
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bell-state correlations of quasiparticle pairs in the nonlinear
current of a local Fermi liquid

Rui Sakano, Akira Oguri, Yunori Nishikawa, and Eisuke Abe
Phys. Rev. B 99, 155106 — Published  2 April 2019

DOI: 10.1103/PhysRevB.99.155106

http://dx.doi.org/10.1103/PhysRevB.99.155106


Bell-state correlations in current of local Fermi liquid

Rui Sakano1,∗ Akira Oguri2, Yunori Nishikawa2, and Eisuke Abe3
1Institute for Solid State Physics, the University of Tokyo,

5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581 Japan
2Department of Physics, Osaka City university, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585 Japan

3RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan

(Dated: February 1, 2019)

We study Bell-state correlations for quasiparticle pairs excited in nonlinear current through a
double quantum dot in the Kondo regime. Exploiting the renormalized perturbation expansion in
the residual interactions of the local Fermi liquid and Bell’s inequality for cross correlation of spin
currents through distinct conduction channels, we derive an asymptotically exact form of Bell’s
correlation for the double dot at low bias voltages. We find that pairs of quasiparticles and holes
excited by the residual exchange interaction violate Bell’s inequality for the spin currents.

PACS numbers: 71.10.Ay, 71.27.+a, 72.15.Qm

I. INTRODUCTION

Recent advancement in current observation has real-
ized ultra-sensitive current noise measurements on cur-
rent through a Kondo dot, spin current, and current cross
correlation1–5. Low energy properties of Quantum dots
with magnetic moments that strongly interact with con-
duction electrons in connected lead electrodes exhibit the
Kondo effect, which has been a central issue of the con-
densed matter physics over the 50 years6. The low energy
properties of the Kondo effect are described well by the
local Fermi liquid theory. The local Fermi liquid is an
extension of Landau’s Fermi liquid to cover quantum im-
purities, in which free quasiparticles and residual inter-
actions account for the underlying physics7–13. In elec-
tric current through the Kondo dot at low applied bias
voltages, residual interactions excite quasiparticle pairs
that have an effective charge of 2e10,14–20. This doubly-
charged state has been observed as enhancements of the
shot noise1,2,21–25.

This paper will explore the nature of the correlation
between the quasiparticles that are excited by the resid-
ual interactions within the current. In a previous work
of ours26, we found that the residual exchange interac-
tion of a quantum dot excites spin-entangled quasipar-
ticles and holes. However, it remains a question how
the entanglement can be observed. We exploit Bell’s
inequality with current correlations to investigate the
quasiparticle’s entanglement. Bell’s theorem draws an
essential distinction between the correlations found in
quantum mechanics and those found in classical me-
chanics. As a no-go theorem, Bell’s theorem places lim-
its on physical possibility27–33. Bell-state correlation of
electrons involved in tunneling currents through meso-
scopic devices has been studied for the past 20 years34–37.
Several studies have focused on Bell-state correlations
caused by many-body effects. For example, Bell-state
correlations of superconducting electron pairs have been
studied with the Cooper pair splitter both theoretically
and experimentally4,38,39. Bell-state correlations have
also been predicted for electrons scattered by the Kondo

exchange interaction at temperatures near the Kondo
temperature40. Our work paves a way to investigate
quantum entanglement in a variety of correlated mate-
rials, and will bring deeper understanding and new ap-
plications of local Fermi liquid.
This paper is organized as follows. First, we intro-

duce a double quantum dot to generate quasiparticle’s
entanglements between the channels, in Sec. II. Then,
we briefly describe Bell’s inequality with current corre-
lations in Sec. III, and introduce the source term to
systematically calculate the current correlations in Sec.
IV. We also describe the renormalized perturbation the-
ory to correctly treat the low-energy excited states of the
local Fermi liquid in the nonlinear current in Sec. V. We
discuss the restriction on the measurement time interval,
and the Bell’s inequality for an effective current that car-
ries spin entanglements in Sec. VI. A measurable form
of the Bell’s inequality for the full current and the inter-
action dependence are investigated. A brief summary is
given in Sec. VII.

II. MODEL

Consider the double dot illustrated in Fig. 1. The sys-
tem is described by the action of the Anderson impurity

model given as S =
∑

µ

∫ T /2

−T /2
dt (σ3)

µµ Lµ
A, where the

Lagrangian is given as Lµ
A = Lµ

0 + Lµ
T + Lµ

I with

Lµ
0 =

∑

αmσ

∫ D

−D

dε c̄µεαmσ

(
i
∂

∂t
− ε

)
cµεαmσ

+
∑

mσ

d̄µmσ

(
i
∂

∂t
− ǫd

)
dµmσ , (1)

Lµ
T =

∑

αmσ

[
vd̄µmσ ψ

µ
αmσ + v∗ψ̄µ

αmσ d
µ
mσ

]
, (2)

Lµ
I = U

∑

m

nµ
dm↑ n

µ
dm↓ +Wnµ

d1 n
µ
d2 + 2JSµ

d1 · S
µ
d2 .(3)

Here, T is a measurement time, σ3 = ((1, 0)t, (0,−1)t) is
the third element of the Pauli matrix σ, and the super-
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FIG. 1. Schematic of the double dot and quasiparticle pairs
excited within the two channels of the current. The bias volt-
age eV is applied between the left and right leads. The filled
and unfilled circles represent quasiparticles and holes, respec-
tively, and the arrows attached to them indicate their spin
degrees of freedom. Cyan and yellow indicate channels 1 and
2, respectively.

scripts µ = − and + represent the forward and backward
paths of the Keldysh contour, respectively. Throughout
this paper, the time argument t in the Lagrangian and
the Grassmann numbers are suppressed. Lµ

0 represents
electrons in the lead electrodes and the double dot. cµαεmσ

and c̄µαεmσ are the Grassmann numbers for electrons with
spin σ =↑, ↓ and energy ε in the conduction band of the
left and right leads α = L,R of channel m = 1, 2. dµmσ

and d̄µmσ are the Grassmann numbers for electrons with
spin σ in level ǫd of dot m. Lµ

T represents electron tun-
neling between the leads and the dots. They are con-
nected by tunneling matrix element v through ψµ

αmσ :=∫D

−D
dε
√
ρccεαmσ and ψ̄µ

αmσ :=
∫D

−D
dε
√
ρcc̄

µ
εαmσ with D

the half width of the conduction band and ρc = 1
2D the

density of state for the conduction electrons. Electron
tunneling causes an intrinsic linewidth of the dot levels to
be Γ = 2πρc |v|2. Lµ

I represents the electron interactions
in the double dot. U and W are the intra- and interdot
Coulomb interactions, respectively, and J is the exchange
interaction. The Grassmann number corresponding to
the electron occupations and the total spin in the dot
m are given by ndmσ = d̄mσdmσ, ndm =

∑
σ ndmσ, and

Sdm = 1
2

∑
σσ′ d̄mσσσσ′dmσ′ . We impose the particle-

hole symmetry ǫd = −U
2 −W and the absolute zero tem-

perature T = 0 to eliminate the thermal and partition
noises and maximize the effect of J . The bias voltage eV
is applied symmetrically: the chemical potentials of the
left and right leads are µL = + 1

2eV and µR = − 1
2eV ,

respectively. With no loss of generality, a positive bias
voltage eV > 0 can be assumed. We also use the natural
units ~ = kB = 1.

III. BELL’S INEQUALITY WITH CURRENT

CORRELATIONS

We investigate quasiparticles that become correlated
across the two channels. In the original argument of
Bell’s theorem, the spin correlation of two particles was

studied41. However, one-by-one detection of every spin of
the quasiparticles in a quantum-scale current remains is
still difficult to be achieved in solid-state devices. Thus,
we exploit Bell’s inequality for two correlated currents,
derived by Chtchelkatchev et al.39. This approach is out-
lined below.
The key idea of Bell’s theorem is that determin-

ism with a hidden variable is assumed to describe any
correlations41. The violation of this assumption gives a
sufficient condition for the quantum entanglement. For
our double dot, the correlation between channel 1 and
2 are assumed to be described by a hidden variable η.
Then, the density matrix of the whole system can be
written in the form

ρHVT =

∫
dη f(η)ρ1(η)⊗ ρ2(η) , (4)

where the distribution function for the hidden variable
is satisfied with f(η) ≥ 0 and

∫
dη f(η) = 1, and ρm(η)

is the density matrix for channel m. Integration of the
current can give the average of spin angled to θ per a
particle in the current of channel m in a measurement
time from t− T

2 to t+ T
2 :

Āmθ(t, η) =

∫ t+T

2

t−T

2

dt′ tr[ρm(t′, η)J s
mθ(t

′)]

∫ t+T

2

t−T

2

dt′ tr[ρm(t′, η)Jc
m(t′)]

. (5)

J s
mθ = Jmθ −Jmθ+π and Jc

m = Jmθ +Jmθ+π are the spin
and charge current, respectively, where Jmθ is the current
with spin angled to the θ direction in channel m. For a
current which effectively carries the spin correlation, the
average spin is normalized as

∣∣Āmθ(t, η)
∣∣ ≤ 1. Then,

the conventional derivation of Bell’s inequality for two
incident entangled particles is applicable to the averaged
spin in the currents through the two channels. We obtain
the Clauser-Horne-Shimony-Holt Bell’s inequality for two
correlated currents as

0 ≤ C ≤ 2 , (6)

where the Bell’s correlation is given in the form

C = |F (θ, ϕ) − F (θ′, ϕ) + F (θ, ϕ′) + F (θ′, ϕ′)| . (7)

Here, F (θ, ϕ) = hs(θ, ϕ)/hc is given by a cross-correlation
of the spin current

hs(θ, ϕ) =

∫ T

2

−T

2

dt dt′
〈
J s
1θ(t)J

s
2ϕ(t

′)
〉
HVT

, (8)

and that of the charge current,

hc =

∫ T

2

−T

2

dt dt′ 〈Jc
1(t)J

c
2(t

′)〉HVT , (9)

with the average by the density matrix of the hidden
variable theory, 〈· · · 〉HVT := tr [ρHVT · · · ]. Therefore, vi-
olation of Eq. (6) for Bell’s correlation CQM calculated
with the fully quantum mechanical density matrix ρQM

gives a sufficient condition for quantum correlation.
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IV. CURRENT CORRELATIONS

In our quantum dot, the current of the electrons with
spin angled to the θ direction in channel m is given as

Imθ = −ie(vd̄mθψRmθ − v∗ψ̄Rmθdmθ) . (10)

To calculate current correlation, we introduce the source
term

Lµ
sou(λ) = −i

∑

mγ

[
(eiλ

µ
mγ − 1)vd̄mγψRmγ

+(e−iλµ
mγ − 1)v∗ψ̄Rmγdmγ

]
(11)

in Lµ
A. Here, λµmγ = (σ3)

µµλmγ is a contour-dependent
source field, and γ(= θ, θ + π) is the spin index defined
with respect to the θ direction. The Grassmann number
for an electron in the dot with spin γ can be given by a
rotational transformation as dµmθ = cos θ

2d
µ
m↑ + sin θ

2d
µ
m↓.

d̄µmθ, ψ
µ
αmθ, and ψ̄

µ
αmθ are also defined in the same man-

ner. Current correlations can be calculated by differen-
tiating the generating function lnZ(λ) with the corre-
sponding source fields. The partition function is given in
the form

Z(λ) =

∫
D (c̄εαmσ)D(cεαmσ)D(d̄mσ)D(dmσ)e

iS(λ)

(12)

with

S(λ) =
∑

µ

∫ T /2

−T /2

dt (σ3)
µµ [Lµ

A + Lµ
sou(λ)] . (13)

The specific form of lnZ(λ) up to order V 3 is given in
Ref. 26.

V. RENORMALIZED PERTURBATION

THEORY

To take electron correlations into account, we use the
renormalized perturbation theory42–44. At low energies,
perturbation expansion in Lµ

I provides an exact result if
all the terms in the series are accounted for. However,
this expansion is difficult, except for some special cases.
Below, employing the idea of the renormalized pertur-
bation theory, we reorganize the perturbation expansion
and effectively carry out all-order calculations at low en-
ergies.

First, we formulate the quasiparticle’s Lagrangian L̃µ
qp

by replacing ǫd, v, U,W, J, d
µ
mσ, and d̄

µ
mσ of Lµ

A with the
renormalized parameters and the Grassmann numbers of

the quasiparticle given by ǫ̃d, ṽ, Ũ , W̃ , J̃, d̃µmσ, and
˜̄dµmσ.

These renormalized parameters and Grassmann numbers
that are defined by sets of perturbation series given by the
self-energy and the four vertex at T = eV = 026. Note

that the renormalized linewidth given by Γ̃ := 2πρc|ṽ|2
corresponds to the characteristic energy scale, namely,

the Kondo temperature: TK = πΓ̃/4. We can evaluate

ǫ̃d, Γ̃, Ũ , W̃ , and J̃ by using the numerical renormaliza-
tion group (NRG) approach44–46. The nonequilibrium
effects at low bias voltages eV ≪ TK arise through per-
turbation expansions in the renormalized interactions.
As a part of the interaction effects are taken into ac-

count ab initio in the quasiparticle’s Lagrangian during
renormalized perturbation expansion, a counter term has
to be introduced to avoid overcounting in the perturba-
tion expansion. In the other words, the total Lagrangian

has to be satisfied with Lµ
A = L̃µ

qp + Lµ
CT. The counter

term Lµ
CT, can be expressed in terms of the renormal-

ized parameters and the renormalized Grassmann num-
bers, which are determined by the renormalized condi-
tion for the renormalized self-energy and the renormal-
ized four-vertex. In the particle-hole symmetric case, the
perturbation expansion up to only the second order in
the renormalized interactions provides an asymptotically
exact form of the self-energy at T = 0 up to the second
order in ω and eV because of the counter term. As a re-
sult, asymptotically exact forms of currents and current
correlations up to order (eV )3 are obtained. We shall
calculate the current correlations using perturbation ex-
pansion in the residual interactions.

VI. RESULTS AND DISCUSSION

Let us calculate CQM in terms of the quasiparticle pa-

rameters. Since 〈Ismθ〉 = 0 in our model, the correlation
of the spin currents can be rewritten into the correlation
of spin current fluctuations δIsmθ = Ismθ − 〈Ismθ〉 as

hsQM(θ, ϕ) =

∫ T

2

−T

2

dt dt′
〈
δIs1θ(t)δI

s
2ϕ(t

′)
〉
. (14)

At low energies, namely, eV ≪ Γ̃ and T ≫ tK, differen-
tiation of lnZ(λ) with the source fields yields

hsQM(θ, ϕ) = −T e
3V

2π

(
eV

Γ̃

)2 (
1

4
j̃2 − 1

3
w̃j̃

)
cos(θ − ϕ)

+O
(
V 5

)
, (15)

where tK ∝ Γ̃−1 is the Kondo time scale, and w̃ = W̃

πΓ̃

and j̃ = J̃

πΓ̃
. Note that the spin correlation measured

by hsQM(θ, ϕ) comes from only a portion of the entangled
quasiparticle pairs within the current. As seen in the
specific form of lnZ(λ)26, the residual interactions can
excite four types of the quasiparticle pairs in the current
(See Fig. 1). As TABLE I shows, the spin and charge
current correlations of these pairs have different signs
from each other. Consequently, some of the spin and
charge correlations due to these pairs are independently
canceled in the full current. Therefore, the correlation of
the charge current I ′cm that effectively carries the spin cur-
rent correlation must be calculated, rather than that of

the full current given by hfcc =
∫ T /2

−T /2
dt dt′ 〈Ic1(t)Ic2(t′)〉
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with Icm =
∑

γ Imγ . The current correlation can be writ-

ten in terms of current fluctuation of I ′cm as

hcQM = Hc
QM + T 2 〈I ′c1 〉 〈I ′c2 〉 , (16)

where Hc
QM =

∫ T /2

−T /2 dtdt
′ 〈δI ′c1 (t)δI ′c2 (t′)〉 with δI ′cm(t) =

I ′cm(t)−〈I ′cm〉. Although an explicit expression of I ′cm is not
easy to derive, the correlation can be evaluated readily
using the terms of spin correlated carriers in lnZ(λ):

Hc
QM = −T e

3V

2π

(
eV

Γ̃

)2 (
1

4
j̃2 − 1

3
w̃j̃

)
+O

(
V 5

)
.(17)

The leading term of the charge current is of the third

order in the applied bias voltage, 〈Icm〉 ∝ eV
(

eV

Γ̃

)2

.

Thus, tb ∝
[
eV

(
eV

Γ̃

)2
]−1

, a boundary value of the mea-

surement time, divides the behavior of CQM into two

regions. One is T ≫ tb, where Hc
QM ≪ T 2 〈Ic1〉 〈Ic2〉.

Then, the correlation function can be given simply as
hcQM ∼ T 2 〈Ic1〉 〈Ic2〉. This results in CQM ∼ 0, and CQM
never violates Bell’s inequality in this region. In the op-
posite region T ≪ tb, the correlation of the fluctuations
is dominant, namely, Hc

QM ≫ T 2 〈Ic1〉 〈Ic2〉, which leads
to hcQM ∼ Hc

QM. Then, Bell’s correlation is given in the
form

CQM ∼ K(θ, θ′;ϕ, ϕ′) (18)

with

K(θ, θ′;ϕ, ϕ′) = | cos(θ − ϕ)− cos(θ′ − ϕ)

+ cos(θ − ϕ′) + cos(θ′ − ϕ′)|. (19)

Since K(θ, θ′;ϕ, ϕ′) is bounded within
[
0, 2

√
2
]
, it is con-

cluded that the exchange interaction of the Fermi liquid
can violate Bell’s inequality. We note that, the limit T →
∞ can be taken to evaluate FQM(θ, ϕ) = hsQM(θ, ϕ)/Hc

QM

although the measurement time is bounded within tK ≪
T ≪ tb, because the T dependences of hsQM(θ, ϕ) and
Hc

QM cancel out each other for T ≫ tK.
However, CQM may be difficult to measure experimen-

tally, because hcQM is the current correlation of the car-
riers that effectively carry the correlated spins. Next we
suggest a measurable form of Bell’s correlation. Mul-
tiplying each side of Eq. (6) for our double dot by
r = |hc/hfcc|, we derive a measurable form of Bell’s in-
equality and correlation that are composed of the cross

TABLE I. Signs of spin/charge current correlations of
particle-particle(p-p), hole-hole(h-h) and particle-hole (p-h)
pairs with parallel and antiparallel spins. The pairs excited
in the current are shown in Fig. 1.

p-p or h-h pairs p-h pair
parallel spin (i) +/+ (ii) −/−
antiparallel spin (iii) −/+ (iv) +/−

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-0.5-0.4-0.3-0.2-0.1 0

 

 

QM

HVT

 0

 0.5

 1

 1.5

 2

 2.5

-0.5-0.4-0.3-0.2-0.1 0

(a)

(b)

FIG. 2. (a) C∗
QM,max and 2rQM as a function of ferromagnetic

J(< 0) for U = W = 3.0πΓ. The gray area is covered by
the hidden variable theory, and the yellow area represents the
sufficient condition for the quantum correlation. (b) 2rQM

as a function of ferromagnetic J for U = 3.0πΓ and several
choices of W = 3.0πΓ, 2.9πΓ, 2.8πΓ, and 2.0πΓ, and U =
W = 0. The thin dotted line indicates the maximum value
2rQM = 1 +

√
21

3
≈ 2.528.

correlations of the full current as

C∗ = |F ∗(θ, ϕ)− F ∗(θ′, ϕ) + F ∗(θ, ϕ′) + F ∗(θ′, ϕ′)|
(20)

with F ∗(θ, ϕ) = hs(θ, ϕ)/hfcc. Then, Bell’s inequality for
C∗ is given by a deformed boundary:

0 ≤ C∗ ≤ 2r . (21)

For the quantum mechanical density of states and tK ≪
T ≪ tb, C∗ and r take the forms

C∗
QM = rQMK(θ, θ′;ϕ, ϕ′) , rQM =

∣∣∣∣∣∣∣

1− 4
3

(
w̃
j̃

)

1 + 4
3

(
w̃

j̃

)2

∣∣∣∣∣∣∣
,(22)

respectively. Since C∗ is simply given by a product of
C and r, C∗

QM can also violate Bell’s inequality given

by Eq. (21). The maximum value of C∗
QM is given by

C∗
QM,max = 2

√
2rQM, which corresponds to the Tselson’s

bound47 in our model. This bound gives the upper limit
for the correlation in the quantum regime. C∗

QM,max and
2rQM are plotted as a function of J ; J ≤ 0 and J ≥ 0

for U = W = 3.0πΓ in Fig. 2 (a) and Fig. 3 (a), re-
spectively. A critical point appears at J = Jc > 046,48.
For J > Jc, two electrons occupying in the double dot
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FIG. 3. (a) C
∗
QM,max and 2rQM as a function of anitiferro-

magnetic J(> 0) for U = W = 3.0πΓ. J is normalized by
the critical value Jc. The gray area is covered by the hidden
variable theory, and the yellow area represents the sufficient
condition for the quantum correlation. (b) 2rQM as a func-
tion of ferromagnetic J for U = 3.0πΓ and several choices of
W = 3.0πΓ, 2.9πΓ, 2.8πΓ, and 2.0πΓ, and U = W = 0. The
thin dotted line indicates the value of the local maximum
rQM = 1−

√
21

3
≈ 0.528.

form an isolated singlet state and decouple from the con-
duction electrons, and then no charge currents can flow
through the double dot. Thus, we focus on the region
J < Jc, in which the low-energy state is accounted for by
the local Fermi-liquid, and electric current flows through
the dot. The region between C∗

QM,max and 2rQM repre-
sents a sufficient condition that the correlation of spin
currents across the two channels is quantum mechanical
in nature. For J > 0, the value C∗

QM,max takes a local
minimum to zero, where the excited quasiparticle pairs
with parallel and antiparallel contributions to the spin
correlation cancel each other out. Thus, Bell’s test is not
applicable with this value of J .

Experimentally, the violation of Bell’s inequality can
be confirmed through observation with values of C∗

QM

larger than the theoretically calculated value of 2rQM.

This parameter 2rQM depends on the strength of U,W,
and J , which can be evaluated using NRG calculations.
2rQM is plotted as a function of J for several choices of U

and W for J ≤ 0 and J ≥ 0 in Fig. 2 (b) and Fig. 3 (b),
respectively. For |J | ≫ TK, the values of hfccQM coincide
with hcQM, which results in rQM → 1 and the rQM in-
dependent form of Bell’s inequality is recovered. In this
region, therefore, Bell’s test can be examined without the
need for any numerical calculations of rQM.
Finally, we discuss the causal locality of Bell’s theorem

in our model. Bell-state correlations in our model are in-
duced by entangled quasiparticles that are excited by the
residual exchange interaction that is scaled by TK. There-
fore, for the causal locality to hold, the two measure-
ments in channel 1 and 2 must be separated by a distance
d≫ ctK, where tK = ~

k
B
TK

and c is the speed of light. For

a typical Kondo temperature of quantum dots TK ∼ 1K,
d must be much larger than ctK ∼ 4.58× 10−2m.

VII. SUMMARY

We have found that spin entangled quasiparticles that
are excited by the residual exchange interaction of the
local Fermi liquid in the double dot leave their trace in
the violation of Bell’s inequality with correlations of the
effective current. By deforming the boundary of the hid-
den variable theory, we have derived an experimentally
measurable form of Bell’s inequality that is composed of
correlations of the full current. The interaction depen-
dence of the deformed boundary and Bell’s correlation
has been demonstrated by using the NRG approach. We
have also shown that the long measurement-time limit
can be taken to both theoretically and experimentally
evaluate correlations of current fluctuations, beyond the
restriction to extract the meaningful Bell-state correla-
tion.
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“Orbital entanglement and violation of bell inequalities
in mesoscopic conductors,” Phys. Rev. Lett. 91, 157002
(2003).

36 P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, “Two-
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