH

(335)

Yu = x,y, 2. We write D} := D}, ® D}, @ D}, for short,
where h = (h®, hY,h?)  t = (t*,tY,1%) € G xG® xG°.
The left and right actions of D (C) on H, (M) are

zZ1
- Tos- T ok T oo
i=xg J=vo0 =Z0
H Dy H Dj iz H DZ’;’; (337)
1=xo J=Yo k=z¢

supported near 9C" and 9C respectively. More precisely,
T (D;‘;) can be realized by operators near the region on
IC" between planes z = zg and z = 2z, since Z} in

Eq. (328) acts trivially unless z9p — 1 <1 < z;. By con-
struction,
7 (D}) [pg) = [PRDG) (338)
7 (D},) |Dg) = |DED},) - (339)

In particular, they are zero if h ¢ F'(C).
Let A[C] be the subalgebra of D [C] spanned by Dj,
with h € F(C) and t € G x G x G". Then
H, (M) = A[C

: D) — DS (340)
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is an isomorphism between . (M) and A[C] as a D [C]-
D [C]-bimodule (i.e., a vector space carrying both left and
right actions of D [C]).

Let QF be the isomorphism classes of irreducible rep-
resentations of D¥» (G). We call each element of QF a
w topological charge. Pick an irreducible representation
Vi = (pa;;, Vaﬁ) on a Hilbert space with T respected for
each ay € Qf. Then

- D Qo (3a1)
COMmr
gives an isomorphism of algebras
Dicl~ P &KRLVa (342)

(u )}L Tyzﬂn

Explicitly, a p topological charge a# € 9 is labeled by a
pair (g¥, o¥), Where g¥ € G describes the flux and p# is
an irreducible w!' u-representation (up to isomorphism)
of G. Refer to Appendlx B5 for the details of the labels.

Let  [C] be the set of a = (ak)h =" = (gh, o)L 2™
with (gh)h=s.""" € F(C). Then the composition

0§ )~ Dg

. (M) Afc] £
B RLVa) @ Va®@V; (343)
ac(C] p,n acQlc

is an ismorphism of Hilbert spaces respecting both the
left and right actions of D [C], where V4 := ), ,, Vo and

dlm(c Vau
T e

=D &

acnlc] mn

(344)

The normalization for each sector in p is picked such that
the inner product structure is respected. Clearly, £ [C]
labels particle types of the excited cuboid C and V, (resp.
V%) describes the degrees of freedom near 9C" (resp. 9C).
Physically, aj = (¢f, 0f) can be detected by braiding a
pair of quasiparticles in the x and y directions via op-
erator supported near grey region in 9C’ as in Fig. 19.
Thus, af is called a z topological charge. Similarly, af
(resp. a¥) is called a = (resp. y) topological charge. Since
9ze = 9y = 95, = 0, we have

aio = (0’ qu)v C‘ZO = (Oa qu)v aﬁo = (Ov qu)v (345)
where ¢*,¢¥,¢* € G ~ G with G identified with its char-
acter group G and g4, 0qv, 04 denoting the correspond-
ing representations.

Distinct from conventional topological orders, the
number of allowed particle types of a finite excited re-
gion C in a fracton model increases/decreases as the size
of C grows/shrinks. If a quasiparticle can be localized in a

smaller cuboid C, = [af, af] X [af, a}] x [a, af] C C, then



the analogues of Eqs. (332-334) for this smaller excita-
tion imply that its particle type a = (ak)h 25" € Q]C]
satisfies

0, k> af,

(07 qu) )

(07 qu*qy) ’

aj = k < af even, (346)

k < af odd

and the counterparts obtained by permuting x, y, z cycli-
cally, where o denotes the trivial representation (i.e., the
counit) of any D“»(G). In other words, £ [C,] can be
viewed as a subset of Q[C]; each V4 for a € Q[C,] car-
ries an irreducible representation of D [C] for any cuboid
C containing C,.

B. Fusion of quasiparticles

Suppose that there are two spatially separated excited
cuboids C, and C; contained deep inside a much larger
cuboid C'. Let M := C’ — €S — Cp. The discussion in the
above subsection can be repeated here for the two-hole
manifold M. With the spin configuration on 0C’ and local
degrees of freedom near C, and C, fixed separately, we
are left with Hilbert spaces V [a, b] labeled by a € Q[C,]
and b € 9 [Cy]. Using two copies of Eq. (344), we have

Via,b] ~ Vo @ Ve, (347)

where V, = ®u,n Var and Vy = ®u7n Vit
The action of D [C] on Vo ®Vp via 7 defined in Eq. (279)
is specified by the coproduct

A= Q) X AL

u=x,y,z ne€CH

(348)

The linear space of intertwiners between the representa-
tions V. and V4 ® Vy of D[C]

VA% = Hom (Ve, Va @ Ve) (349)

encodes the ways of fusing a and b into ¢ € Q[C]. In
particular, N5, = dimc V2a® s the corresponding fusion
rule. It is possible to fuse a and b into ¢ if and only if
Ngp = 1. Moreover, Ng;, > 1 implies g/ = gl + AT
z,y,z, where ¢¥,q;,¢* € G ~ G are specified by Ao
bt | ¢t asin Eq. (345).

Ko7 THo

C. Mobility of quasiparticles

Given an excitation of type a € 9 [C,] inside a cuboid
Co = [af, af] x [af, a¥] x [a§, af], it follows from the same
argument in Sec. VI C that a is mobile in the z direction
if and only if all its z topological charges aj = (gf“ QZ)
are trivial. With Egs. (320-322), gf = 0, Vk implies that

DG g+ Y gi€2a,

i odd j odd k odd

(350)
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where 2G = {2g|g € G}.

The form of af, for k < af is given by Eq. (346). Then
aj, = 0,Vk < af implies that ¢* = 0, ¢° = ¢¥ and hence

@+ ¢’ +q €2G, (351)

where ¢* € G ~ G is specified by ali as in Eq. (345).
Clearly, the conditions (350) and (351) hold as well if the
excitation is movable in the z or y direction. In fact,
both hold if and only if the excitation is a fusion result of
movable quasiparticles. Thus, an excitation is a fracton
(i.e., not a fusion result of mobile quasiparticles) if and
only if either Y= qq 97 + 22 caa 95 + 2k 0aa 95 & 2G or
@+ +q ¢ 2G. Similarly to the excitations in the
twisted X-cube models, we thus see that the mobility of
quasiparticles is determined by their topological charges,
thereby allowing us to utilize familiar concepts from the
study of topological order to reveal the intriguing phe-
nomenology of fracton order.

D. Braiding of mobile quasiparticles

The general discussion of braidings in Sec. VI D applies
here as well. What changes are the constraints on topo-
logical charges a = (a#)"-5"*. Rather than analyzing
the implications of these modified constraints abstractly,
we study the physical consequences directly through ex-

amples below.

E. Examples

We now illustrate through examples how fracton ex-
citations in the twisted checkerboard models can exhibit
semionic or non-Abelian braiding statistics. Importantly,
distinct from the twisted X-cube models, it is possible to
construct a twisted checkerboard model with inextrica-
bly non-Abelian fractons that is not a fusion result of
immobile excitations of quantum dimension 1 and mo-
bile quasiparticles.

1. G =Zz (untwisted)

For G = Z» = {0,1}, it is known [20] that the third
cohomology group H? (G,U (1)) = Zy, whose nontrivial
element is presented by the 3-cocycle in Eq. (299). Each
layer of cubes in the checkerboard model can be either
untwisted or twisted. The pure charges (i.e., quasiparti-
cles without nontrivial flux) behave in the same way, no
matter whether the model is twisted or not. Thus, we are
more interested in excitations that violate B, = 1 below.

First, we explain the braiding process of two xy-
particles in the original (untwisted) checkerboard model
in order to build familiarity with our notations and pro-
cedure. We consider the four fractons shown as the
cubes (blue online) labeled as 1,2,3,4 in Fig. 24(a),
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Figure 24. Braidings of particles in twisted or untwisted

checkerboard models with G = Zs = {0,1}. (a) Each la-
beled cube (blue online) in the illustrated checkerboard lay-
ers (cyan online) carries a nontrivial flux, i.e., the sum of
group elements on its vertices equals 1 # 0. In the untwisted
model, A. = 1 can be kept on all cubes. If a labeled cube
is in a twisted layer X7, it carries the projective representa-
tion gf (s) = 4° and the trivial representation g}, (s) = 1 for
k' # k, where s € G. (b) Each cube (red online) on top of the
drawn layers (cyan online) indicates a violation of A. =1 in
the untwisted model. (c) Quasiparticle 1 (resp. 2) is movable
in the z-direction (resp. y-direction).

where only B, = 1 is violated. In the chosen co-
ordinates, the four cubes are centered at %(1,1,1) +
{(6,8,0),(6,8,10), (6,20,0), (6,20, 10) } respectively.

To study the braidings in the & and y directions, we
group them into two pairs Cio (containing cubes 1,2)
and C3y4 (containing cubes 3,4). Both Ci5 and Csy are
xy-particles; they have trivial fluxes in both the z and y
directions. Explicitly, the particle type of C15 is specified
by its fluxes in each cross section Mj

z __ 17
9k = 0,

In fact, Eq. (352) also holds for Cs4 for the configuration

k=1or 11,

352
otherwise. (352)
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shown in Fig. 24(a); it is easy to see that we can move
C12 to C34 and that they are of the the same particle type.
Also, C15 and Cs4 can fuse into a completely trivial par-
ticle. Without violation of A, = 1, these are pure fluxes.
Hence the braiding operator R, exchanging C12 and Csy
illustrated by the arrows in Fig. 24(a), acts trivially (i.e.,
R=1).

If A, = 1is also violated on the extra cubes (red online)
shown in Fig. 24(b), then both C12 and C34 have charges
as well. Explicitly, the relevant representation of G = Zs,
carried by both Cio and Csy4, is specified by

. —1, 1< k<11 and k odd,
or (1) = . (353)
1, otherwise.
Therefore, the braiding operator acts as
(354)

R =)o (gi) = 1.
k

Hence, Ci2 and Csy shown in Fig. 24(b) behave like
fermions as for braiding in the x and y directions.

2. G =12y (¥ twisted for k > z)

Suppose 1 < zg < 11. In particular, the upper layer
%, (resp. the lower layer ¥§) drawn in Fig. 24(a) is
twisted (untwisted). Still, we can pair fractons 1,2 (resp.
3,4) into an xy-particle C1o (resp. Csq). We also assume
that Cy2 and Cg4 are of the same particle type with their
flux configuration given by Eq. (352).

Since the relevant quantum double algebra is twisted
on Mi, satisfying

D% Diyy = wi (s,t) DiT, Vs, t € G, (355)
an allowed collection of representations carried by both
C12 and Cs4 can be specified by

k=11,

356
otherwise. (356)

The braiding operator that exchanges Ci5 and Cg4 as il-
lustrated in Fig. 24(a) is

R =) oi (97) = 0f1 (1) =1, (357)
k

which shows a semionic behavior. However, the semionic
behavior cannot appear in an untwisted model, where
0% (g7) is always +1. This clearly shows that there is no
continuous path of gapped local Hamiltonians connecting
the untwisted model and a partially twisted model, in
which M is twisted for k£ > 2y and untwisted for k < 2.



3. G =17y (% twisted for k odd)

There are many different ways of twisting the checker-
board model. Another simple case is to twist all M7 with
k odd but to leave all X7 with k even untwisted, which
we called the half twisted model for short. In this case,
there are no semionic 2d mobile particles. However, we
could instead consider 1d mobile particles, as shown in
Fig. 24(c). The nontrivial fluxes and representations car-
ried by quasiparticle 1 are

91 =93 =1, (358)
9% =Gns1 =1, (359)
07 (s) =1i°,Vs € Zy, (360)
while quasiparticle 2 carries
hf =h3 =1, (361)
hy, = hpy =1, (362)
i (t) = i',Vt € Zo, (363)

with some m,n € Z. Together, they fuse into a z-particle.

Let Oy (resp. O,) be the operator moving quasipar-
ticle 1 (resp. 2) along the z (resp. y) direction. They
(i.e., O, and O,) are supported near the corresponding
arrows in Fig. 24(c). Then 0,0, and 0,0, differ by a
full braiding of the identical z-topological charges of the
two quasiparticles, which equals

R? = Q) lof. (hi) @ <i (97)] = —1.
k

(364)

On the other hand, if the model is untwisted, R? = 1
as long as the two one-dimensional particles 1,2 fuse to a
particle mobile in the third direction. This is because the
fusion condition implies gi = h} € G and g} = ¢ as one-
dimensional representations of G, Vk. Thus, o} (h}) ®
si(9%) = o} (g,'z)]2 = 1 in the untwisted model.

In summary, in the untwisted model, if an z-particle
and a y-particle fuse into a z-particle, then the corre-
sponding hopping operators always commute

0,0, = 0,0,, (365)

while in the model with M; twisted alternately, we can
have
0,0y = —-0,0;. (366)

This clearly distinguishes the half twisted model from the
untwisted model.

4. G =127 (fully twisted)

Suppose that X7 is twisted for all kK € Z. Here, we
have not found a characteristic braiding process which
distinguishes this model from the untwisted case.
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However, we can still argue that there is no contin-
uous path of gapped local Hamiltonians connecting the
untwisted model and the fully twisted model. Let us
give a proof by contradiction. Suppose there exists a
continuous change of gapped local Hamiltonians H (7)
parameterized by 7 € [0, 1] such that H (0) and H (1) are
the untwisted and the fully twisted checkerboard mod-
els respectively. Then there exists a local unitary trans-
formation U'°°, which can be described as a finite-depth
quantum circuit, such that H (1) = (U*¢)TH (0) U™ [5].
Let U ;‘;CO be a local unitary operator obtained by keep-
ing only operators in U'°¢ supported on the region z > 0.
Then (UL25,) H (0) U, describes a model which is un-
twisted for z < 0 and twisted for z > L, where L is a finite
positive number characterizing the correlation length.

Moreover, let us consider the braiding process shown
in Fig. 24(a) with fractons 1,3 located in z < 0 and frac-
tons 2,4 in z > L. If the braiding is made on the ground
state of H (0) (resp. (UXS)TH (0)ULS,), then the ex-
change of Cjo and C34 cannot be semionic (resp. can
be semionic). However, the local unitary transformation
cannot change the braiding statistics, which are a non-
local property of the topological charges. This leads to a
contradiction, which proves the non-existence of a contin-
uous path of gapped local Hamiltonians connecting the
untwisted model and the fully twisted model. It remains
to be seen whether there exists a braiding process which
clearly distinguishes these two cases.

5. G =172 X Lz X ZLz: non-Abelian fractons

Finally, let us give an example of a model which pro-
vides an explicit realization of non-Abelian fractons, one
of the central results of our work. It is constructed with
the group G = Zy X Zy X Zs and the 3-cocycle

w (f,g,h) _ eiﬂ'(f(l)g@)h(?»)), (367)

where f = (f(l), f(2)’ f(3)) g = (g(l)’g(2),g(3)) Jh =
(h(l)7 h(?), h(3)) € G. We will also interchangeably write
the elements of G simply as 000, 100, 110 and so on for
short. As examples, we have w (100,010,001) = —1 and
w (100,001,010) = 1 in such notations. Now, to work out
an explicit example, we twist X7 for all £.

Let us consider the eight fractons labeled as 1,2,---,8
in Fig. 25(a), divided into two groups. Each group is cre-
ated by an operator supported near the corresponding
grey sheet. In the left (resp. right) group, each fracton
carries a flux 100 (resp. 011) and a projective represen-
tation g100 (resp. go11) satisfying

0100 (8) 0100 (t) = w100 (8,t) 0100 (81) s (368)

0011 (8) co11 (t) = wo11 (s,t) 0011 (st), (369)

Vs,t € G with wy(s,t) defined by Eq. (B26). A choice of
0100 and gg11 is given by

0100 (100) = 09, 0100 (010) = 01, 0100 (001) = 03, (370)

0011 (100) = o3, 0011 (010) = 01, 0011 (001) = o1, (371)
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Figure 25. (a) Two groups of fractons with nontrivial flux

1,2,5,6 and 3,4,7,8 are created from vacuum separately by
an operator supported near the corresponding grey mem-
brane. Fractons 2 and 6 are paired into a quasiparticle mobile
in two dimensions and move around fracton 3 along the path
indicated by the arrow. (b) After the braiding, fractons 1, 2,
5 and 6 cannot fuse back into vacuum any more but left with
a pair of pure charges (red online) just above and below the
checkerboard layer (cyan online) where fractons 1, 2, 3 and 4
violate B. = 1, if the checkerboard model based on the group
G = 72 X Za X U2 is twisted by w (f,g,h) = i (1P g @h)
along this layer. Clearly, the braiding process in (a) does not
commute with any braiding that can distinguish the fusion
channels of fractons 1 and 2; this explicitly demonstrates the
non-Abelianness of fractons.

where 0,01, 09,03 denote the 2 x 2 identity matrix and
the three Pauli matrices. Together with fluxes, they cor-
respond to pfy, and pdy; in Table I of Appendix B 7.

In particular, each fracton with flux 100 (resp. 011)
carries a two-dimensional Hilbert space Vigg (resp.
Vo11), whose basis is denoted as {]|100; 1), [100; )} (resp.
{]011;1),]011;1)}). When the flux is clear from context,
we simply write |1), |[{) for short. We pair fractons 1 and
5 into an xy-particle, denoted Ci5. Similarly, we have
xy-particles Coq, C37, Cys.

Since fractons 1,2,5,6 are created together from the
ground state, their total topological charge is trivial and

hence they are in the state |11 + [1),, ® [T1 4+ J1)54. For
example, in the chosen coordinates, the fractons 1, 2 carry
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flux 100 each in 37,; direct computation shows

A(Di{) 11T+t
:(Sg,o()ows (100, 100) 0100 () ® 0100 (8) |11 + i/\[,>12
=0g,000 [T+ 1) 1o (372)

for s = 100,010,001 and hence the z topological charge
of ™M+ )y is trivial, where w®(h, ') is defined by
Eq. (B27). Similarly, the state of fractons 3,4,7,8 with
trivial topological charge is |[T] + {1)3, ® [T) + 1) 5.

Next, let us consider the monodromy operator braiding
Co6 around Cs7 as shown in Fig. 25(a). It acts trivially
on 5,6,7,8 and nontrivially on 1,2,3,4 as

00 ® 0100 (011) ® 0011 (100) @00 [11 + L) [T + 1)
= |T¢ - ¢T>12 |T¢ - ¢T>34 ) (373)

where we have used

0100 (011) = w100 (010,001) 100 (010) @100 (001) = —0103
(374)
and the associator between (V190 ® Vioo) ® Vo11 ® Vo11)
and (V100 (39 (V100 (39 Von)) ® Vo11 equals the identity.
As in Eq. (372), direct computation shows that D7,
with g,s € G acts as

A(Difg) Ith =411y
=04,000w” (100,100) 0100 (5) ® 0100 (5) [TL — I 1) 19

=5,000 (=17 111 = 1)y, (375)
A(Diy,) 11— 1) s
=0g,000w” (011,011) 0011 (5) ® 0011 (5) [T — 1) 34

=5g.000 (~1)" T 1L~ 1) (376)

This implies that the group of fractons 1,2,5,6 can-
not fuse back into the vacuum any more after braiding.
At best, we can annihilate all fluxes, resulting in a pair
of pure charges, as depicted in Fig. 25(b). This analysis
holds for the group of fractons 3,4,7,8 as well. Thus,
the braiding process described here is a clear and unam-
biguous signature of fractons with a quantum dimension
greater than 1. A similar braiding was discussed in the
context of anyons in twisted gauge theory [118§].

Clearly, if the model is twisted fully by Eq. (367) in at
least one direction (e.g. X7 is twisted for all k), then the
above fractons are all inextricably non-Abelian, i.e., their
quantum dimension cannot be reduced to 1 by adding or
removing some mobile quasiparticles. To see this, we
note that fluxes have to be paired in order to be mobile;
technically, Egs. (320-322) implies that >, g7 = Zj g; =
> 9% = 0 for each mobile quasiparticle. Thus, the flux
of each fracton shown in Fig. 25(a) cannot be canceled
by adding or removing a mobile quasiparticle. In a fully
twisted model, a nontrivial flux requires the fracton to
remain non-Abelian.

However, if X7 is alternately twisted between even
and odd layers, then the above fractons can be made



Abelian by adding or removing 1d mobile quasiparticles
(like those shown in Fig. 24(c)) and these are hence not
inextricably non-Abelian fractons. But 1d mobile quasi-
particles can be inextricably non-Abelian. For instance,
suppose that the model is alternately twisted in the z di-
rection. Then the fluxes of each 1d mobile quasiparticle
in Fig. 24(c), which satisfies Y, qq 9% = Yok even 9 #
0 and implies non-Abelianness, cannot be canceled by
adding or removing 2d mobile quasiparticles whose fluxes
must satisfy Y. 4 9% = > cven 94 = 0,V = x,y, 2 fol-
lowing from Egs. (320-322). Thus, such a model still
displays a novel non-Abelian fracton phase.

Finally, if X7 is only partially twisted for both even
and odd layers, then each fracton (resp. 1d mobile quasi-
particle) can be viewed as a fusion result of an Abelian
fracton (resp. 1d mobile quasiparticle) and non-Abelian
(2d mobile) anyons; thus, the fracton phase is not strictly
non-Abelian. This crucial distinction between these three
cases is also reflected in their GSD on T3, as given by
Eq. (260), Eq. (257), and Eq. (253).

VIII. CONCLUSIONS AND OUTLOOK

In this work, we have constructed a large class of novel
three-dimensional quantum phases of matter exhibiting
fracton order. Here, we shall summarize our main results
and discuss some open questions which go beyond the
scope of this paper but deserve further investigation.

The key result of our work is the construction of
“twisted fracton models,” which represent a general class
of type-I fracton phases of matter, including those with
inextricably non-Abelian fractons. In particular, we have
constructed and studied the twisted versions of both the
X-cube and checkerboard models, with spins—labeled by
elements of a finite Abelian group G—on the faces (resp.
vertices) of a cubic (resp. checkerboard) lattice for the X-
cube (resp. checkerboard) model. For either case, the un-
twisted Hamiltonian consists of local (generalized) gauge
transformations and local flux projections. Their twisted
versions are obtained by adding to the gauge transfor-
mations an extra phase factor specified by 3-cocycles
w € H3(G,U(1)) and locally flat spin configurations.

Both families of models are then carefully studied. We
have made an exact computation of their ground state
degeneracy (GSD) on the three-torus T3, which depends
sub-extensively on the system size. In particular, our
computation discovers for the first time the exotic GSD
(e.g. Egs. (199), (209), (210), and (262)) of non-Abelian
fracton phases (i.e., fracton phases hosting either inextri-
cably non-Abelian fractons or inextricably non-Abelian
1d mobile quasiparticles) on T3.

In addition, we have systematically analyzed the braid-
ing and fusion properties of quasiparticles in twisted frac-
ton phases and, in the process of doing so, defined nec-
essary notions such as topological charge, quantum di-
mension, and inextricably non-Abelian fractons and 1d
mobile quasiparticles. Thus, our work also provides the
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first systematic route for describing the braiding and fu-
sion of quasiparticles in type-I fracton phases, including
those which are non-Abelian. As such, our work provides
a general framework within which future studies of frac-
ton order may be conducted. As an important interme-
diate step, we have also provided a detailed derivation
of anyon properties of lattice models of twisted gauge
theories in two spatial dimensions, which is then readily
applicable to the twisted fracton models.

Concurrently with the development of the twisted frac-
ton models, it has been realized that certain non-Abelian
type-I fracton phases can also be constructed by coupling
together d = 2 topological orders, a procedure carried out
in Refs. [74, 92]. In particular, Ref. [92] constructs so-
called “cage-net” fracton models, a distinct non-Abelian
generalisation of the X-cube model, by coupling together
layers of string-net models through a process dubbed
“flux-string” condensation. The resulting cage-net frac-
ton model was shown to exhibit inextricably non-Abelian
1d mobile quasiparticles but not non-Abelian fractons; it
remains an important open question whether a similar
coupled layer construction can lead to a phase with inex-
tricable non-Abelian fractons (e.g., twisted checkerboard
models). Indeed, even the correspondence between the
twisted X-cube models and the cage-net fracton models
remains unknown, as it is not thus far apparent whether
all twisted fracton models can be accessed through some
non-trivial coupling between d = 2 topological orders. In
general, a major future direction in the study of fracton
orders is to understand the generic possibilities which are
allowed for type-I fracton phases and to study the rela-
tionships between their various existing constructions.

Further generalizing our results regarding the proper-
ties of twisted fracton models to generic type-I fracton
phases constitutes another important open direction. A
first step towards this goal would be to apply our sys-
tematic approach for describing quasiparticles to other
fracton phases which lie beyond our construction here,
such as the cage-net models, in order to understand the
generic features of excitations. In addition, it is desirable
to understand the GSD of a non-Abelian twisted fracton
model on T3, which depends exotically on the system size,
in terms of its quasiparticle properties. This will likely be
crucial in determining the GSD of a generic non-Abelian
fracton phase on T3.

Moreover, generalizations of the X-cube model on more
generic lattices [89] and on general three-dimensional
manifolds [88] were proposed recently. Both these works
found that the X-cube Hamiltonian may be defined on a
lattice or manifold where the vertices locally resemble the
vertex of a cubic lattice. In the language of Ref. [88], this
construction involves the notion of a “singular compact
total foliation” of the spatial manifold, wherein the lat-
tice may be understood as being constructed with trans-
versely intersecting stacks of parallel surfaces. In princi-
ple, there appears to be no obstruction to generalizing the
twisted variants of the X-cube and checkerboard models
to generic spatial manifolds; however, it will be an inter-



esting challenge to understand the dependence of their
GSD on both the global topology and the foliation.

With a rich landscape of type-I fracton systems uncov-
ered by our construction, a better classification scheme
for fracton phases is more needed than ever. While we
have focused on the braiding-related differences amongst
twisted fracton phases here, we can see, for instance, that
twisted X-cube models based on a given group G share
certain similarities, such as how the topological charges of
a quasiparticle are constrained. Roughly speaking, these
similarities reflect the 3d information inherent in these
states while the differences treat the 2d features. Based
on these ideas, we expect that an improved classifica-
tion scheme would explicitly inform us how information
at different levels is organized, which would allow for a
more systematic study of fracton phases. Such investi-
gations may lead to an instructive quantum field theo-
retical description capturing the universal properties of
these phases.

As with most recent studies of fracton orders, we have
focused here on type-I fracton phases, i.e., those where
fractons are created at the corners of membrane opera-
tors and whose full spectrum contains additional quasi-
particles with restricted mobility. It remains to be seen
whether insights from this work can be extended to type-
IT fracton models, such as Haah’s code [59], which host
type-1I fractons, i.e., those created by fractal operators.
One possible route for realizing twisted versions of type-I1
fracton phases may be to study dual theories of the re-
cently introduced “fractal SPT” states [122, 123]. It will
be especially interesting to see whether a multi-channel
fusion rule is allowed for type-II fractons.

Besides searching for, and studying mechanisms of,
new fracton phases, it is also important to explore possi-
ble realizations and potential applications of twisted frac-
ton models. This line of investigation leads to several
interesting questions worthy of future studies, such as
the possibility of making quantum simulations of twisted
fracton phases in cold atomic systems and of using non-
Abelian fracton phases for quantum information storage
or topological quantum computation to achieve better
resilience to noise and decoherence.
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Appendix A: Group cohomology and
Dijkgraaf-Witten weight

1. Definition of group cohomology

Let G be a finite group with its identity element de-
noted as e and U (1) :== {z € C| |z| = 1} be the Abelian
group of phase factors. For each nonnegative integer n,
let C™(G,U (1)) be the set of functions from G™ (i.e.,
direct product of n copies of G) to U (1). Also, for each
n, there is a so-called coboundary map

§: 0™ (G,U (1)) — C™F1 (G, U (1)

W dw (A1)
given by
6w (91,92, Gnt1) = w (92,93, Gnt1) -
- -1y
@ 9-1,9:9541: 92, i3+ gnr1)
j=1
)yt
'w(ghg?f")gn)( 2 (A2)
In addition, let
2 (GU (1) = {w € C" (G,U (1)) [ow = 1}, (A3)
whose elements are called n-cocycles, and dw = 1 is

called the cocycle condition. We denote the image of

C" 1 (G,U (1)) under § by

B"(G,U (1) =6C" (G.U (1), (Ad)

whose elements are called n-coboundaries. Induced by
the Abelian group structure of U (1), all C™ (G, U (1)),
Z™(G,U (1)) and B" (G,U (1)) can be viewed as Abelian
groups with coboundary maps viewed as homomorphisms
of Abelian groups.

It can be checked that applying ¢ twice always gives a
trivial map 6% : C"~1 (G, U (1)) — C" T (G,U (1)), i.e.,
§%c = 1,Ve € C"1(G,U(1)). Hence B"(G,U (1)) C
Z™(G,U (1)). The quotient of them

Z"(G,U(1))

H" (G,U (1)) = m

(A5)
is called n-th cohomology group of G with coefficients

in U (1), whose elements can be labeled by the coset of
we Z"(G,U (1)), i.e.,

W] = w - B" (G, U (1)). (A6)

Dijkgraaf-Witten topological quantum field theories con-
structed from w,w’ € Z3(G,U (1)) with [w] = [w'] are
equivalent.



An n-cocycle w € Z™ (G,U (1)) is called normalized if
w (91,92, ,9n) = 1 whenever any of g1,--+, g, is the
identity element e of G. It is a standard result that any
element of an n-th cohomology group can be presented by
a normalized n-cocycle. For simplicity, we always work
with normalized cocycles without loss of generality.

2. Triangulated manifold

Roughly, a triangulation of a topological space X is a
decomposition of X into simplices. A k-simplex is the
k-dimensional analogue of triangle; for lower dimensions,
a O-simplex (resp. 1l-simplex, 2-simplex, 3-simplex) is a
point (resp. segment, triangle, tetrahedron). In alge-
braic topology, such a decomposition is called a simplical
structure. A topological space with a simplical structure
is called a simplicial complex. Keeping only k-simplices
with k£ < m in a simplicial complex X results in a subcom-
plex called the m-skeleton of X and denoted X"*. By defi-
nition, there is a sequence of inclusions X C X! € X2---.
Since X! is a graph, terminology from graph theory is
used; O-simplices (resp. 1-simplices) are usually called
vertices (resp. edges).

To work with topological quantum field theories of
Dijkgraaf-Witten type, we want to decompose manifolds
into ordered simplices, i.e., simplices whose vertices are
ordered. Such a decomposition is called an ordered sim-
plicial structure. It is equivalent to a simplicial structure
together with a branching structure. A branching struc-
ture is a choice of orientation of each edge in the sim-
plicial complex so that there is no triangle whose three
edges form a closed walk [20]. A topological space with
ordered simplicial structure is called an ordered simplicial
complex.

Technically, the notion of a simplicial complex is too
restrictive; no vertices of a simplex can coincide. A slight
generalization of an ordered simplicial complex, drop-
ping this restriction, leads to the notion of a A-complex.
The definition of a A-complex structure can be found
in Ref. [116]. To ensure everything is well-defined, we al-
ways work with finite A-complexes, i.e., those with finite
number of simplices. To summarize, in this paper, the
precise meaning of a triangulation of a topological space
is a finite A-complex structure on it; vertices of each
simplex are assumed ordered and allowed to coincide. In
particular, triangles can be singular, whose vertices may
coincide.

3. Dijkgraaf-Witten weight

Let us now consider a gauge field labeled by a finite
group G on an n-dimensional triangulated oriented man-
ifold X (probably with boundaries X # ). Let Al (X)
be the set of its l-simplices (i.e., ordered edges). A
gauge field configuration is specified by an assignment
€: A'(X) — G. It will be called a coloring of X, if
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it is locally flat, i.e., & ([vov1]) € ([v1va]) = € ([vgue]) for
any 2-simplex (i.e., ordered triangle) [vgv1ve] in X. The
sets of all colorings of X and its boundary 0X are de-
noted Col (X;G) and Col (0X; G) (or simply Col (X) and
Col (0X)) respectively. Let ¢ € Col(9X), then we write
Col (X, ¢) for the set of colorings of X which coincide with
¢ on OX.

Given w € Z™ (G, U (1)), the Dijkgraaf-Witten weight

w [Xa 5] = <W, {#X> = H <w7 £U>sgn(a)

o

(A7)

is assigned to each £ € Col (X), where the product is over
all n-simplices o in X. The sign sgn () = 1 (resp. —1)
if the orientation of ¢ = [ogoy - - 0,] determined by the
ordering of its vertices is the same as (resp. opposite to)
the orientation of X. In addition,

(w,€0) 1= w (€ ([r0o]) € (102 -+ € ([on10])

(A3)

which is often simply written as [ogoy - --0,] to avoid

heavy notations in concrete calculations, when w and &
are clear from context.

Before proceeding further, let us further elucidate the
dependence of w [X, ] on & € Col (X, (). To borrow terms
from topology, £ € Col (X) can be viewed as a continuous
map from X to the classifying space BG for the group
and it maps X° to a base point of BG. To be concrete,
we always refer to the standard A-complex realization of
BG. In general, if £, £ € Col (X, ¢) are homotopic to each
other relative to 90X, then w [X,&] = w [X, ']

We notice that such a homotopy can be presented as
a coloring on X x I, where I = [0,1]. The A-complex
structure of X x I is induced by that of X as follows:
if [vovy ---wvg) is a k-simplex of X, then [vgvy ---vgvy],

VUL - U1V _q V)], e, [Vo0] ) _qvp] are (k4 1)-
simplices of X x I. Here X x {0} is identified with X; we
write v (resp. v') for vertices in X x {0} (resp. Xx{1}). A
homotopy ¢ from £ to £ relative to 9X can be presented
as a coloring of X x I such that X x {0} (resp. X x {1}) is
colored as ¢ (resp. ¢’) and such that each [vv'] in (9X) x I
is colored by the identity element of G. If such a homo-
topy exists for £, & € Col (X), we say &, & are homotopic
to each other relative to 0X.

To see w[X, & = w[X,&], let Cpy1 (X xI) be the
group of (n + 1)-chains of X x I, i.e., the free Abelian
group generated by A"T! (X x I). We also use X x I
to denote the orientation-dependent sum of all (n + 1)-
simplices in X x I; we write X x I = > _sgn(o)o €
Cpt1 (X x I). Using the Abelian group homormophism
Vg @ Cpp1 X x I) = Cpi1 (BG) induced by the homo-
topy ¥ : X x I — BG, we have

(W, 920 (X x I)) = (dw,Px (X x I)) = 1. (A9)
We notice that 9 (X x I) = X x {1} — X x {0} + (9X) x
I and that ¥4 coincides with group homomorphism &4
(resp. &) induced by & (resp. &) on X x {0} (resp.
X x {1}). In addition, w gives the trivial phase factor 1



on all n-simplices in (9X) x I. Hence (w, 940 (X x I)) =
(w, E4X) /<w,§;¢X>, so we get (w,&xX) = <w,§;¢x>.

Suppose that X and X’ are the same manifold with
probably different A-complex structures that coincide
on boundary. Let us consider an (n 4+ 1)-dimensional
A-manifold X x I whose boundary is triangulated as X
(resp. X') on X x {0} (resp. X x {1}) and the induced
A-complex structure of (9X) x I [124]. Then a homotopy
Y from ¢ € Col (X) to & € Col (X') relative to OX can be
defined as a coloring of this A-manifold X x I that coin-
cides with £ (resp. &) on X x {0} (resp. X x {1}) and
colors each [vv'] € (0X) x I by the identity element of
G. Again, repeating the above argument using Eq. (A9),

we get (w, {xX) = <w,§;¢x> if £ and £ are homotopic to
each other.

To determine when two colorings on X are homotopic,
we pick a vertex s € X as the base point and a path (s, v)
from s to every vertex v other than s, where X is assumed
to be connected. Let m; (X, s) be the fundamental group
of X based at s. For any subset W C X%\{s}, we write
(s, W) = {(s,v)|v € W}. Then Col (X;G) is in one-to-
one correspondence to Hom (7 (X,s),G) x G<S’XO\{S}>,
where Hom (7 (X, s),G) is the set of group homomor-
phisms from 7; (X, s) to G.

Further, suppose that X and X’ are the same manifold
with probably different A-complex structures that coin-
cide on boundary. If X # @, the base point s is picked
in X. Then £ € Col (X;G) and &' € Col (X';G) are ho-
motopic relative to OX if and only if they assign the same
group element to each path in 7 (X,s) and (s,9X%\s),
where 90X is the set of vertices in 0X. If 9X = 9X' = ),
then £ € Col (X; G) and & € Col (X'; G) are homotopic if
and only if there exists g € G such that ¢’ (q) = g€ (¢) g7+
for any g € m (X, s).

The summation of (w,£xX) over £ € Col (X, () gives
the Dijkgraaf- Witten partition function

(w, €4X),  (A10)

1
Zy, (X,¢) = W Z

£eCol(X,¢)

where [X®\9X°| is the number of vertices of X not in 9X.
From the discussion above, it is clear that Z,, (X, () does
not depend on how X\0X is triangulated.

Appendix B: Algebra preliminaries for D* (G)
1. Some definitions for quasi-bialgebras

A quasi-bialgebra (A, A, e, ¢) is an algebra A over C
equipped with algebra homomorphisms A: A — A® A,
€ : A — C and an invertible element ¢ € A® A® A such
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that
(id® A)(A(a) = ¢ (A®id) (A(a) ¢~ Va € A, (Bl)
(id®id ® A) (¢) (A ®id ® id) (¢)

=(1®¢)(ldoA®id)(¢) (¢@1), (B2)
(e®id)oA=id=(ild®e)o A, (B3)
(deeid) (¢p) =11, (B4)

where 1 denotes the identity element of A. Respectively,
A, € and ¢ are called the copruduct, the counit, and the
Drinfeld associator. A quasi-bialgebra is a generalization
of bialgebra; it relaxes the coassociativity condition.

An antipode on a quasi-bialgebra (A, A, ¢, ¢) is a triple
(S,a, B8), where S : A — A is an algebra antihomomor-
phism and «, § € A, satisfying

3 (a§1>) ad® =c(a)a,  (BS)

i oM ps (a§2>) —=(a)B,  (B6)

> ¢§1’]/35 (¢f) as® =1, (B7)
: (B8)

S5 (df)adP s (6) =1,
J

for any a € A, where Zj a§1) ® af) = A(a), Zj ¢§»1) ®
¢§-2) ®¢§-3) =¢and ), d_)](l) ®<i_>§2) ®<5§3) =¢ 1. A quasi-
Hopf algebra (A, A, e, 9,5, a, B) is a quasi-bialgebra with
an antipode (S, a, 8) such that S is bijective.

A quasi-triangular quasi-bialgebra (A, A,e,¢, R) is a
quasi-bialgebra equipped with an invertible element R €
AR A, called the universal R-matriz, satisfying

A°P (a) = RA(a) R, (B9)
(A®id) (R) = d312R130735 Ra3 b,
(id ® A) (R) = pgsy Rizpa13Riagp ™, (B11)

where AP = p o A with p (a1 ® az) = az ® a; and
R;; stands for R acting non-trivially in the i-th and j-th
slot of A ® A® A. In addition, if o denotes a permu-
tation of {1,2,3} and ¢ = >, ¢§»1) ® ¢§~2) ® (;55-3), then

o~ (1) a7 1(2) o7 1(3)
Do(1)o(2)0(3) = D_j ¢§ ) ® ¢§ ) ® (255 )

2. Tensor product of quasi-bialgebras

Given two quasi-bialgebras (A, Aj,e1,¢1) and
(Ag, As,e9,¢2), their tensor product A = A; ® A
is also a quasi-bialgebra equipped with the coproduct
A: A — AR A given by the composition of the following
two maps

A1®A

A=A @A — (A1 @A) ® (A2 ® A3)

(A RA)R A A)=AR A (B12)



where the second map swaps the middle two tensor fac-
tors (.A1 ® ./42) X (.A1 ® ./42) =A @A @ A; ® Ay. The
counit ¢ is

A ® Ay 225, CoC - C, (B13)
where the second map is the multiplication of C. The
Drinfeld associator ¢ is also given by the tensor product
of ¢1 and ¢2; more precisely, ¢ is the image of ¢ ® ¢o
under the map

(AP @ (AF%) = (Lo A)®P=A A A (Bl4)
swapping corresponding factors.

For notational compactness, we do not express the
identification maps A?" ® A3" 2 A®" and C® C = C
explicitly. Thus, we can simply write A = A; ® A,
e =¢€1®¢e and ¢ = ¢1 ® ¢o. This convention of notation
simplification will be used below.

If (A1, Aq,e1,¢1) and (Ag, Ag, g2, ¢2) have antipodes
(S1,a1,81) and (S, ag, B2) respectively, then their ten-
sor product (A, A, e, ¢) is also a quai-Hopf algebra with
antipode (S1 ® Sz, a1 ® aa, f1 ® B2).

In addition, if (A1, A1,e1,¢1) and (Ag, Ag, €9, ¢2) are
quasi-triangular with universal matrices R; € A; ® A,
and Ry € Ay ® As respectively, then their tensor prod-
uct (A, A, g, ¢) is also quasi-triangular with a universal
matrix R = R ® Rs.

This discussion here generalizes to the tensor product
of a finite number of quasi-bialgebras.

3. Representation category of quasi-bialgebra

Below, all vector spaces are assumed to be finite-
dimensional for simplicity. A representation (p, V) of
A is a vector space V over C equipped with an alge-
bra homomorphism p : A — End(V) = L(V), where
End(V) = L(V) is the algebra of all linear operators on
V. A morphism f : (p1,Vi) = (p2, V2) is a linear map
that commutes with the action of A, i.e.,

fopi(a)=p2(a)

Such a map is called an intertwiner in representation
theory. By the representation category of A, we mean
the the category whose objects are the representations
of A and whose morphisms are the intertwiners between
them. As it fits in a more general setting on the categories
of modules, the representation category of A is denoted
by A-Mod. In practice, we often write V short for (p, V)
and treat V as an A-module; the action of a € Aonv €V
is then written as a - v := p(a)v

For a quasi-bialgebra (A, A, €), a tensor category struc-
ture can be defined for A-Mod. Given any two repre-
sentations V; = (p1, V1) and Vo = (p2, Va), their tensor
product is V1 ® Vo = (p12, V1 ® Vo) with

o f,Va € A. (B15)

p12 = (p1 ® p2) 0 A, (B16)
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which is also a representation of A. The tensor product
of morphisms is the standard tensor product of linear
maps.

The unit object is the trivial representation (g, C). The
following intertwiners

CeV =2V 2 VeC
v®1

(B17)
1®v — v <~

are isomorphisms and are called the left and right unitors
of A-Mod.

Given three representations V; = (p;,V;),j = 1,2,3,
we can construct two representations (V1 & Vg) ® V3 and
V1 ® (Vo ® V3), which are the same vector space but not
necessarily identical as an A-module. They are isomor-
phic by the intertwiner

P1@p2@p3 (¢) : (Vi @ Va)@ Vs = Vi@ (Vo ® V),

which is called the associator of A-Mod.

In case that (A, A, ¢) is a quasi-Hopf algebra with an
antipode (5, «, 8), given any representation V = (p,V)
we can construct a dual representation V* = (p*,V*),
where V* := Homc (V,C) and p* (a) = p(S (a))" is the
transpose of p (S (a)) for any a € A. Explicitly, the ac-
tion of Va € A on Vf € V* is given by (a- f) (v) =
f(S(a)-v),Yv € V. Using the properties of the an-
tipode, delineated in Eqs. (B5-B8), we construct two in-
tertwiners

ay V'RV =C, fouve fp(a)v),
By : CoVRV', 1—p(B)elL(V) =

such that the compositions

(B18)

(B19)

VeV (B20)

weidv gy gy b

Ve (Vo) ey, ),

1%

(B21)

—1

2(Vev) L,

* Qy ®ldvx

P* idy«®8y P*

V*eV)eV

equal the identity maps idy and idy« respectively. Thus,
V* is a left dual of V in the tensor category A-Mod.
Another representation can be constructed on V* with
*p=p (5! (a))T and *V = (*p, V*) is a right dual of V.
The notions of left dual and right dual can be found in
many references on tensor categories, such as Ref. [125].
In case that (A, A, ¢) is quasi-triangular with R =
(1) ® 7"( ) for any two objects V1 = (p1,V1) and
Vg = (p2, Vz) in A-Mod we can define a morphism
RVLV2 . Vi ® Vo — Vo ®V; by

RV1:Ve (v ® vy) = Z (7“;-2) . ’Ug) ® (rj(l) -1)1> . (B23)
J

V* (B22)

The above works as a braiding for A-Mod. For a quasi-
triangular quasi-Hopf algebra, it is guaranteed that *V is
equivalent to V* and that the double dual V** is equiva-
lent to V [126].
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Figure 26. Graphic representation of wy (s,t) and w® (h, k).
The order of vertices is 0 < 0' <1< 1" <2< 2.

4. Algebra structures of D* (G)

Given a finite group G, whose identity element is de-
noted by e, and a normalized 3-cocycle w € Z3 (G, U (1)),
we can construct a quasi-triangular quasi-Hopf algebra
(D (G),A,e,¢,5,a,3,R). First of all, D¥ (G) is a |G|*-
dimensional vector space over C with a basis denoted as
{D; } gscC" The multiplication and comultiplication laws

are given by

D;Dz = 04 shs—1Wg (8,1) D;t,

A(Dy) = Y w*(h,k)D; @ Dj.
hk=g

(B24)
(B25)

Here wy (s,t) and w® (h, k) are phase factors defined as

w(g,s,t)w (s, t, (st)”" gst)

wg (s,t) = =T , (B26)
s w(h,k,s)w (s,s hs,s ks
W* (h k) = w(h(s . ) (B

They correspond to the Dijkgraaf-Witten weights on the
A-complexes with coloring shown in Fig. 26.
For convenience, we write

D*:=> "D;.
g

It is evident that D€ is the unit of the algebra, where e is
the identity element of G. In other words, C is included
in D¥ (G) as CD*®; we often write 1 instead of D¢ for the
identity of D* (G) for simplicity. Moreover, the counit is

(B28)

e:D¥(G) = C
Dy — e (D;) =lge- (B29)
The Drinfeld associator is
¢= > w(g.hk) " Df® Dj® D (B30)

g,h,keG

Further, (D¥ (G), A, ¢, ¢) is a quasi-Hopf algebra with

a0

an antipode (S, a, 3) given by

1 -1
S(D;) = Dé_, B31
) = G gy e (B3
a=1, (B32)
B=Y wl(gg ' g) D (B33)
geG
It is also quasi-triangular with
R=)_ D;o D’ (B34)

geG

In addition, D¥ (G) is also a x-algebra. The Hermitian
conjugate of D7 is given by

(D))" = (s.57) D, (B35)
where wy (s, s_l) is the complex conjugate of w, (s, 5_1).
Moreover, the Hermitian conjugate on D¥ (G) ® D¥ (G)

is given by

(Do D})' = (D)) @ (D). (B36)

It can be checked that VA € D¥ (G),
A(AN = (A )T, (B37)
e (A) = (e(4)". (B38)

In the main text, D¥ (G) is faithfully represented, with
the Hermitian conjugate respected, on a finite Hilbert
space. So D¥ (@) is in fact a C*-algebra and is hence
semisimple.

5. Representations of D (G)

It is known [119] that D* (G) is semisimple: all its
representations can be decomposed into irreducible ones.
Below, we construct all possible irreducible represen-
tations {Va},cq of D¥(G). The index set can be
Q = {(h,0)|h€ J, o€ (Zg(h) "}, where J is a sub-
set of G selecting a representative for each conjugacy
class and (Z¢ (h));" selects a representative for each irre-
ducible wy-representation isomorphism class of Z¢g (h) =
{g € G|gh = hg}. Here Zg (h) is called the centralizer of
hin G.

In detail, a wp-representation of Zg (h) is a vector
space V, equipped with a map ¢ : Zg (h) — GL(V,)
satisfying o (s) o (t) = wp (s,t) 0(st),Vs,t € G, where
GL (V,) is the group of all invertible linear transforma-
tions of V,. Then we can define a representation g, of
Dy (G) on V, by

On (D;) = 6g,h Q(S) )

where DY (G) is the subalgebra of D“ (G) spanned by
{D;\g € G,s € Zg (h)}. Further, in short,

V(hyg) =D¥ (G) ®DZJ(G) VQ.

(B39)

(B40)



gives an explicit representation V;, ,y corresponding to
(h, 0) € Q. Moreover, an inner product can be added to

Vin.o) such that pes o) (A7) = (pn.o) (A))',¥A € D (G).
Explicitly, we pick a representative ¢/ for each left
coset of G/zg(h). Since the conjugacy class contain-

ing h can be expressed as [h] = {q;-‘h (q?)_l}, the

index j goes from 1 to |[h]| (i.e., the cardinality of
[h]). For convenience, we always take ¢ = e. To

proceed, if {e?} is a basis for V,, then so is
--,deg o
el>} _ for V(p,0)- Then the
j=1,2,-

hoo\ .
{’qj’€i> = L2, (A

representation p(p, o) on V) is given by

)|qj7 z>_
g(t’qj)(s

wy (gl s) g.ta}h(ta})

i=1,2,-- deg Q

P(h,e) (

g o(s)ef),  (B41)

where q,@ and s are specified by tqjh = q,é”s and s € Zg (h).
Two representations V(j, ,y and V(; o) constructed this
way are equivalent if h,h’ are conjugate and g, o are
equivalent.

In addition, an inner product can be added on Vi ,)

such that p(s ) (AT) = (p(n,0) (A))T ,VA € D¥(G). To
see this, we first apply Weyl’s unitarian trick to (g, V,) €

(Zg (h))h: starting with any inner product (-,-) : V, x
V, — C, we can construct a new inner product by
0g)v,0(g)w
(v|w) = 2geze(n (2(9)v,2(9) ),Vv,w €V, (B42)

[Za (h)]

Since wy, (f, g) € U (1), it is straightforward to see that p
is unitary under the new inner product (-|-}, i.e., Vv, w €
Vo,Vg € Za (h),

(e(g)vle(g)w) = (vw).

Further, if {€/},_;, . 404, 15 an orthonormal basis
for V, with respect to (:|-), then an inner product,
also denoted (-|-), on Vy, , is given by requiring that

(B43)

{|qj, z>}; 1122 degg is orthonormal as well. It can be

checked that

Pn.e) (AT)

where the two {’s denote the Hermitian conjugates for
D¥ (GQ) and operators on (Vg, (-|-)) respectively.
Further, p = @4cqpq gives an isomorphism of algebras

p:D¥(G)~ P LVa

acQ

= (pno (A) VA D*(G),  (BM4)

(B45)

where £ (V,) is the algebra of all linear operators on
V. and is isomorphic to the algebra of all dim¢V, X
dim¢ Vy-matrices Maim. v, (C). According to the Artin-
Wedderburn theorem, a finite dimensional algebra over
an algebraic closed field is semisimple if and only if

ol

such an isomorphism exist. The inverse of p, denoted
v, can be specified by its value on each basis vector
|qj , l> <q]/, 1/’ el (V(h 0) ) To keep notations compact,
we may not write v explicitly as long as the representa-
tion is clearly carried by a vector space.

To work out the details step by step, we start with
the subalgebra C [Z¢ (h)],,, spanned by {Dj|s € Zg (h)},
which is a twisted group algebra and hence semisim-
ple [127]. So we naturally write down

v (gt €f) (ats €f]) =

deg 0 .
2 Zem!

SEZG(h)

flo(s)”"|ef) Dy (B46)

It can be checked that 7 respects the action of Dj, for any
s € Zg (h) and that it sends > Qz‘ql, 1><q1, Z’ to By,.
Hence mo p(D}) = DZ,VS € Ze (h ) Also pom equals
the identity on ‘ql, €; > <q1, €

In addition, we notice that

(Q/) !

T qla 7 D
(af, €| = (at's €, (Dq') :Hh. (B47)
Wh ((qj/)‘ ,qj,)
Therefore, the inverse of p is given by
h o\ /[ h .0 _
h |Q1a€i><‘h»€i/ (")t
1 8) ) = | ot L1 L
h ((qj’)i 7q]'/
0 -1, 0 \
- Zdeigqu;DZMDg’) '
SGZG(h)| G( )| Wh ((q?’)_lvq?/)
d Ps(gh)t
_ Z €g o Fz]z 7 (S)DZJJ7(qJ) ’ (B48)
o Za
where h; = gj h( hy=1 and
PE3d’ () =
Y =1 e h h h\—1
(€0 (s)" €2y wn, (g, s) wn, (¢ s, (q37) ) (B49)

w (@)1 )

In case that G is Abelian, the basis vectors of Vi,

can be written as |h;€?) = |qf,ef>. The representation
Eq. (B41) reduces to

Pho) (Dg) hs €]) = 8g.n - 0 (s) [hs ) , (B50)
and the inverse of p = @p( o) reduces to
deg o
y(hef) (hiegl) =) e (et o(s)"" [ef) Dj. (B51)

seG



6. The braided tensor category D* (G)-Mod

Since (D¥ (G), A,e,9,S,a, B, R) is a quasi-triangular
quasi-Hopf algebra, its representation category D¥ (G)-
Mod is a braided tensor category with duality. In addi-
tion, D¥ (G)-Mod is semisimple with finitely many iso-
morphism classes of simple objects. Let Q label all the
isomorphism classes of simple objects; irreducible rep-
resentations are simple objects in a representation cat-
egory. To be concrete, for each a € 9, we pick an ex-
plicit representation V,, such as the one constructed in
subsection B5. In particular, the trivial representation
is denoted by V, and the corresponding element of £ is
denoted by o. It can be checked that the dual representa-
tion V; is also irreducible and works as both a right and
left dual object of a. Let a € 9 label the isomorphism
class of V;. By definition, Vg is isomorphic to V;.

In the physics literature, a semisimple braided tensor
category is often specified by the following data (1) fu-
sion rule N, (2) 6j-symbols Fg‘f{ and (3) R-symbols
R where a,b,¢,0,¢,f € Q. Below, let us work out the
definitions of these data for D¥ (G)—Mod. This can be
done via the notion of a splitting space V°, defined as

VA = Hom (V,, Vo @ Vo), (B52)

where Vg4, Vy, V. are irreducible representations labeled
by a,b,c € Q. In other words, V2 is the vector space of
intertwiners from V. to V, ® V.

The fusion rule NV;, is just the dimension of Vet e,

N&, = dime V2P, (B53)
for any a,b,c € Q. It satisfies
2 Nao Z N (B54)

as a result of the isomorphism in Eq. (B60) below. The
fusion rule can be viewed as the multiplication rule of the
Grothendieck ring of D (G)-Mod, and we write

axb:ZN;bc

ceQ

(B55)

Because of the isomorphism R : Vy @ Vi =V, @ Vg, we
have
Nq

b = Nga- (B56)

In addition, for any semisimple braided tensor category
with duality, we notice that

Ngp = 0o, (B57)

which identifies @ from the fusion rule.
To define Fg‘ff‘, we observe the isomorphisms of vector
spaces

@ Veab ® V;C =~ Hom (Va, (Vu @ Vb) ® Vc)
ee

pRv = (pidy) ov (B58)
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PV © V' = Hom Vo, Va @ (Vo © V0))
feQ

KA (idg @A) ok (B59)

Because of ¢ : (Vg @ V) @ Ve 2V, ® (Vb ® V), we have
Hom (Vo, Ve @ Vo) @ Ve) = Hom (Vo, Ve @ (Vp @ V).
Thus, there is an isomorphism of vector spaces

@ V—eab ® Vvacc ~ @Vaaf ® ‘/fbc.

e€EN feqQ

(B60)

Restricting the isomorphism to the summand on the left
hand side corresponding to a given ¢ € Q and projecting
into the summand on the right hand side corresponding
to a given f € 9, we get the homomorphism
FS Ve o Vs s vl o, (Bo1)
which is called the 6j-symbol for (a,b, ¢, 0,¢,f) € QF.
The R-symbols R%® are an isomorphism between V¢

and Vc“b; it is induced by the braiding R®® : Vy ® V4 —
Va ® Vp in the following way
Rlclb . ‘/Cba — ‘/cab
ps R o (B62)

for any a,b,¢ € Q and any p € V2P.

To give a matrix representation for the linear maps
FD“:’fc and R, we need to pick a basis for each splitting
space. Thus, one braided tensor category may have dif-
ferent matrix representations of Fa“ff‘ and R%; they are
related by changes of basis, which are also referred to as
gauge transformations sometimes in the physics litera-
ture. In order to distinguish inequivalent braided tensor
categories, we want to find some useful quantities, in-
variant under changes of basis. The topological spin 0,
associated with each a € £ is an important one for this
purpose; for D¥ (G)-Mod, it can be defined as

dim¢ (V, aa
Z Timme () (RE (B63)
which is a root of unity and satisfies 0z = 6,. More
explicitly in terms of representations,
tr (R tr (pR
_ R (R Va@ V) (B64)
dime (Vy) dime (Vy)

where p is the operator permuting the two factors V,®V,
and R is the universal R-matrix of D¥ (G). The topo-
logical spins are often collected into a matrix form 7g, =
0a0ap, Va, b € Q, which is called the topological T-matrix.
It is well-known that the R-symbols satisfy the “ribbon

property”

0.

RERE =5 6,

ldvnh . (B65)



The topological S-matric S = (Sab)a,ben is another
important quantity. For D¥ (G)-Mod, its matrix element
Sap, Va, b € Q is defined as

Z dim¢ (V

CEQ

Z abe 9 dlmc(v)

> ldime (Vo)) = G

e

tI‘ RabRba)
(B66)

D= (B67)

Given the topological S-matrix, we can recover the fusion
rule by the Verlinde formula [14, 38, 128|

ab (B68)

c:§:§£&£g
Soq

qeN

The topological T-matrix and S-matrix are also called

the modular invariants, as they are closely related to the
modular transformations [108, 109].

7. Examples of D“ (G) and D* (G)-Mod

Below, let us study several concrete examples of
D¥ (@) and its representation category D* (G)-Mod.

a. D (ZQ)

Picking G = Zy = {0,1} and w trivial, we get the
quantum double algebra D (Zj). Its four inequivalent
irreducible representations, given by Eq. (B50), are

P} (D3) = By - 6™, (B69)

labeled by (g,\) € Zo x Zs = 9, all of which are one-

dimensional. For example,
1 (Pl
po (Dg) =e

In the notation widely used in the toric code model, the
four simple objects (0,0),(0,1),(1,0),(1,1) in D(Zy)-
Mod are denoted by 1, ¢, m, & respectively [15].

The fusion rule is given by

im(1x1) - _1. (B?O)

(91, A1) X (g2, A2) = (91 + g2, A1 + A2) . (B71)

In other words,
exXe=mXxXm=exXe=1, (B72)
eXmM=¢g, eXe=m MmX¢e=c. (B73)

The unit object is 1 = (0,0) and @ = a,Va € Q.
All 6j-symbols, allowed by fusion rules, equal 1. The
R-symbols are given by

R(gl7/\1)(527/\2) - eiﬂ')‘lg?, (B74)
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where we omit ¢ in R° since ¢ is uniquely determined by
a and b. Then Eq. (B63) gives the topological spins

(glaememues) = (171u17_1) (B75)

By Eq. (B66), the topological S-matrix is given by

leaxb
26040,

Sap = (B76)

axb

In general, R**R® is a scalar multiplication by 5%
For D (Z2)-Mod, we notice that R*® is a scalar multl—
plication by 6.

b. D¥ (Z2) withw(1,1,1) = -1

The nontrivial element of H? (G, U (1)) = Zg for G =
Zs = {0,1} is represented by the normalized 3-cocycle

-1,
w (g, h k)= {1

Different from D (Zs), in D¥ (Zs), we have D} D} = —D?
because wy (1,1) = —1 by the definition in Eq. (B26).
The irreducible representations of D (Zs) are

g=h=Fk=1,

B77
otherwise. ( )

Py (D;) = 8g - i - €™, (BT8)

labeled by (g,\) € Zy X Zy = Q. For example, we have

1 (D}) = i1 . (B79)
The fusion rule is still
(91, A1) X (92, A2) = (91 + g2, A1 + A2) . (B80)
The unit object is (0,0) and (g, \) = (g, \).
Suppose that V), ) is spanned by e;‘. Then egllig)‘; >

A1 A (91,21)(g2,22) :
egl ® €g2 spans V(gl+gz,>\1+>\2)' Using such a basis for

each splitting space and noticing that

—1’ = = :1’
ol ® P2 @ py? (¢) = { g1 = 92 =93

B8&1
1, otherwise, ( )

we have

F(91,>\1)(92’)\2)(93~,/\3) — -, g1=g2=93=1, (BgQ)
1, otherwise,
where ¢,0,f are omitted in Ffbbf‘ as they are uniquely
determined by a, b, c.
By Eq. (B23), we directly read the R-matrix

Rg1:A1)(g2,A2) — Zp (De)

g

(DY) ® py!

imA2g1

(B83)

=492 .¢



from the universal R-matrix R =} Dg®D? with D* :=
Zg D;. Then Eq. (B63) gives the topological spins
=(1,1,4,—1) . (B84)

Hence, the simple objects (1,0) and (1, 1) are often called
semions. In addition, Eq. (B66) gives the topological S-
matrix

(000,0):0(0,1),0(1,0)50(1.,1))

leaxb
2040,

Sap = (B85)

In general, R**RY® is a scalar multiplication by 0““’

For D“ (Z2)-Mod, we notice that R*® is a scalar multi-
plication by 6.

c. D¥ (Zg) with w (g, h, k) = eimg DRk

This gives an example in which not all irreducible
representations are one-dimensional, even though G it-
self is Abelian. The three Zs components of g €
G = 73 = 7o x Ty x Zy are denoted by g1, g2 ¢,
To keep notations compact, we will use 100 short for
(1,0,0) € G; thus, the eight group elements are also de-
noted 000, 100,010,001,110,011,101,111. Moreover, we
write 0 short for 000 when it is clear from context. As
G is Abelian, Egs. (B26) and (B27) define a normalized
2-cocycle w, = w9 € Z? (G,U (1)) for each fixed g € G.
Explicitly,

wy (b, k) = . (BS6)

Whenever g # 0, we notice [wy] corresponds to a non-
trivial element of H? (G, U (1)).

In total, D (G) has 22 inequivalent irreducible repre-
sentations. Eight of them are one-dimensional, labeled
as p) with A = (A, A@ AB)) € Z3; explicitly,

po (D}) = bone™, (B87)

where A - s = ADs) 4 A@)52) 1 AB)sG) (mod 2).
The other fourteen irreducible representations are two-
dimensional, labeled as p; and p, with g # 0 in Z3;
they can be specified by the action of D} D910 pYol
as shown in Table I. The corresponding representation
isomorphism classes are denoted by (0, \) for A € Z3 and
(9,%) = (g9,£1) for g € Z3, g # 0.

The dual of each simple object is isomorphic to itself;
in particular, each two dimensional irreducible represen-
tation fuses with itself as

eiw(g(l)h(2)k(3) _h(l)k(Z)g(S)+k(1)g(2)h(3))

(100, 4)* = 0 + (0,010) + (0,001) + (0,011),  (B8S8)
(010, 4) = 0 + (0,001) + (0,100) 4 (0,101), (B8Y)
(001,4)* = o + (0,100) + (0,010) + (0,110),  (B90)
(011,4) = 0 + (0,100) + (0,011) 4 (0,111),  (BI1)
(101,4)% = 0 + (0,010) + (0,101) 4 (0,111),  (B92)
(110,4)% = 0 + (0,001) + (0,110) 4 (0,111),  (B93)
(111,4)% = 0 + (0,110) + (0, 101) 4 (0,011),  (B94)

o4

where 0o = (0,0) denotes the unit object. We notice
that Egs. (B88-B90) and Egs. (B91-B93) are related
by permuting components of g,A\ € Zj. In addition,

(g,%£) x (g9,F) equals the sum of one-dimensional rep-
resentations that do not appear in (g,+) x (g,+). For
example,
(100, +) x (100, F) =
(0,100) + (0,110) + (0,101) + (0,111). (B95)
The rest of the fusion rules are
(0,A) x (0, p1) = (0, A + pa) (B96)
(0,2) x (g, %) = (g, ™), (B97)
(9.8) x (h,k") = (g +h,+) + (g + h,—) (B98)

for g,h #0, g # hin G and k,x’ = +.

For 6j-symbols, let us compute F " with a = (111, 4)
as an example. In the current category, all allowed split-
ting spaces are one-dimensional. We pick a basis for each
splitting space relevant here as follows

1
o= s (0,1,-1,00" € V%00 (B99)
1
= (1,0,0,—1)" € V&%), (B100)
1
P2 = 7 (1,0,0,1)" € Vi601), (B101)
7 (0,1,1,0)" € Vioi10)» (B102)
10
o = 0 OOO)a a(O 000) (B103)
01
o — 01 p0.010e 1a(0.011) (B104)
10
0 Y{0101a 1a(0,101).
09 — (B105)
)
oy — c V(o 110)a Va(O 110) (B106)
0 -1

where the intertwiners are presented in matrix form.
From Eq. (B58), we get that {(u; ®ida)oj},_0 103
forms a basis of Hom (V,, (Vo ® V) ® Va). By the Drin-

feld associator (pliu ®p1i11 ®pﬁl) (¢) = —1, the ba-
sis is converted into {; : —(u] ®ida)oj}t_g 105 as

a basis of Hom (Vq,Vq ® (Va ® Va)).

On the other
hand, {¢; = (idq ®u])aj} _0123 forms another ba-
sis of Hom (V,, Ve @ (Va @ Vy) from Eq. (B59). It is
straightforward to check

Uiy = 0;5ida, V4, §' = 0,1,2,3. (B107)
ploj = 0;ida, Vi, 5’ = 0,1,2,3. (B108)



’ ‘ D;ILOO D;)LIO D201 H 0 ‘

+
Pioo | £100,n - 00| S100,n - 01 | S100,h - 03 ||E1

+
Poio| 010,n - 03 |Ebo10,n - 00| G010, - 01 ||EL

0| Boot,n - o1 | Soor,n - 3 |E£oo1,n - o0 ||E1
p(il do11,n - 03 | do11,n - 01 |Edo11,n - 01 ||E1
Piot |[E6101,h - 01| S101,n - 03 | droa,n - o1 || £1
Pio 0110,n - 01 |Ed110,n - 01| d110,n - 03 ||E1

+ .
P11 46111, - 01| Eb111,0 - 02| Eb111,80 - 03| Fo

Table 1.
DY (Z%) with w (g, h, k) = e , specified by the ac-
tion of a set of generators. The 2 x 2 identity matrix and the
Pauli matrices are denoted by o9, 01, 02, 03 respectively. The
topological spin 6 of each irreducible representation is listed
in the last column.

Two-dimensional irreducible representations of
irgW R ()

Then, the 4 x 4 matrix (Fg*),; = Fg", for ¢, f =

(0,000),(0,011),(0,101),(0,110), describes the basis
transformation; thus,

(F3) e = Upilin); 4
753
1 -1 —i 1
1] 1 -1 i -1
== , (B109)
—i =i =1

1 -1 —i -1

where (p;[1;/) is defined by <p;fwj/ = (pj|¢;)idq. For
example, Fei000)0.011) = —1. All the other 6 symbols
can be computed in this way.

The universal R-matrix R = 3 D¢ ® DY is elegant

enough to describe braidings; we will not list all RS,
which can be obtained by a well-defined but tedious com-
putation from R. To illustrate the computation, let us
calculate R¢® with a = (0,111) as an example. Given by
Eq. (B23), the matrix form of R : Vy ® Vy = Vq ® Vg

1S
R* = (pi1, (D) ®ida) 0,
1000
0010
0100
0001

(B110)

where o : V, ® Vqy = V4 ® V, is the exchange of the two
factors and

+ + +
Pi11 (Dln) = P11t (D}H) = P11 (D%??D?H)
= pin (DD DY) = Foroa05 = Fi. (BI11)
Using Egs. (B99-B102) and Eq. (B62), we get

Rga - Ztl . idVoﬂﬂ7 Rgu == :F'L . ich““a (B112)
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where ¢ = (0,011),(0,101) or (0,110). Thus, the topo-
logical spin of a = (111, £), defined by Eq. (B63), is

9(111’:|:) = Fi. (Bll?))
The topological spins of all two-dimensional irreducible
representations are listed in Table I, while all the topolog-
ical spins of one-dimensional representations are 1. Given
the topological spins and the fusion rules, we can read off
the topological S-matrix from Eq. (B66).
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