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In addition to novel surface states, topological insulators can also exhibit robust gapless states
at crystalline defects. Step edges constitute a class of common defects on the surface of crystals.
In this work we establish the topological nature of one-dimensional (1D) bound states localized
at step edges of the (001) surface of a topological crystalline insulator (TCI) Pb0.7Sn0.3Se, both
theoretically and experimentally. We show that the topological stability of the step edge states
arises from an emergent particle-hole symmetry of the surface low-energy physics, and demonstrate
the experimental signatures of the particle-hole symmetry breaking. We also reveal the effects of
an external magnetic field on the 1D bound states. Our work suggests the possibility of similar
topological step edge modes in other topological materials with a rock-salt structure.

PACS numbers:

I. INTRODUCTION

The discovery of topological insulators1–3 (TIs) has unearthed a large class of novel quantum materials, which
host robust gapless surface excitations protected by various symmetries. In addition to two-dimensional (2D) surface
states, certain topological materials can also host one-dimensional (1D) topological gapless modes at special crystalline
defects such as lattice dislocations4–6 and step edges. Some examples are 1D modes seen in Bi bilayer7, WeTe28,9, and
ZrTe510. The topological nature of these 1D states offers them protection against back-scattering which can provide a
dissipationless transport channel that might prove useful in device applications. Recently, 1D modes were discovered
at odd step edges of a topological crystalline insulator (TCI)11, which were shown persist to high temperatures
making them potentially attractive for applications. However, the topological character of these states, and hence
their robustness against perturbations has not yet been established.

In this work, we elucidate the topological nature of the 1D states localized at step edges on the surface of a
topological crystalline insulator12,13 (TCI) Pb1−xSnxSe. We use a combination of theory and scanning tunneling
microscopy (STM) and spectroscopy (STS) to clarify the topological nature and classification of both odd and even
step edge states. Theoretically, by combining topological classification with microscopic calculations based on k · p
theory12,14–16, we reveal 1D flat bands localized at odd- and even-step edges, which we find are similar to those on the
zigzag edge of graphene17. In particular, we show that the 1D states at the odd step edges form a Kramers pair and
are topologically protected by an emergent particle-hole symmetry of the low-energy Hamiltonian. We further predict
that at even step edges, mixing of the two Kramers pairs is allowed and can lead to split peak features in density of
states (DOS). These peaks can further split in a magnetic field. Our STS data confirm these predictions. Our work
therefore establishes the topological nature and stability of 1D step edge states in Pb0.7Sn0.3Se. Importantly, the
general mechanism shown here can also apply to step edges in other rock-salt crystals with topological surface states.

II. RESULTS

Pb0.7Sn0.3Se crystallizes in a rock-salt structure (Fig.1 a) and can be easily cleaved to expose the (001) surface.
Fig.1c shows a topographic image of this surface recorded at low bias. It is known18 that the low bias STM topography
reveals only the Se sublattice, while high bias images contain information from both Se and the Pb/Sn sublattices.
Correspondingly, we observe only the Se atoms in this image. The electronic and topological properties of Pb1−xSnxSe
have been widely investigated, theoretically12,14,19,20 and experimentally18,21–28. While it is not a strong topological
insulator with a trivial Z2 index, Pb0.7Sn0.3Se is a topological crystalline insulator characterized by a non-zero mirror
Chern number12. The (001) surface hosts four hybridized Dirac cones protected by mirror symmetry, symmetrically
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Figure 1: Crystal structure and band structure. (a) Rock-salt crystal structure of Pb0.7Sn0.3Se. (b) Schematic band structure
of the surface state. (c) (15nm)2 STM topography at -100 mV, 200 pA and at 4 K. (d) Schematic representation of an even
step. (e) Schematic representation of an odd step. (f) Typical averaged dI/dV spectrum on the (001) surface of Pb0.7Sn0.3Se.

away from the X̄ and Ȳ points of the surface Brillouin zone (SBZ, see Fig.1 b). The hybridization of the cones results
in a change of the Fermi surface topology, known as the Lifshitz transition, when we move deep into the band gap.
The Lifshitz transition is associated to a singularity in the density of states (DOS), known as the Van Hove singularity.
Fig.1f shows a typical dI/dV spectrum, which is proportional to the density of the states. The curve is V-shaped
with a minimum at the Dirac point around −90 mV, and two peaks associated to the Van Hove singularity at ∼ −40
mV and ∼ −130 mV.

Since the unit cell consists of three atomic layers, two types of steps can be found in STM topography: even-steps
whose height is an integer multiple of the lattice constant a (Fig.1d); and odd-steps whose height is a half integer
multiple of the lattice constant a (Fig.1e). Our first task is to measure the local density of states near the even-
and odd-step edges. Fig.2 a shows a topographic image with two step edges with the height profile measured across
the step edges shown in the inset. From the heights we find two different type of step edges: an odd step of height
3
2a ≈ 0.9 nm and an even step of height a ≈ 0.6 nm (see also Fig. 8 in Appendix B for the steps orientation).

A dI/dV map recorded in the same area at energies close to the Dirac point (Fig.2b) shows a clear enhancement of
density of states along the step edges. As first observed in Ref. 11, an enhancement of the DOS localized at odd steps
is associated with the existence of robust one-dimensional electron channels connecting two Dirac cones. However
the topological nature of these localized states has not yet been clarified. Moreover, unlike previous work, we also
find a DOS enhancement at the even step edge. To obtain further information on these states we obtain several
dI/dV spectra (line cuts) across the steps. As Fig.2 c shows, for the odd step a clear sharp peak is observable, as we
cross the step edge. In accordance with the dI/dV map, we also observe a peak-like feature in the DOS at the even
step edge. The line shape of this feature however appears as a split peak (see Fig. 2d, also see Fig. 6 and Fig. 7 in
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Figure 2: Spectroscopy on even and odd steps. (a) (60nm)2 topography image. The inset shows the height profile along the
black line. (b) dI/dV map map at -100 mV. (c) Spectroscopic linecut across the odd step. (d) Spectroscopic linecut across the
even step.

Appendix B).
To further characterize and distinguish between the odd- and even-step edge modes, we investigate their behavior

under an external magnetic field. Fig.3 a shows a dI/dV map recorded with an out-of-plane magnetic field of 7.5T,
in the same area used for Fig. 2a and b. Fig.3 b and c are line cuts across the odd and even step, respectively, along
the same position used for Fig.2 c and d. As it is evident from Fig.3 d (also see Fig. 6 in supplement), the two peaks
on the even step merge into one broad peak when we apply an external magnetic field.

Our next goal is to theoretically understand the presence and characteristics of these step edge modes. To reveal
the topological index and stability of these 1D step edge modes we perform explicit calculations based on the k · p
model of Pb0.7Sn0.3Se (001) surface states, as we discuss in detail in the next section.
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Figure 3: Magnetic field data. (a) dI/dV map at -100 mV. The area used for the map is the same as shown in Fig.2 a and b.
(b) Line cut across the odd step edge. The line cut is in the same position (see green line of Fig. 5 a) as in Fig. 2 c. (c) Line
cut across the even step edge. The line cut is along the same position as the one shown in Fig. 2 d.

a b

Figure 4: Schematic of step edges and surface Brillouin zone. (a) Atomic arrangement, and spatial dependence of parameters
m,m′ in (2) across an odd step edge. (b) Surface Dirac fermions in the (001) surface Brillouin zone (SBZ), and the momentum
range of zero modes localized on the odd step edge along [010] direction.

III. DISCUSSION

The low energy physics of (001) surface states of Pb0.7Sn0.3Se is described by the following k · p theory14

hX̄
k

= −mσ3 −m′s2σ2 − (k1 + k2)(v1xs2 + v2xσ2) + (k2 − k1)v1ys3. (1)

which describes the two Dirac cones near X̄ point in SBZ.
As illustrated in Fig.4 (b), surface distortions in Pb0.7Sn0.3Se break the mirror symmetry w.r.t ŷ-ẑ plane, opening
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up a gap (∼ 20 meV) for the two Dirac cones near Ȳ point24. This leaves the two Dirac fermions in Eq. (1) the only
low-energy gapless excitations on the (001) surface. For the convenience of studying step edges along [010] direction
(see Fig.4), we have chosen a coordinate system k1 = (kx − ky)/2, k2 = (kx + ky)/2 for momentum space in model
(1) so that the momentum component k2 along the step edge is a good quantum number. As shown by ab initio
calcualtions14, v2x is an order of magnitude smaller than v1x,1y and can be neglected in model (1). Therefore the
minimal model for an odd step edge along [010] direction writes

H[010](x1, k2) = V(x1, k2) + i(v1xs2 + v1ys3)∂1, (2)
V(x1, k2) ≡ k2(v1ys3 − v1xs2)−m(x1)σ3 −m′(x1)s2σ2.

where m(x1) and m′(x1) depend on coordinate x1 across the step edge.
In addition to time reversal symmetry T = is2 ·K, Hamiltonian (2) also exhibits an emergent particle-hole symmetry

(PHS) C = s1σ2 · K. At each fixed k2 along the [010] step edge, the zero modes localized at the edge are classified by
the topological indices for C- and T -symmetric 1d insulators29–31. As detailed in Appendix B 2, they are characterized
by an even-integer-valued topological invariant ν ∈ 2Z, the winding number of 1d systems in symmetry class AIII32–34

with chiral symmetry χ = T · C. For a [010] step edge of height ∆h = n
2 a (a denotes the lattice constant, see Fig.1

d-e) on (001) surface of Pb0.7Sn0.3Se, as we will show below, its topological index is given by ν = ±2 if n = odd for
all momentum k2 between two massless Dirac points around X̄. Similar to the zero-energy flat bands on the zigzag
edge of graphene17, there will be a flat band with |ν| in-gap states (or |ν|/2 Kramers pairs) at each k2 between the
two Dirac cones around X̄ localized at the step edge, as shown in Fig. 4 (b). While odd step edges have a nontrivial
topological index ν = ±2, an even step edge (n = even) generally has a vanishing topological index ν = 0.

To show this, we first consider an odd step edge of height ∆h = 1
2a (n = 1) described by Hamiltonian (2). As

depicted in Fig.4 (a), across an odd step edge the Pb/Sn and Se atoms are switched. Exchange of Pb/Sn and Se
orbitals is implemented by operator σ1 in model (2), leading to the domain wall configuration of m(x1) and m′(x1)
in Fig.4(a):

σ1H[010](x1, k2)σ1 = H[010](−x1, k2). (3)

since Pb/Sn and Se orbitals are switched across an odd step edge at x1 = 0. In particular, the mass domain wall of
m′(x1) at the step edge x1 = 0 induces a Kramers pair of Jackiw-Rebbi solitons (zero modes) at energy E = 0 (zero
energy here refers to the Dirac point):

ψk2(x1) = e

iv2
−

k2x1−v1y
∫x1
0

m′(x)dx

v2
+ e

−

∫x1
0

Ĥ0(x)dx

v2
+ |s1 = σ2〉. (4)

where we define v2± = v21y ± v21x and

Ĥ0 ≡ iv1xm
′σ2 + 2k2v1xv1ys1 + im(v1xs2 + v1ys3)σ3. (5)

The zero-energy Kramers degeneracy in s1σ2 = 1 subspace cannot be split as long as time reversal is preserved.
Moreover, PHS pins it at zero energy (Direc point). It has a one-to-one correspondence to the nontrivial topological
index ν = 2 of symmetry class AIII associated with this step edge. This explains the observed dI/dV peaks at the
Dirac point at odd step edges in Fig.2c.

As shown in Fig. 4a, in addition to this step edge at x1 = 0, there is another type of odd step edge (e.g. the step
edge located at x1 = x0 in Fig.4a), where the mass m,m′ are positive on its l.h.s. and negative on its r.h.s., opposite
to the odd step edge at x1 = 0. Its associated topological index is therefore ν = −2, and there is also a Kramers pair
at zero energy on this step edge as protected by time reversal and PHS. The wavefunction of this Kramers pair at
x1 = x0 is very similar to (4) for the x1 = 0 odd step edge, except that its low-energy Hilbert space satisfies s1σ2 = −1
in contrast to s1σ2 = +1 for the x1 = 0 step edge.

We emphasize that the PHS in the minimal model (2) is an emergent symmetry of the surface states at low energy.
It is not a microscopic symmetry, for example the small v2x term in surface Hamiltonian (1) in fact weakly violates
this PHS. Weak breaking of the PHS will produce a small dispersion for the flat bands at the step edge, and slightly
shift it away from the zero energy. Therefore it will slightly shift and broaden the peak in the dI/dV curve at an odd
step edge.

With the above understanding of a ∆h = 1
2a odd step edge, we now consider an even step edge of height ∆h = a.

Topologically, such a step edge can be viewed as two odd step edges of ∆h = 1
2a merging with each other. Therefore

the natural low-energy model for such an even step edge is to consider 2 Kramers pairs (or 4 zero modes) of in-gap
flat bands from the 2 constituent odd step edges, and analyze the symmetry-allowed mixing terms between them.
First of all, we notice that the topological index of an even step edge is the sum of index for each constituent odd step
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Figure 5: Splitting of edge modes. Illustration of how the 4 in-gap flat bands split at an even step edge of height ∆h = a.These
bands at even step edges are not topologically protected and can therefore mix and split as seen in the STM data in Fig. 2.

edge, such as the two step edges in Fig.4a, which leads to a trivial topological index νeven = 2− 2 = 0 for an even step
edge. This suggests symmetry-allowed mixing terms exist and will split the two Kramers pairs at an even step edge,
pushing them away from zero energy. This explains the observed split peak feature in dI/dV maps at even step edges
in Fig.2d. However, the energy splitting of the two Kramers pairs generally depends on microscopic conditions of the
even step edge, and is not a universal quantity. When the splitting is large enough compared to the bulk gap, both
Kramers pairs can merge into the bulk states and hence the peak in dI/dV spectra of even step edges may disappear.
This is consistent with our data where we find that the even step split-peaks are not always present, as well as the
reported data in Ref. 11.

Using our theory, we can understand the response of the step edge states to an external magnetic field. For the
odd step edge with ∆h = 1

2a, the Kramers pair will split under an external magnetic field in an anisotropic way. As
shown in the Appendix, the in-gap zero modes only directly couple to a perpendicular magnetic field at lowest order.
A perpendicular field (along [001] axis) induces a splitting ∼ gµBh proportional to field h, and in-plane field will lead
to a splitting ∼ h2/∆ where ∆ stands for the bulk gap. Taking g = 2 as a rough estimate, a 11 T perpendicular
field can induce a splitting of ∼ 1 meV, which is difficult to resolve as was seen in the dI/dV curve shown in Ref. 11.
For our field of 7.5T, the splitting is of the order of 0.7meV, far less than the peak width and can therefore not be
resolved.

At an even step edge with ∆h = a, on the other hand, the two separated Kramers pairs (separated due to mixing)
will split into 4 energy levels under a perpendicular magnetic field (Fig.5). The theory further predicts that a
perpendicular field will move two levels towards the middle of the gap, and move the other two levels up and down
towards the bulk bands, as illustrated in Fig.5. While the effect is small, it explains the behavior of the splits peaks
at the even step edges in magnetic field data at 7.5 T (see Fig.3 and Fig. 7 in supplement). The linecuts in Fig.2d
and Fig.3c were obtained in the same position across the even step edge. One clearly sees a build up of density of
states between the two peaks in the magnetic field due to the movement of the peaks as predicted by theory.

IV. CONCLUSION

In this paper we establish the topological nature of 1D in-gap states localized at step edges on (001) surface of
TCI Pb0.7Sn0.3Se, both theoretically and experimentally. The emergent particle-hole symmetry (PHS) in the low-
energy surface theory gives rise to one Kramers pair of in-gap flat bands at odd step edges of height ∆h = (n+ 1

2 )a,
characterized by a 1d topological winding number ν = ±2. These step edge states are not spin polarized but rather
form a time-reversal-related Kramers pair. Symmetry-allowed mixing between two Kramers pairs lead to the split
peak feature at even step edges, consistent with experimental observations in dI/dV curves (Fig.2 d). Under an
external magnetic field, each Kramers pair of flat bands can further be split into two levels, which results in a merging
of the two split peaks at an even step edge as seen experimentally.

An important point is that although the explicit calculations shown here were carried out for step edges along [010]
direction, as long as Pb/Sn and Se atoms are switched across the step edge, the domain wall configuration of m and
m′ remains valid and the zero modes follow as Jackiw-Rebbi solitons on the domain wall35. Therefore our analysis
should apply to step edges along all directions except along the [11̄0] direction which connects the two Dirac points.
Finally, we note that our theory is quite general and implies that similar step edge modes can be observed on surface
step edges of other topological materials with rock-salt crystal structure.
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V. METHODS

The experiment was performed in an ultra-high vacuum (UHV) system with a base pressure lower than 10−10 mbar
and at a temperature of ∼4 K. Scanning tunneling microscopy (STM) and spectroscopy (STS) were used to detect
the step edges on the sample surface and to reveal the electronic properties of the 1D conducting channels trapped
within them. Single crystal samples of TCI Pb0.7Sn0.3Se were cleaved at a temperature of ∼80 K before being trans-
ferred into the STM head. Further details of the theoretical calculations are provided in the supplemental information.
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Appendix A: Review of (001) surface Hamiltonian of Pb1−xSnxSe

The topological crystalline insulator (TCI) Pb1−xSnxSe belongs to space group #225, Fm3̄m. While the Bravais
lattice is expanded by

a1 = a(0,
1

2
,
1

2
), a2 = a(

1

2
, 0,

1

2
), a3 = a(

1

2
,
1

2
, 0) (A1)

the reciprocal lattice is expanded by

b1 =
1

a
(−1, 1, 1), b2 =

1

a
(1,−1, 1), b3 =

1

a
(1, 1,−1). (A2)

The 8 time reversal invariant momenta (TRIM) are ~Γ = (0, 0, 0) and

X =
b2 + b3

2
, Y =

b1 + b3

2
, Z =

b1 + b2

2
(A3)

and

Li =
1

2
bi, i = 1, 2, 3; L4 =

b1 + b2 + b3

2
. (A4)

This TCI is featured by simultaneous band inversions at the above four symmetry-related TRIM {Li|1 ≤ i ≤ 4}.
The (001) surface of Pb0.7Sn0.3Se preserves the following symmetries which generate a 2d point group C4v:

(x, y, z)
Cz

4−→ (−y, x, z); (A5)

(x, y, z)
M(11̄0)
−→ (y, x, z). (A6)

The surface Bravais lattice vectors are

ā1 = a3 =
a

2
(1, 1), ā2 = a1 − a2 =

a

2
(−1, 1). (A7)

with reciprocal lattice vectors

b̄1 =
1

a
(1, 1), b̄2 =

1

a
(−1, 1). (A8)

There are 4 surface Dirac cones related by Cz
4 rotational symmetry, which can be grouped into two pairs:

Q1 = Q(1, 1), Q3 = −Q(1, 1), Q .
π

a
. (A9)

which preserves mirror symmetry M(11̄0) w.r.t. (11̄0) plane; and

Q2 = Q(−1, 1), Q4 = Q(1,−1). (A10)

which preserves mirror symmetry M(001) = (Cz
4 )

2 ·M(11̄0) w.r.t. to (001) plane. Note that Q1,3 are very close to the
edge center X̄ = π

a
(1, 1) of the square-shaped surface BZ, while Q2,4 are close to the other edge center Ȳ = π

a
(−1, 1).

https://doi.org/10.1038/s41467-018-03887-5
http://dx.doi.org/ 10.1021/acsnano.7b07502
http://stacks.iop.org/1367-2630/15/i=6/a=065001
http://link.aps.org/doi/10.1103/PhysRevLett.110.240404
https://link.aps.org/doi/10.1103/RevModPhys.88.035005
http://link.aps.org/doi/10.1103/PhysRevB.55.1142
http://link.aps.org/doi/10.1103/PhysRevB.78.195125
http://link.aip.org/link/?APC/1134/22/1
https://link.aps.org/doi/10.1103/PhysRevD.13.3398
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As shown in Ref.14,25, expanding around X̄ point, the effective k · p theory for surface Dirac states at Q1,3 can be
written as

hX̄
k

= −mσ3 −m′s2σ2 − kx(v1xs2 + v2xσ2 + v3xs2σ3)

−ky(v1ys3 + v2ys1σ1 + v3ys3σ3). (A11)

in basis of {|pz(Sn), ↑〉, |pz(Sn), ↓〉, |px(Se), ↑〉, |px(Se), ↓〉}. Here ↑ / ↓ denotes the spin orientation along [001] ‖ a3
crystalline direction (i.e. along Γ̄X̄ in the surface BZ). We use ~σ and ~s to denote Pauli matrices for the orbital and
spin indices respectively. We have chosen the following coordinates from surface reciprocal vectors (A8)

k = kxb̄1 + kyb̄2 =
1

a
(kx − ky, kx + ky). (A12)

Under symmetry operations the spinor transforms as

ψk

T
−→ is2ψ−k, (A13)

ψ(kx,ky)

M(11̄0)
−→ − is2ψ(kx,−ky), (A14)

ψ(kx,ky)

M(001)
−→ iσ3s3ψ(−kx,ky). (A15)

For the x = 0.3 compound, we have14

m = 0.056 eV, m′ = 0.026 eV,

v1x = 2.58 eV · Å, v1y = 3.28 eV · Å,
v2x = 0.32 eV · Å, v3x = v2y = v3y = 0. (A16)

In our notation, near surface TRIM X̄, the Pauli matrices ~s correspond to the following physical spin polarization:

s1 ‖ (0, 0, 1), s2 ‖ (1,−1, 0), s3 ‖ (1, 1, 0). (A17)

The surface Dirac fermions at Q2,4 near Ȳ = π
a
(−1, 1) are described similar to (A11), related by a Cz

4 rotation.
Experimentally the (001) surface turns out to be structurally distorted, where mirror symmetryM(001) is spontaneously
broken. This gaps out the Dirac fermions at Q2,4 near Ȳ , and therefore the only gapless surface states are described
by (A11) and protected by mirror symmetry M(11̄0) in (A14).

Appendix B: Step edge states on (001) surface

1. Setup

Choosing a different coordinate system for the surface momentum:

k1 =
kx − ky

2
, k2 =

kx + ky
2

(B1)

the surface state Hamiltonian (A11) can be rewritten as

hX̄
k

= −mσ3 −m′s2σ2 − (k1 + k2)(v1xs2 + v2xσ2) + (k2 − k1)v1ys3. (B2)

Now let’s consider a step edge along [010] direction where k2 is still a good quantum number. From real parameters
(A16) one can see that v1x, v1y ≫ v2x, and therefore as a minimal model we can neglect v2x. It’s straightforward to
identify that two Dirac points are located at (kx, ky) = ±(

√

m2 + (m′)2/v1x, 0). We can also write down the following
Hamiltonian for a [010] step edge:

H[010] = V(x1, k2) + i(v1xs2 + v1ys3)∂1, (B3)

V(x1) ≡ −m(x1)σ3 −m′(x1)s2σ2 + k2(v1ys3 − v1xs2).
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2. Topological classification of step edge states

In addition to time reversal symmetry (A13), the above minimal model (B3) also preserves a particle-hole symmetry
C

ψk

C=s1σ2−→ s1σ2ψ
∗
−k
, (B4)

C · H[010](k2) · C = −HT
[010](−k2) (B5)

Therefore the total symmetry of the minimal model (B3) is generated by U(1) charge symmetry generated by
Q = e i

π
2 F̂ (F̂ denotes the total fermion number), time reversal symmetry T and particle-hole symmetry C, satisfying

the following commutation relations:

C2 = (−1)F̂ , [T , C] = {C,Q} = {T ,Q} = 0. (B6)

The step edge bound state is classified by the extension problem of complex Clifford algebra:

{γ1, T C} × Q → {γ1, T C, γ0} × Q (B7)

where γ1,0 are Dirac matrices describing one side of the step edge, as a 1d system with a fixed k2 since only the
combination T C of time-reversal and particle-hole operations preserves momentum k2. This leads to a classification
of

ν ∈ π0(C2) = Z (B8)

characterized by an integer-valued winding number ν in symmetry class AIII (since T C can be regarded as the chiral
symmetry). For the 1d system at k2 = 0, both time reversal T and particle-hole symmetry C are present, also leading
to an integer classification of π0(R3−1+2) = Z.

The above discussions and symmetry class AIII applies to any generic momentum k2 6= 0 along the step edge.
However for the high symmetry momenta k2 = 0, π, both time reversal symmetry T and particle-hole symmetry C are
present and the associated 1d system belongs to symmetry class CII, classified by extension problem of real Clifford
algebra

{γ1, T , T C, T CQ} → {γ1, γ0, T , T C, T CQ} (B9)

This leads to a classification of π0(R4) = 2Z, indicating that the 1d Hamiltonian at k2 = 0 always have Kramers pairs
of zero modes. Since the surface gap does not close at k2 = 0, continuity indicates that the winding number of the 1d
Hamiltonian at a general fixed k2 ≈ 0 (near X̄) must be an even integer

ν = 2× (# of Kramers pairs) ∈ 2Z (B10)

Notice that particle-hole symmetry C in (B4) is only a special property of minimal model (B3). A generic surface
Hamiltonian (A11) will not have this particle-hole symmetry C, e.g. the small v2x term in (B2) breaks the symmetry
(B4). With only time reversal symmetry the 1d system has a trivial classification (i.e. symmetry class AII), hence
breaking of particle-hole symmetry will generally split the zero-energy bound states at the step edge away from zero
energy. The splitting will be roughly proportional to the size of particle-hole symmetry breaking in the surface states.

3. Localized zero modes at odd step edge

Here we solve the minimal model (2) explicitly for the odd step edge11 illustrated in FIG. 4, to demonstrate the
existence of zero modes for small k2 ≈ 0 localized at the step edge.

Eigenstates of step edge Hamiltonian (2) satisfy the following Schrodinger equation:

i(v1xs2 + v1ys3)∂1ψE,k2 =
(

E − V(x1, k2)
)

ψE,k2 (B11)

For zero modes with E = 0, we have

(v21x + v21y)∂1ψ0,k2 = −H0(x1, k2)ψ0,k2

+[i(v21y − v21x)k2 − v1ym
′(x1)s1σ2]ψ0,k2 , (B12)

H0(x) ≡ iv1xm
′(x)σ2 + 2k2v1xv1ys1 + i(v1xs2 + v1ys3)σ3m(x), [Ĥ0, s1σ2] = 0
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As illustrated in FIG. 4, across an odd step edge the Pb/Sn and Se atoms are switched, as if the whole Hamiltonian
(2) is acted by σ1 operator which exchanges Pb/Sn and Se orbitals. This leads to the domain wall configuration of
m(x1) and m′(x1) as shown in FIG. 4. In the presense of this mass domain wall at the odd step edge, the above
Schrodinger equation for step edges has the following solution:

ψ0,k2(x1) = e
i
v2
−

v2
+

k2x1−
v1y

v2
+

∫ x1
0 m′(x)dx

· X e
− 1

v2
+

∫ x1
0 Ĥ0(x,k2)dx

ψ0,k2(0), (B13)
s1σ2ψ0,k2(0) = ψ0,k2(0). (B14)

where X denotes ordering w.r.t. coordinate x for the integral and

v2± = v21y ± v21x. (B15)

Notice that the eigenvalues of non-Hermitian operator Ĥ0(x1, k2) are given by

λ±(x1, k2) = ±
√

(2k2v1y + im′)2v21x −m2v2+. (B16)

As long as the following condition is satified

|Reλ±| =
2k2v

2
1xm

′v1y
√

(mv+)2 + (v1xm′)2
+O(|k2|

2) < v1ym
′ (B17)

the zero mode wavefunction (B13) is always localized around the step edge at x1 = 0. This indicates a flat band of
zero modes at all small k2 ≈ 0 at the odd step edge, as illustrated in FIG. 4(b).

Notice that

T s1σ2T
−1 = s1σ2 (B18)

therefore the zero modes described in (B13) form one Kramers pair, which cannot split due to time reversal symmetry.
However, applying an external magnetic field can split the two zero modes.

As shown in Fig.4(a), aside from the step edge at x1 = 0, there is another type of odd step edge at x1 = x0. The
mass functions m(x1) and m′(x1) again change sign across the step edge at x1 = x0, but from positive to negative
this time, in contrast to the odd step edge at x1 = 0. A calculation completely in parallel to the x1 = 0 step edge can
be carried out: the corresponding zero mode wavefunction also has the form of Eq. (B13), except that the subspace
of zero modes at the x1 = x0 step edge satisfies

s1σ2 = −1 (B19)

instead of +1 for the step edge at x1 = 0. These two types of odd step edges are characterized by topological index
ν = +2 at x1 = 0 and ν = −2 at x1 = x0 respectively. When we bring the two step edges closer to each other by
decreasing their distance x0, these two pairs of Kramers doublets will be mixed and can be gap out each other without
breaking the PHS, since together they have a total topological index of νtot = +2− 2 = 0.

4. Splitting of zero modes by the magnetic field

Below we quantitatively compute the splitting of the Kramers pair localized at the [010] odd step edge in the
presence of an external Zeeman field. Note that both zero modes of the Kramers pair satisfy

s1σ2 = ±1 (B20)

depending on the type of odd step edge. Therefore the effective spin-1/2 Pauli matrices acting within the zero modes’
subspace are

~τ ≡ (s1, s2σ3, s3σ3) = ±(σ2,−s3σ1, s2σ1). (B21)

Let’s label the Kramers pair of zero modes in (B13) as |τz = +1〉 ≡ |↑〉 and |τz = −1〉 ≡ |↓〉. Their matrix elements
under an external magnetic field

δĤ = −~h · ~s (B22)
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are given by

P0δĤP0 = −h1τx (B23)

where P0 denotes the projection operator into the zero-modes subspace. Note that only out-of-plane magnetic field
along [001] direction will split the two zero modes by h1. Meanwhile any in-plane field h2,3 will only mix these two
zero modes with other states, causing a splitting ∼ (h2,3)

2/∆ where ∆ is the energy difference between the zero modes
and other high-energy states.

5. Even step edges

The simplest model for an even step edge is to consider two odd step edges (such as the two step edges in Fig.4a)
very close to each other, so that the zero modes at each odd step edge can mix with each other and split. As their
distance decreases, the two odd step edges merge into an even step edge. Therefore we start from the low-energy
degrees of freedom at the two odd step edges, i.e. the two Kramers doublets to describe the low-energy physics of an
even step edge.

Here we use Dirac matrices ~µ for the flavor index of the two odd step edges, and ~τ for the Kramers doublet index
at each step edge. By appropriately choosing the basis, the time reversal symmetry in the Hilbert space of four zero
modes at the even step edge can be written as

T = iτ2 · K, (B24)

while particle-hole symmetry is implemented by

C = µ3 · K (B25)

The possible mixing terms preserving both time reversal and particle-hole symmetries have the following form

δHeven = δ1µ1 + δ2τ2µ2. (B26)

and they will split the 4 zero modes into two Kramers pairs at an even step edge. The energy splitting |δ| ≡
√

δ21 + δ22
between the two Kramers pairs generally depends on the microscopic condition of the even step edge, and is not a
universal quantity.

Similar to an odd step edge, in the lowest order the zero modes at an even step edge only couples to an external
magnetic field along s1 i.e. [001] direction, and generally the Hamiltonian of an even step edge under a magnetic field
can be written as

δĤeven = −h1τ1 + δ1µ1 + δ2τ2µ2. (B27)

Its spectrum is E = ±
√

(h1 ± δ1)2 + (δ2)2. We find that the magnetic field can further split these two Kramers pairs.
With a small magnetic field h1 ≪ |δ|, the gap 2

√

(h1 − δ1)2 + (δ2)2 between two energy levels in the middle scales as
∼ 2|δ| − 2δ1h1/|δ|, and decreases with an increasing magnetic field. When the field reaches h1 = δ1, the middle gap
reaches its minimum |δ|min = |δ2|. With a large field h1 ≫ |δ|, the gap scales linearly with field as ∼ 2h1.
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6. Linecuts across the even step at 0T and 7.5T
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Figure 6: Linecuts across the even step. (A) dI/dV map at 0T, -100 mV. The green lines indicate the positions of the
linecuts. (B) dI/dV map at 7.5T. The area and positions of the linecuts are the same of (A).(C), (E), and (G) linecuts at 0T
along the positions shown in (A). (D), (F), and (H) linecuts at 7.5T along the positions shown in (B) which are the same as
(A)
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7. More data on even step edges

Figure 7: More data on even step edges. (A) (28 nm)2 topography of an even step different from the one reported in the
main text. The data were recorded at 4K, 300 mV and 40 pA. (B) Linecuts along the dashed lines of (A). (C) Line profile
along the even step edge (A).
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8. Step Orientation

Figure 8: Step orientation (A) Crystal structure for PbSnSe. (B) Scheme of the Se sublattice. (C) Topography presented
in Fig. 7 (A). (D) 4 nm × 1.8 nm magnified view of the square box in (C). (E) Topography presented in Fig. 2. (F) (10 nm)2

atomic resolved topography of an area close to (E). The topography was recorded at 4K, -50 mV and 1 nA. By comparing
with figure (F), we conclude that the steps in figure (E) are along the [100] or [010] direction.
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