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We introduce an effective edge network theory to characterize the boundary topology of coupled
edge states generated from various types of topological insulators. Two examples studied are a two-
dimensional second-order topological insulator and three-dimensional topological fullerenes, which
involve multi-leg junctions. As a consequence of bulk-edge correspondence, these edge networks
can faithfully predict properties such as the energy and fractional charge related to the bound
states (edge solitons) in the aforementioned systems, including several aspects that were previously
complicated or obscure.

I. INTRODUCTION

A central feature of topological insulators (TI) is the
bulk-edge correspondence: a d-dimensional TI with given
symmetries has a bulk energy gap but symmetry pro-
tected gapless d−1 dimensional boundary excitations1–7.
Recent studies on higher-order TIs generalized this bulk-
edge correspondence. An n-th order TI has protected
gapless modes of co-dimension n8–19. A two-dimensional
(2d) second order topological insulator (2d SOTI), for
instance, is an insulator with gapped edge but gapless
corners8–11, i.e., there are localized in-gap states at cor-
ners under open boundary conditions. The higher order
TIs can be derived from gapping out boundary Hamil-
tonian10,14–16. More specifically, to obtain a 2d SOTI,
one can gap out coupled helical edge state8–10,20,21. The
point of this paper is to develop an effective theory to
describe coupled edge states more generally and their de-
pendence on the topology of the system boundary, which
allows a description of the domain-wall states that re-
main at the intersection of edges for various types of edge
junctions.

Meanwhile, one can think of the connected problem of
higher order TIs. If we put an ordinary 2d TI on a closed
surface of some 3d manifold, is it possible to have gapped
2d faces and 1d edges, but gapless 0d corner modes?
Topological fullerenes22 are an example of this kind of
system. They are polyhedral surfaces wrapped by the
Haldane honeycomb lattice model23, leaving wedge discli-
nation defects at the vertices22,24. While these fullerenes
do not currently exist in nature, very recent experiments
indicate that twisted bilayer graphene at small twist an-
gle supports a network of domain walls with threefold
junctions (“Y-junctions”)25–27. These domain walls28 are
not strictly topologically protected but conductance is
expected to be high at the length scales of this network.
If the planar system has non-vanishing Chern number,
these topological fullerenes have gapped bulk and hinge
states (here a “hinge state” is localized at the intersection
of two 2d surfaces), but characteristic corner-localized in-
gap states. These corner states can be related to the
existence of nontrivial defect states bound to isolated
wedge disclinations29–31. The connection between the
fullerene problem and the 2d SOTI can be viewed as fol-

lows: the classification of 2d SOTI is derived from that
of TIs in 1d, which is identical to the classification of
co-dimension 2 topological defects10,32–34. This implies
that the topological fullerenes and certain classes of 2d
SOTI should be describable in the same framework. The
emergence of states bound to defects (such as disclina-
tion or dislocation) has previously been explained in sev-
eral cases by edge soliton theory, i.e., the effective the-
ory for a pair of coupled counter-propagating chiral edge
states24,35–38. Although this theory is able to predict the
fractional charge bound to the (edge) soliton39–41 in those
examples, one needs to extend the approach in order to
incorporate crystalline symmetries in more complicated
systems and obtain faithful bound state energies. (Note
that in a system of noninteracting fermions, fractional
charge should be thought of as an offset or displacement
of the charge density, rather than as a property of ele-
mentary excitations.)

In this article, we propose a generic edge network the-
ory to capture the boundary topology of coupled edge
states. As a consequence of the bulk-edge correspon-
dence, the edge states carry the necessary information of
their topological insulator parents. By assigning proper
boundary conditions on edge states at their vertices, the
edge networks correctly predict the existence of bound
states (edge solitons) and other information. We further
considered edge states living on the hinges of varies 3d
manifolds, where the edge states are generated from topo-
logical insulators attached on corresponding surfaces.
Such edge networks can faithfully predict the energy and
fractional charge of bound states located at the vertices,
going beyond previous edge soliton theories. These edge
networks are shown here to capture the key properties of
topological fullerenes as well as some 2d SOTIs, and it is
hoped that they will be useful for other problems as well.

The rest of the paper is organized as follows: In Sec.
II, we briefly review basic facts and notation for an edge
network made from multiple pairs of coupled helical edge
states. In Sec. III, we discuss the minimal edge network
constrained to lie on a closed 1d loop, and show the ex-
istence of bound state with fractional charge in the pres-
ence of certain symmetries. Based on this we further pro-
pose a 2d SOTI that can be easily realized with atoms in
an optical lattice. In Sec. IV, we consider edge networks
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with a multi-leg vertex. We first derive the bound state
energy and charge for a Y-junction via a scattering ma-
trix approach in Sec. IV A. Then, in Sec. IV B, we apply
the results in Sec. IV A to the tetrahedral topological
fullerene as an example. Starting from edge networks,
we connect the tetrahedral topological fullerene to the
2d SOTI we proposed. We summarize the main results
in Sec. V with an eye toward future developments and
applications of this picture.

II. DESCRIPTION OF EDGE NETWORK

We start with several pairs of helical edge states,
e.g., living on the hinges of the 3d manifold shown in
Fig.[1.(a)]. The network is described by the effective
Hamiltonian:

Hedge =
∑
i

ˆ
dxiΨ

†(xi)(−ivi∂xi
σz +Mi(θi))Ψ(xi).

(1)
Here, i labels the hinges, and xi is the coordinate
set along a specific hinge. The two component wave-
function Ψ(xi) = (ψα(xi), ψβ(xi))

T denotes a pair of cou-
pled counter-propagating chiral edge states living on i-th
hinge, and varies smoothly on the scale of the lattice con-
stant. The magnitude of edge velocity v is set identical
for all edge states, and their directions should be com-
patible with the positive direction of xi. The mass term
Mi(θi) = m cos θiσx + m sin θiσy describes the coupling
on hinge xi, where σx,y,z are Pauli matrixes. Without
loss of generality, we assume that m ≥ 0 and 0 ≤ θi ≤ 2π.
If m = 0, the helical edge states are decoupled and their
energy spectrum is gapless. A non-zero mass term can lo-
cally gap out a pair of edge states, which is the situation
that we are interested in.

To the Hamiltonian we need to add proper boundary
conditions for these edge states at vertices where two or
more edges come together. The boundary condition de-
scribe the scattering process at the junction. By doing so
we can solve Eq.[1] and predict the existence of localized
edge solitons that lie in the (bulk and edge) gaps, as well
as their properties.

Before discussing edge network on specific configura-
tion, we point out that the Hamiltonian Eq.[1] may be
generalized into the case of Helical Luttinger liquid42–45:

H̃edge =
∑
i

(Hi
0 +Hi

int). (2)

The noninteracting Hamiltonian Hi
0 on each hinge can be

divided into two parts: the linearized free Dirac field Hi
0,1

and their coupling (Hi
0,2) with two real-valued classical

scalar field λ1,2(xi)
46:

Hi
0,1 = −v

ˆ
dxi(ψ

†
α,ii∂xiψα,i − ψ

†
β,ii∂xiψβ,i),

Hi
0,2 =

ˆ
dxi(λ1,iψ

†
α,iψβ,i + iλ2,iψ

†
β,iψα,i + H.c.).

(3)

Here ψα(β),i (λ1(2),i) is short for ψα(β)(xi) (λ1,2(xi)).
Compared with Mi(θi) in Hamiltonian Eq.[1], we find
that λ1,i = m cos θi and λ2,i = m sin θi. For helical Lut-
tinger liquid, we only need to consider the forward scat-
tering Hi

int,2 and chiral interaction Hi
int,4

42–45:

Hi
int,2 = g2,i

ˆ
dxi(ψ

†
α,iψα,iψ

†
β,iψβ,i),

Hi
int,4 =

g4,i

2

ˆ
dxi(ψ

†
α,iψα,iψ

†
β,iψβ,i + ψ†β,iψβ,iψ

†
α,iψα,i),

(4)
where g2,i and g4,i are interacting constants. One
can conduct the standard bosonization procedure for
Hamiltonian Eq.[2] by defining bosonic field ∂xi ϕ̃i =

−π[ρα(xi)+ρβ(xi)] and ∂xi
θ̃i = π[ρα(xi)−ρβ(xi)], where

ρα(β)(xi) stands for the density for counter-propagating

edge states, i.e. ρα(β)(xi) = ψ†α(β),iψα(β),i. The θ̃i here

should be distinguished from θi in effective massM. The
Bosonized Hamiltonian for each hinge, Hi

B = Hi
B,0+Hi

B,1
reads:

Hi
B,0 =

1

2π

ˆ
dxi[uK(∂xi θ̃i)

2 +
u

K
(∂xϕ̃i)

2],

Hi
B,1 =

1

2πa

ˆ
dxim cos(ϕ̃i − θi).

(5)

Here, u ≡ v
√

(1 + g4/2)2 − (g2/2)2 is the velocity, K =√
(1 + g4/2− g2/2)/(1 + g4/2 + g2/2) is the Luttinger

parameter, and a is the lattice constant whose inverse
stands for the momentum cut off of vacuum45–47. The
Hamiltonian Hi

B is also interacting, and the interac-
tion Hi

B,1 can be minimized by set ϕ̃(xi) = θ(xi) + π.

Referring to the bonsonized conserved current jµi =
εµν∂νϕ̃(xi)/2π ≈ εµν∂νθ(xi)/2π, for the simplest two ter-
minal junction with two legs x1,2 (see in Fig.[1.(b)]), the

topological charge Q̂ is given by46,48:

Q̂ ≡
ˆ
dxjµ(x) ∝ ε01

2π
[θ(x2 = +∞)− θ(x1 = −∞)]. (6)

A mass kink ofMi(θi) implies nonzero topological charge

Q̂, see in Fig.[1.(b)]. This is in accordance with the soli-
ton charge Ns derived from non-interacting Fermionic
theory39–41, see also Eq.[7] in later on Sec. III. For sim-
plicity, in the rest of our article we will focus on the non-
interacting model Eq.[1]. It is reasonable to believe that
the value of soliton charge remains unchanged when turn-
ing on interaction because it can be calculated from prop-
erties away from the junction. However, the response of
bound state energy with respect to external flux may be
modified by interaction, and may need a deeper descrip-
tion, e.g., by boundary conformal field theory49,50.

III. EDGE STATES ON CLOSED 1D LOOP

We first consider the minimal example of an edge net-
work, a pair of counter-propagating chiral edge states
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living on the boundary of a closed 1d loop, as shown in
Fig.[1.(c)]. The point is to determine how symmetries fix
the free coefficients introduced in the previous discussion.
The basis is chosen as Ψ(xi) = (ψα(xi), ψβ(xi))

T , where
ψα(xi) (ψβ(xi)) denotes the chiral edge states propagat-
ing in the clockwise (anti-clockwise) direction. We set
four coordinates xi=1,2,3,4 ≥ 0, and define x5 = x1. The
coupling for edge states on each leg is given by an ef-
fective mass Mi(θi), where we have set v = m = 1
for simplicity. We use a set of trial wave functions

Φ(xi)o(e) = 1√
No(e)

exp(−|(xi − xo(e)i ) sinϕ|)χ(xi)o(e) to

look for bound states localized the origin (o) and end

(e) of i-th edge, with χ(xi)o(e) = (a
o(e)
i , b

o(e)
i )T . Here

ao(e), bo(e), ϕ and normalization constant 1/
√
N± are co-

efficients to be determined.
Substituting the trial wave function Φ(xi)o(e) into

Eq.[1] for each individual edge, we find modes localized
at two ends of i-th edge. For the states at the ori-
gin of i-th edge, we have the wave function χ(xi)o =
eiδ

o
i (ei(ϕ−θi), 1)T with energy εoi = cosϕ. For the states

at the end, we have χ(xi)e = eiδ
e
i (e−i(ϕ+θi), 1)T with

energy εei = cosϕ. Here, δo,ei are overall phase fac-
tors. The wave-function we solved previously should
satisfy the boundary condition at the corner, i.e.,
Φ(xi+1 → xoi+1)o = Φ(xi → xei )e and εoi+1 = εei . If
θi = θi+1, the only allowed solution is ϕ = 0, which
means that the localization length ξ = 1/| sinϕ| → ∞
and no bound state exists. If θi 6= θi+1, we have a mass
kink at the intersection of i-th and i+1-th edge. The solu-
tion corresponds to an un-paired edge soliton35 localized
at the intersection, with energy and fractional fermion
number39–41 given by:

ϕ = |θi+1 − θi|/2, E = sgn(θi+1 − θi) cosϕ, Ns = −ϕ
π
.

(7)
Since we measure the charge with respect to the vacuum,
there is a minus sign for the soliton charge Ns. Eq.[7]
predicts the existence of a domain wall state for any two
adjoint edges. More specifically, the edge soliton derived
from the aforementioned effective theory can be used to
explain fractional charge in varies systems, such as the
bound states induced by magnetic domain wall in the
quantum spin hall effect36, or the localized state bound
to 2d disclination (dislocation) defect in topological in-
sulators24,37.

The minimal edge network can explain the corner
states in at least some kinds of 2d SOTI. The 2d SOTIs
have gapped bulk and edges, but gapless corners. They
can be derived from gapping out topological edge states.
Heuristically, one potential way to get a 2d SOTI is by
stacking 1d TIs, making the 0d boundaries of these 1d TIs
form another set of 1d TIs in the perpendicular direction.
This is one way to obtain the quadrupole insulator8,9. Al-
ternatively, one can couple a pair of (or more) counter-
propagating chiral edge states living on the boundary
of 2d TI and gap them out. Here we will use the
latter picture extensively. Crystalline symmetries51–54

FIG. 1. (a) An edge network living on the hinges of a tetra-
hedron. (b) A mass kink and corresponding soliton in two
terminal junction. (c) The minimal edge network. A pair
of coupled counter-propagating chiral edge states are repre-
sented by the blue and red arrows, which can be generated
from two Chern insulators with opposite Chern number (see
the blue and red hemisphere). The four axes x1,2,3,4 are set
along the loop in anti clockwise direction, with origins at
A,B,C,D, respectively. For simplicity we only plot x1. The
red and blue dashed lines stand for two reflection-symmetric
axes.

with unitary symmetry operator U , such as reflection10,
inversion15 and rotation symmetry13,14,16, can constrain
the distribution of effective mass term Mi(θi) on the
boundary. On the edges compatible with crystalline
symmetry, [Mi(θi), U ] = 0. If two adjoint edges are
related by crystalline symmetry with operator U , then
U†Mi(θi)U = Mi+1(θi+1). If Mi(θi) 6= Mi+1(θi+1),
a domain wall state emerges at the intersection of two
adjoining edges, as demonstrated before.

Distinct from corner-localized zero modes in a 2d
second-order topological superconductor10,20, we find
that, in the absence of particle-hole symmetry and chiral
symmetry10,52,55,56, one can have corner states with non-
zero energy. The system we consider has two reflection-
symmetric axes, as shown in Fig.[1.(c)]. The reflection
operator for the red axis is Ub = σx, while the reflection
operator for the blue axis is Ur = σy. Edge AB(x1) and
CD(x3) are reflection symmetric edges for Ub, thus the
only symmetry-allowed mass term is ±σx. Similarly edge
AD(x4) and BC(x2) are reflection symmetric edges for
Ur, thus the only symmetry-allowed mass term is ±σy. In
summary, the effective mass terms on four edges x1,2,3,4

are:

M1(0) = +σx, M2(
π

2
) = +σy,

M3(π) = −σx, M4(
3π

2
) = −σy.

(8)

Referring to Eq.[7], we find ϕ = π/4, E = cosϕ = 1/
√

2,
and Ns = −1/4 for each corner, corresponding to four
edge solitons on the loop.

SOTIs have been claimed to be appear in various sys-
tems57–59, including bismuth60. Based on recent progress
of two-dimensional spin-orbit coupling in cold atom sys-
tem61,62, we provide a feasible experimental proposal
of 2d SOTI with edge mass distribution as Eq.[8]. By
stacking two Chern insulator layers with opposite Chern
numbers (which can be easily realized in experiments
by adding a magnetic field with gradient), the 2d tight-
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binding Hamiltonian for our model is:

H = −
∑
〈̄i,~j〉s

tα(ĉ†~i↑sĉ~j↑s − ĉ
†
~i↓s
ĉ~j↓s) +

∑
〈~i〉s

ms
z(n̂~i↑s − n̂~i↓s)

+
∑
〈~i〉

(+λ1ĉ
†
~i,↑,+

ĉ~i,↓,− + λ1ĉ
†
~i,↓,+

c~i,↑,− + H.c.)

+
∑
〈~i〉

(−λ2ĉ
†
~i,↑,+

ĉ~i,↓,− + λ2ĉ
†
~i,↓,+

c~i,↑,− + H.c.)

+
[ ∑
〈jx〉s

(
itso(ĉ†jx↑ĉjx+1↓ − ĉ†jx↑ĉjx−1↓) + H.c.

)]
+
[ ∑
〈jy〉s

tso(ĉ†jy↑ĉjy+1↓ − ĉ†jy↑ĉjy−1↓) + H.c.
]
. (9)

Here, s = ± stands for layer index. The positive tα=x,y

and tso denotes, respectively, the inner-layer spin con-
served and spin-flip hopping. The ms

z represents an effec-
tive Zeeman term, with m+

z = mz and m−z = −mz, which
can be realized by a magnetic field with gradient. The
spin-flip hopping tso and λ1,2 comes from the spin-orbit
coupling induced by effective inner-layer and inter-layer
Raman coupling, respectively. Transforming H into the

momentum space yields H =
∑
k,σ,σ′ ĉ

†
k,σHσ,σ′(k)ĉk,σ′ ,

with

H(~k) =2tso sin (kx)τ1 + 2tso sin (ky)τ2

+ (mz − 2tx cos kx − 2ty cos ky)τ3σ3

+ λ1τ1σ1 + λ2τ2σ2,

(10)

where τ and σ are Pauli matrices in spin space and
layer space, respectively. If λ1 = λ2 = λ = 0, the Hamil-
tonian Eq.[10] has particle-hole symmetry P = τ1σ3K,
time-reversal symmetry T = τ2σ2K, and chiral symme-
try S = τ3σ1, where K stands for complex conjugate.
With |mz| < 2tx + 2ty, the system can be viewed as
a robust index spin hall effect63. Aside from aforemen-
tioned non-spatial symmetries, one can also define the
spatial symmetry operator ÛηT ηP . Here ηT ,P = +(−)

denotes, respectively, that Û commutes (anti-commutes)
with time reversal or particle-hole symmetry operator.
When λ1 6= 0, but λ2 = 0, Eq.[10] respects two reflec-

tion symmetries Û++
x = τ2σ2, Û+−

y = τ1σ1. The bulk
can be viewed as a topological crystalline insulator in

two copies of BDIÛ
++
x class, each of them has a Z clas-

sification33,51,52. Locally breaking the reflection symme-
try on reflection symmetric edge can gap out the helical
edge states by a unique mass term, which is odd under
reflection and leads to the presence of corner localized
zero modes18. We further confirm the presence of zero
modes both numerically and analytically in appendix.
Thus when λ2 = 0, Eq.[10] stands for a 2d SOTI with an
extrinsic Z2 and intrinsic Z classification18,19. In realis-
tic cold atom experiments, the detection of the fractional
charge at the corner can be conducted by conventional
single site resolution. By turning on an s-wave onsite
interaction for atoms61, this model becomes a 2d second
order topological superfluid.

A small but non-zero λ2 breaks the chiral and par-
ticle hole symmetries. In this case Eq.[10] is no-longer
a well defined 2d SOTI. For simplicity we assume that
λ1 = λ2 = λ > 0 in following text. By projecting the
low energy Hamiltonian of Eq.[10] into the helical edge
states derived from λ = 0, one can get the effective edge
Hamiltonian identical to Eq.[8], leading to the similar set
of gapped edges and in gap corners.

FIG. 2. Numerical results from model Hamiltonian Eq.[9]
with two different boundary conditions (marked by green solid
lines). (a.1,2) are wave function density for the occupied in
gap state, each square stands for one unit cell. The red and
blue dashed lines stand for two reflection symmetric axes.
(b.1,2) are the energy spectrum close to Fermi surface for
the corresponding boundary condition in (a). The squares
stand for the corner modes, and the red (blue) stands for the
occupied (unoccupied) states at half-filling. The calculations
are done with tx = ty = t0, tso = 0.8t0, M = 0.90t0 and
λ1,2 = 0.3t0 for 30× 30 lattice.

We further confirm the analytic results by numerically
diagonalizing the Hamiltonian Eq.[9] for two different
boundary conditions, as shown in Fig.[2.(a)]. We find
four corner modes with non-zero energy for both pat-
terns. Fig.[2.(b)] shows the energy spectrum close to the
Fermi surface. The inter-layer coupling λ opens a gap
Egap ≈ 2λ at the boundary, and we can see clearly four
corner-localized in gap states. At half-filling, one out of
four in-gap states is filled, which compensates the −1/4
defect charge at each corner.

IV. EDGE STATES IN MULTI-LEG JUNCTION

We now turn to study edge networks with multiple
pairs of edge states coming together at a vertex (or equiv-
alently a junction). Fig.[3.(a)] shows a Y-junction with
six edge states living on three legs. For each semi-infinite
axis xi(i = 1, 2, 3), we use the ψα(xi) and ψβ(xi) to de-
note the outgoing and incoming chiral edge states for the
i-th leg, respectively. Instead of matching wave func-
tions by hand as in the previous minimal 1D edge net-
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work, here, we introduce a more generic scattering ma-
trix approach: injecting a mode along a specified leg will
lead to reflection and transmission after scattering at the
junction, and the poles of scattering matrix implies the
existence of bound states. We make the following as-
sumptions to capture the scattering process: (1) Away
from the junction, each chiral edge state should be iden-
tical to that of an isolated Chern insulator layer, at most
up to a global phase factor; (2) During the scattering
process, the edge states from the same Chern insulator
layer should maintain their amplitude, but could capture
a phase shift. The value of the phase shift depends on
the details of scattering, but will be constrained by sym-
metries in specific examples.

A. Scattering theory for Y-junction

For an isolated junction, the incoming and outgo-
ing scattering modes can be described by combining
incoming and outgoing chiral edge states. Different
from localized state, for scattering state with momen-
tum k, we denote η = v/m and set kη = sinhϕ > 0.

Then for xi > 0, under the basis
(
ψα(xi), ψβ(xi)

)T
,

for each individual leg, from Eq.[1] we can derive nor-
malized wave function of incoming and outgoing modes
as: ψTin(xi) = (e−ϕ−iθi , 1)T /

√
1 + e−2ϕ, ψTout(xi) =

(eϕ−iθi , 1)T /
√

1 + e+2ϕ, with corresponding energy
E/m = + coshϕ. If we inject a mode along nega-
tive x1 direction, the wave function on leg x1 is given
by Ψ1(x1) = e−ikx1ψin(x1) + r1e

ikx1ψout(x1). Mean-
while, the wave function on leg x2 is given by Ψ2(x2) =
t12e

ikx2ψout(x2), and Ψ3(x3) = t13e
ikx3ψout(x3) for wave

function on leg x3. We have used r1 for reflection coeffi-
cient on leg x1, and t12 (t13) for transmission coefficient
for the scattering from x1 to x2 (x3). With this we can
expand the wave function around the intersection as:



Ψ1(0) =
( e−ϕ−iθ1√

1 + e−2ϕ
+ r1

eϕ−iθ1√
1 + e2ϕ

)
ψα(x1 = 0) +

( 1√
1 + e−2ϕ

+
r1√

1 + e2ϕ

)
ψβ(x1 = 0),

Ψ2(0) = t12
eϕ−iθ2√
1 + e2ϕ

ψα(x2 = 0) + t12
1√

1 + e2ϕ
ψβ(x2 = 0),

Ψ3(0) = t13
eϕ−iθ3√
1 + e2ϕ

ψα(x3 = 0) + t13
1√

1 + e2ϕ
ψβ(x3 = 0).

(11)

In Fig.[3.(a)], the edge states in same color are from the
same Chern insulator layer. Due to the continuity of edge
state wave function for each individual layer, we have
ψα(x1 → 0+) = ψβ(x3 → 0+), ψβ(x1 → 0+) = ψα(x2 →
0+), and ψβ(x2 → 0+) = ψα(x3 → 0+). During the
scattering process they can capture an additional phase
factor eiαi , which depends on the details of the scattering
process. This leads to:

e−ϕ−iθ1√
1 + e−2ϕ

+ r1
eϕ−iθ1√
1 + e2ϕ

= t13
1√

1 + e2ϕ
eiα1 ,

t12
eϕ−iθ2√
1 + e2ϕ

=
( 1√

1 + e−2ϕ
+ r1

1√
1 + e2ϕ

)
eiα2 ,

t13
eϕ−iθ3√
1 + e2ϕ

= t12
1√

1 + e2ϕ
eiα3 .

(12)
With this we can solve r1, t12 and t13 in the term of ϕ, αi,
and θi. By injecting modes along the negative directions
of rest two legs (see in Appendix), we can derive whole
coefficients for the scattering matrix S:

S =
1

e3ϕ − eiΛ

 r̃1 t̃12 t̃13

t̃21 r̃2 t̃23

t̃31 t̃32 r̃3

 , Λ =
∑
i

(θi + αi). (13)

For arbitrary scattering process, Ψout = SΨin, where
ΨT

in(out) =
(
ψ(x1), ψ(x2), ψ(x3)

)
out(in)

. The pole of the

scattering matrix, e3ϕ − eiΛ = 0, implies the existence of
bound state localized at the junction. Note that, in the
presence of edge soliton, each of these semi-infinite legs
contributes a fractional charge −θi/2π. With these we
find:

E

m
= coshϕ = cos

(
Λ + 2nπ

3

)
, n ∈ Z, Ns = −

∑
i θi

2π
.

(14)
As we mentioned before, Λ =

∑
i(θi+αi), which depends

on the details of scattering. The energy-phase relation
Eq.[14] for 3-leg Y-junction can be easily generalized to
l-leg junction:

E

m
= coshϕ = cos

(
Λ

l

)
, Ns = −

∑
i θi

2π
, (15)

where we have let 2nπ be absorbed into Λ for latter con-
venience.



6

FIG. 3. (a) Edge network for a vertex with three legs (Y-
junction). The center of the junction is marked by the green
disk. Three coordinates, x1,2,3 start from the center and point
outward. The solid and dashed arrows in blue, red and gray
stands for three pairs of coupled helical edge states. Edge
states in the same color are from the same Chern insulator
layer. (b) Edge states for two isolated 60◦ Chern insulator
slices. The blue (red) ± stands for the relevant phase fac-
tor of edge states measured from ψα(β), with two individual
reference points (marked by stars). (c) Edge states for an in-
dividual 120◦ Chern insulator slice. (d) A vertex of the type
appearing in tetrahedron topological fullerenes and relevant
edge states. The ± stands for the relevant phase factor of edge
states measured from edge states ψ1 whose reference point is
marked by black star.

B. Application to topological fullerenes

The multi-leg edge junction can be used to describe the
bound state in an isolated wedge disclination22,24,29–31,
which is the building block of topological fullerenes22,24.
More specifically, the Y-junction edge network mentioned
above can be used to analyze one vertex of tetrahedral
topological fullerenes (as shown in Fig.[1.(a)]), which is
a wedge disclination defect with Frank index f = 3 (or
180◦ Frank angle). The Frank index f here stands for the
number of 60◦ Chern insulator layers taken away from the
complete Haldane lattice. In order to build the edge net-
work for such a disclination, let us first consider three 60◦

semi-infinite triangular layers (A,B,C) of Haldane hon-
eycomb lattice coming together, as shown in Fig.[3.(d)].
Each layer is coupled with its two neighbors across the
seams. The tight-binding Hamiltonian for such a discli-
nation is given by22–24:

H = −t0
∑
〈i,j〉

(c†i cj + H.c.)− t1
∑
〈〈i,j〉〉

(e−iφijc†i cj + H.c.).

(16)

Here, c†i (ci) is creation (annihilation) operator for spin-
less fermion on i-th site. The t0 and t1 denotes, respec-
tively, the nearest-neighbor hopping and next-nearest-
neighbor hopping amplitudes. The eiφij provides an ad-
ditional phase factor for next-nearest-neighbor hopping.
Within the topological region, each individual layer can
provide chiral edge states surrounding the bulk. The lo-

cal Chern vector64 for each layer points outside the plane
of the paper, which ensures six edge states propagating
according to the pattern in the figure.

These six edge states are not independent. The blue
(red, gray) edge states 1, 2 (3, 4; 5, 6) come from the same
triangular layer, and they are connected by ψ2j(xj →
0+) = ψ2j−1(xj+2 → 0+). If an edge state is coupled
with its time-reversal counterpart across the seam, we
say this seam does not have phase mismatch. The to-
tal wave function on a lattice site across the seam is
given by ϕedge,α(xi) = eikEaψα(xi) and ϕedge,β(xi) =
e−ikEaψβ(xi), respectively, where kE denotes the edge
momentum and a stands for the lattice constant. The
ψα,β(xi) here should be understood as the edge states on
corresponding sub lattice. The effective coupling between
two states is

´
dτλϕ∗edge,α(xi)ϕedge,β(xi), with λ stands

for the bond across the seam. The integral is done within
a unit cell. For an isolated disclination, the total phase
mismatch

∑
i θi for all legs (seams) is fixed in the absence

of external flux. Due to the quantization (periodicity) of
charge pumping, to the lowest order the function

∑
i αi

should be linear to
∑
i θi, i.e.

∑
i αi = A

∑
i θi +B. The

coefficients A,B are related to the parameters from the
tight-binding model, such as the effective radius ρ and
the Haldane gap m = 3

√
3t1

24. By comparing with the
results from exact diagonalizing the tight-binding Hamil-
tonian Eq.[16] (see in Appendix), we find that, for Hal-
dane gap m ≈ t0 = 1,

ϕ =
2
∑
iθi − π/2

3
, E = cosϕ, Ns = −

∑
i θi

2π
. (17)

Similarly, for the vertex of an octahedral topological
fullerene, the number of legs is l = 6 − 2 = 4, and
we further have ϕ = 2

∑
i θi/4, E = cosϕ, and Ns =

−
∑
i θi/2π (with 1 ≤ i ≤ 4). For the vertex of an

icosahedral topological fullerene, the number of legs is
l = 6−1 = 5, and we further have ϕ = (2

∑
i θi+π/2)/5,

E = cosϕ, Ns = −
∑
i θi/2π (with 1 ≤ i ≤ 5).

We now turn to determine the value of θi for each leg24,
especially for the cases with external flux. Let us first
consider the process of combining two smaller 60◦-layers
in Fig.[3.(b)] to a larger 120◦-layer in Fig.[3.(c)]. The two
smaller layers are cut from the same Haldane honeycomb
lattice model, and they are next to each other in the orig-
inal lattice. With the open boundary condition, both of
them can hold chiral edge states, which are denoted by
red and blue arrows in Fig.[3.(b)]. We can set a simul-
taneous coordinate for both layers across the seam, thus
the total wave function on a lattice site on the blue (red)
edge is ϕedge,α(ξ) = e−ikEξψα(ξ) (ϕedge,β = eikEξψβ(ξ)).
In the presence of inversion symmetry, kEa = π for Hal-
dane honeycomb lattice model24. Thus the base func-
tions eikEξ oscillates with a period of two sites. In or-
der to glue two layers back to a larger layer without
phase mismatch across the seam, the amplitudes should
be in the pattern in Fig.[3.(b)]. However, as shown in
Fig.[3.(c)], the edge states has an additional phase shift
when bypassing the corner. This leads to iψα = −ψβ or
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FIG. 4. (a) Edge network and relevant coordinates for tetra-
hedral topological fullerene. The blue line shows the traversal
along the hinges. (b) Mass distribution of edge network for
tetrahedral topological fullerene. Cutting the Tetrahedron
along the blue line in (a) leads to two parallelograms in (b),
which helps to map the tetrahedral topological fullerenes to
a 2d SOTI (Eq.[10]).

ψα = iψβ . Thus we have that the proper phase difference
across the seam should be ±i, which is the case for no
phase mismatch. To avoid any ambiguity induced by the
gauge chosen for wave functions, we define the effective
mass term Mi(θi) on each leg with respect to the sce-
nario without phase mismatch. Thus if there is no phase
mismatch on a certain leg, then Mi(θi = 0) = mσx.

Note that, for a wedge disclination with Frank index
f = 3 in Fig.[3.(d)], if we glue AB and BC across the
seam as shown in Fig.[3.(b)], the system can be viewed
as a Haldane honeycomb lattice on the half plane. The
gluing process means that we have chosen to measure the
relevant phase factor of edge states on all layers from ψ1

with a fixed reference point. Thus the coupling across
the seams AB and BC should not have a phase mis-
match, thus M1(0) = M2(0) = mσx. However, the
lower boundaries of A and C has phase mismatch and
M3(π/2) = mσy

24. Finally, referring to Eq.[17], we have
ϕ = π/6, E = cosπ/6 and Ns = −1/4 for the vertex
of Tetrahedral topological fullerene. Eq.[17] also stands
in the presence of external flux. Adding an external flux
Φ opposite to local Chern vector at the center of junc-
tion is equivalent to change the coupling pattern with
additional phase factor eiΦ for the bond across the Dirac
string22,24. For simplicity we can put the Dirac string
along x3, thus θ3 = φ + π/2 and Eq.[17] can be written
as ϕ = 2Φ/3+π/6. More specifically, if Φ = π/2, we have∑
i θi = π and ϕ = π/2. Thus the external flux Φ = π/2

moves the bound state energy to E = cosϕ = 0, as well as
the fractional charge to Ns = −

∑
i θi/2 = −1/2. This is

consisted with the analysis from symmetry: an external
flux with Φ = π/2 can restore the particle hole symmetry
of the system22. Thus the bound state energy should be 0
and the fractional charge should be −1/2. Similar results
apply for vertices of octahedral and icosahedral topolog-
ical fullerenes (see in Appendix), and are in accordance
with numerical results22,24.

The corner states in topological fullerenes can be fur-
ther explained by the edge networks with a group of
multi-leg junctions. In Fig.[4.(a)] we plot the edge
network for the tetrahedral topological fullerene, with
M1(0) = mσx, M2(π/2) = mσy, M3(π) = −mσy,
M4(3π/2) = −mσx, and M5(0) =M6(0) = mσx. How-

ever, Eq.[17] is derived for an isolated vertex with all co-
ordinates point outward, which is slightly different from
the settings in Fig.[4.(a)]. Note that, for a pair of chi-
ral edge states living on a i-th hinge with effective mass
Mi(θi), changing the direction of coordinates is equiva-

lent to changing the mass term to M̃i

(
(−θi) mod 2π

)
.

Thus for each individual vertex, we can first flip the coor-
dinates to the pattern in Fig.[3.(a)], by then using Eq.[17]
we find four corner localized states with E = cosπ/6 and
Ns = −1/4.

V. CONCLUSION

We have constructed a generic edge network theory
and shown its ability to capture the boundary topol-
ogy of coupled edge states with different geometric con-
straints. We first discussed the minimal edge network on
a closed 1d loop, and demonstrated that crystalline sym-
metry can produce spatial-dependent mass term, leading
to the domain wall states at the intersection of adjoint
edges. After discussing a model 2d second-order TI, we
constructed edge networks for multi-leg junctions, which
can faithfully reflect the properties of bound states in
disclination defects. The edge network can include poly-
hedral hinges, which allows determination of the corner
states in topological fullerenes. These results can help to
understand the origin of topologically generated localized
states in a variety of situations.

We can view the similarities between the 2D second-
order TI and the 3D topological fullerine as reflecting the
fact that the classification of 2d SOTI is derived from
that of TIs in 1d, which is the same as classification of
co-dimension 2 topological defects10,32,33, including point
defects in surfaces. In this sense, the 2d SOTI we pro-
posed is in the same topological class as a corresponding
system with wedge disclination defects. Based on effec-
tive edge theory, we can map the topological fullerenes
to the 2d SOTI Eq.[10] derived from gapping out he-
lical edge states in Sec. III. For any polyhedron, one
can traverse all the vertices along hinges without repeats.
The traversal forms a closed 1d loop (see the blue thick
arrows in Fig.[4.(a)]). We can cut the polyhedron into
two congruent Chern insulator layers along the traversal,
as shown in Fig.[4.(b)]. The two Chern insulator layers
can be viewed as a “twisted” index spin hall effect. The
edges on the closed 1d loop are gapped out by the gluing
process, and the effective mass changes after bypassing
each corner due to crystalline symmetries, leading to an
edge soliton with fractional charge located at the corner.
This is identical to the generation of fractional charge
in our 2d SOTI model. Similarly, we can also map the
octahedral and icosahedral topological fullerenes to (less
natural) 2d SOTIs. However, it is still an open question
that whether we can connect all topological phases which
exhibit quantized corner charge to certain higher order
topological phases18.

More generally, the networks of edges discussed here
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could be generalized to incorporate proximity-induced
superconductivity or Luttinger liquid corrections, or con-
ceivably to include additional localized degrees of free-
dom such as boundary Majorana states or spins as in
previous studies of the Kondo effect in Y-junctions49. In
the cases discussed here, there are enough symmetries or
other physical constraints to determine the key properties
of the localized states in an edge network quite directly,
while in other situations the properties such as fractional
offset charges might be actively tuned by symmetry-
breaking perturbations. Planar networks of helical edges
and three-leg junctions have recently been discovered in
bilayer graphene at small twist angles, which suggests
that the study of edge networks is likely to become in-
creasingly relevant to experiment.
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APPENDIX

1. Edge network for two-terminal junction

In this section, we look into the scattering theory of
the simplest two-terminal junction. In order to keep in
accordance with the scattering theory in Sec. IV A, we
set the positive direction of the two legs being opposite
to each other and pointing outside the junction. This
switches the θ1 to −θ1 compared with the notation in
Sec. III.

FIG. A1. 1D Scattering process. (a) Edge network for two
terminal junction. (b) The scattering process for two terminal
junction with a wave inject along negative x1 direction.

We construct the conventional scattering theory as
following: suppose we have a wave injected along the
negative x1 direction. The wave function on leg x1

is given by Ψ1 = e−ikx1ψ1,in + reikx1ψ1,out. Mean-
while, the wave function on leg x2 is given by Ψ2 =
teikx2ψ2,out. Here r and t stand for the reflection and
transmission coefficients, respectively. Different from a
localized state, for a scattering state with momentum
k, we denote η = v/m and set kη = sinhϕ > 0.

Then for xi > 0, using the basis
(
ψα(xi), ψβ(xi)

)T
, for

each individual leg, from Eq.[1] we can derive a nor-
malized wave function of incoming and outgoing modes
as: ψTin(xi) = (e−ϕ−iθi , 1)T /

√
1 + e−2ϕ, ψTout(xi) =

(eϕ−iθi , 1)T /
√

1 + e+2ϕ, with corresponding energy
E/m = + coshϕ. We can expand the wave function
around the junction by the combination of incoming and
outgoing edge states:


Ψ1(0) =

(
e−ϕ−iθ1√
1 + e−2ϕ

+ r
eϕ−iθ1√
1 + e2ϕ

)
ψα(x1 = 0) +

(
1√

1 + e−2ϕ
+

r√
1 + e2ϕ

)
ψβ(x1 = 0),

Ψ2(0) = t
eϕ−iθ2√
1 + e2ϕ

ψα(x2 = 0) + t
1√

1 + e2ϕ
ψβ(x2 = 0).

(A1)

As shown in Fig.[A1], ψα(x1) = ψβ(x2) and ψβ(x1) =
ψα(x2) since they are from the same Chern insulator. For
the SOTI Eq.[10], the wave function should be continuous
at the junction:


e−ϕ−iθ1√
1 + e−2ϕ

+ r
eϕ−iθ1√
1 + e2ϕ

= t
1√

1 + e2ϕ
,

1√
1 + e−2ϕ

+ r
1√

1 + e2ϕ
= t

eϕ−iθ2√
1 + e2ϕ

.

(A2)

By solving this we derive:

r = r′ = eϕ
ei(θ1+θ2) − 1

e2ϕ − ei(θ1+θ2)
,

t = eiθ2
e2ϕ − 1

e2ϕ − ei(θ1+θ2)
,

t′ = eiθ1
e2ϕ − 1

e2ϕ − ei(θ1+θ2)
.

(A3)

The reflection and transmission coefficients r and t satisfy
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conservation of probability current:

|r|2+|t|2 =
e2ϕ(2− 2 cos(θ1 + θ2)) + e4ϕ + 1− 2e2ϕ

e4ϕ + 1− 2e2ϕ cos(θ1 + θ2)
= 1.

(A4)
Finally we have the scattering matrix for two terminal
junction as:

S =

(
t r
r′ t′

)
=

1

e2ϕ − ei(θ1+θ2)

(
t̃ r̃
r̃′ t̃′

)
. (A5)

One can easily check that the scattering matrix is unitary
S†S = 1. The coefficients of scattering matrix, see in
Eq.[A3] has simultaneous poles:

eiθ1+iθ2 − e2ϕ = 0, 2ϕ = i(θ1 + θ2 + 2nπ), n ∈ Z, (A6)

which stands for bound states localized at the junction
with energy and fractional charge as:

E = coshϕ = cos

(
ϕ

2

)
, Ns = −|θ2 + θ1|

2π
. (A7)

Remember that θ1 here is equal to −θ1 in Sec. III due
to the flipping of x1-leg’s direction, the above results is
in accordance with Eq.[7]. We further define η as:

η =
r

t
=

(eiθ1 − e−iθ2)

(eϕ − e−ϕ)
. (A8)

The argument and the absolute value of η are:

arg(η) = arctan

(
sin θ1 + sin θ2

cos θ1 − cos θ2

)
=
π

2
− θ1 − θ2

2
, (A9)

|η|2 =
2− 2 cos θ1 cos θ2 + 2 sin θ1 sin θ2

e2ϕ + e−2ϕ − 2
=

sin2( θ1+θ2
2 )

sinh2 ϕ
.

(A10)
Thus the bound state energy can also be parametrized
by reflection and transmission coefficents as:

E2 = cosh2 ϕ =
|t|2

|r|2
sin2(

θ1 + θ2

2
) + 1. (A11)

2. Edge networks for a Y-junction

In this section, we provide more details about the
edge network description of a three-leg junction (“Y-
junction”).

a. Bound states from matching wave function

Different from the scattering matrix approach in Sec.
IV A, here we get the same results by matching the trial
wave function and validate that the poles of scattering
states do correspond to localized states. We can de-
rive the trial wave function by using the similar method

in Sec. III. Substitute the trial wave function χ(xi)
in to Eq.[1] for each leg independently, we find the
modes localized at two ends of i-th edge, with χ(xi) =
eiδi(ei(ϕ−θi), 1)T for energy εoi = cosϕ. This gives the
relation between ai and bi on the same leg. More specif-
ically: for the leg 1, we have χ(x1) = eiδ1(ei(ϕ−θ1), 1)T ,
with the basis Ψ(x1) = (ψ2(x1), ψ3(x1))T ; for the leg
2, we have χ(x2) = eiδ2(ei(ϕ−θ2), 1)T , with the ba-
sis Ψ(x2) = (ψ4(x2), ψ5(x2))T ; for the leg 3, we have
χ(x3) = eiδ3(ei(ϕ−θ3), 1)T , with the basis Ψ(x3) =
(ψ6(x3), ψ1(x3))T .

Due to the continuity of the bound state wave function,
the boundary conditions are:

eiδ3eiα1ψ1(x3 → 0+) = eiδ1ei(ϕ−θ1)ψ2(x1 → 0+),

eiδ1eiα2ψ3(x1 → 0+) = eiδ2ei(ϕ−θ2)ψ4(x2 → 0+),

eiδ2eiα3ψ5(x2 → 0+) = eiδ3ei(ϕ−θ3)ψ6(x3 → 0+),

,

(A12)
where αi=1,2,3 are phase factors acquired across the
junction as mentioned in main text. We also have
ψ1(x3 → 0+) = ψ2(x1 → 0+), ψ3(x1 → 0+) = ψ4(x2 →
0+), ψ5(x2 → 0+) = ψ6(x3 → 0+) since they are the
edge states from the same Chern insulator layer. With
these we have:

ei(α1+α2+α3) = ei(3ϕ−θ1−θ2−θ3), (A13)

which is equivalent to

3ϕ =
∑
i

(θi + αi) + 2nπ, n ∈ Z,

E

m
= cosϕ, Ns = −

∑
i θi

2π
.

(A14)

This is in accordance with Eq.[14] in main text. Thus
the poles of the scattering matrix do correspond to the
localized states at the junction. Similar results also ap-
ply for a vertex of octahedral or icosahedral topological
fullerenes, as shown in Sec. IV A.

b. Y-junction scattering matrix

In this section we provide more details about how
to derive the full scattering matrix Eq.[13] in Sec.
IV A. Similarly to the two terminal junction, for
the scattering states of Y-junction, we denote η =
v/m. We set kη = sinhϕ > 0. Then for

xi > 0, under the basis
(
ψα(xi), ψβ(xi)

)T
, for each

individual leg, from Eq.[1] we can derive normal-
ized wave function of incoming and outgoing modes
as: ψTin(xi) = (e−ϕ−iθi , 1)T /

√
1 + e−2ϕ, ψTout(xi) =

(eϕ−iθi , 1)T /
√

1 + e+2ϕ, with corresponding energy
E/m = + coshϕ. As mentioned in main text, we
first inject the mode along negative x1 direction. The
wave function on leg x1 is given by Ψ1 = e−ikx1ψ1,in +
reikx1ψ1,out. Meanwhile, the wave function on leg x2 is
given by Ψ2 = t12e

ikx2ψ2,out, and the wave function on
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leg x3 is given by Ψ3 = t13e
ikx3ψ3,out. We can expand the wave function around the intersection as:



Ψ1(0) =

(
e−ϕ−iθ1√
1 + e−2ϕ

+ r
eϕ−iθ1√
1 + e2ϕ

)
ψα(x1 = 0) +

(
1√

1 + e−2ϕ
+

r√
1 + e2ϕ

)
ψβ(x1 = 0),

Ψ2(0) = t12
eϕ−iθ2√
1 + e2ϕ

ψα(x2 = 0) + t12
1√

1 + e2ϕ
ψβ(x2 = 0),

Ψ3(0) = t13
eϕ−iθ3√
1 + e2ϕ

ψα(x3 = 0) + t13
1√

1 + e2ϕ
ψβ(x3 = 0).

(A15)

Note that due to the continuity of edge state wave func-
tion for each individual layer, we have ψα(x1 → 0+) =
ψβ(x3 → 0+), ψβ(x1 → 0+) = ψα(x2 → 0+), and
ψβ(x2 → 0+) = ψα(x3 → 0+). Following the assumption
we made in Sec. IV, during the scattering process, the
amplitude of the chiral edge states from same triangular
Chern insulator is conserved, but they may acquire an
additional phase factor αi when by passing the junction.
By matching the coeffients of ψα(β),i we have:



e−ϕ−iθ1√
1 + e−2ϕ

+ r
eϕ−iθ1√
1 + e2ϕ

= t13
1√

1 + e2ϕ
eiα1 ,

t12
eϕ−iθ2√
1 + e2ϕ

=

(
1√

1 + e−2ϕ
+ r

1√
1 + e2ϕ

)
eiα2 ,

t13
eϕ−iθ3√
1 + e2ϕ

= t12
1√

1 + e2ϕ
eiα3 .

(A16)
From the above equation we derive that:

r1 =
eϕ(ei

∑
i(θi+αi) − eϕ)

e3ϕ − ei
∑

i(αi+θi)
,

t12 =
ei(α2+θ2)eϕ(e2ϕ − 1)

e3ϕ − ei
∑

i(αi+θi)
,

t13 =
ei(α2+θ2+α3+θ3)(e2ϕ − 1)

e3ϕ − ei
∑

i(αi+θi)
.

(A17)

One can check that the scattering is unitary:

|r|2 + |t12|2 + |t13|2 = 1. (A18)

To derive the full scattering matrix, we can further
inject the mode along negative x2 (x3) direction. By fol-
lowing the similar procedure for injecting along negative
x1 direction, we have:

r2 =
eϕ(ei

∑
i(θi+αi) − eϕ)

e3ϕ − ei
∑

i(αi+θi)
,

t23 =
ei(α3+θ3)eϕ(e2ϕ − 1)

e3ϕ − ei
∑

i(αi+θi)
,

t21 =
ei(α1+θ1+α3+θ3)(e2ϕ − 1)

e3ϕ − ei
∑

i(αi+θi)
.

(A19)



r3 =
eϕ(ei

∑
i(θi+αi) − eϕ)

e3ϕ − ei
∑

i(αi+θi)
,

t31 =
ei(α1+θ1)eϕ(e2ϕ − 1)

e3ϕ − ei
∑

i(αi+θi)
,

t32 =
ei(α1+θ1+α2+θ2)(e2ϕ − 1)

e3ϕ − ei
∑

i(αi+θi)
.

(A20)

Finally, we derive scattering matrix as:

S =

 r1 t12 t13

t21 r2 t23

t31 t32 r3

 =
1

e3ϕ − eiΛ

 r̃1 t̃12 t̃13

t̃21 r̃2 t̃23

t̃31 t̃32 r̃3

 ,

(A21)
where kv/m = sinhϕ, Λ =

∑
i(θi + αi). The poles of S

denotes the existence of bound state with energy:

E

m
= coshϕ = cos

(
Λ + 2nπ

3

)
, n ∈ Z, (A22)

which is the Eq.[14] in main text. It is easy to check
that the Scattering matrix here is unitary, i.e., S†S =
1. Eq.[14] can be generalized to l-leg junction: E/m =
coshϕ = cos[(Λ + 2nπ)/l], n ∈ Z, Ns = −

∑
i θi/2π. For

latter convenience we let 2nπ be absorbed into
∑
i αi.

c. Comparison with numerical results from exact
diagonalization of tight-binding Hamiltonian

The bound-state energy Eq.[15] is depending on Λ =∑
i(θi + αi). As we showed in main text,

∑
i αi =

A
∑
i θi +B, substitute these into Eq.[15] we have:

E

m
= cos

[
(1 +A)

∑
i θi +B

6− f

]
, (A23)

where l = f − 6 is the number of legs for a disclina-
tion with Frank index f . In order to figure out the
value of A,B and derive the full response function as
Eq.[17], in principle we need two data points (the bound
state energy at two different flux value Φ) from the ex-
act diagonalizing tight-binding Hamiltonian Eq.[9]. In
fact, we do take two data points directly for m ≈ t0
and get Eq.[17] in the main text. However, note that
for Frank index f = 3 (f = 1), although the response of
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FIG. A2. Bound state energy with external flux. The dots
are from exactly diagonalizing the Haldane model Eq.[16].
The solid lines are fittings from exact diagonalization, which
take the form of energy-phase (flux) relation Eq.[A24]. (a)
Disclination with Frank index f = 1. (b) Disclination with
Frank index f = 2. (c) Disclination with Frank index f = 3.
We also plot (a-c) in the same frame, as shown in (d). In
(a-d), the red, green, black, and blue lines or dots denote, re-
spectively, t1 = 0.2t0 (m = 1.04t0), t1 = 0.15t0 (m = 0.78t0),
t1 = 0.10t0 (m = 0.52t0), and t1 = 0.07t0 (m = 0.36t0). Here,
t0 stands for nearest neighbor hopping, t1 stands for next-
nearest neighbor hopping with φij = π/2., and m = 3

√
3t1

stands for Haldane mass, as shown in the main text. The
equations on the left bottom side are the fitting of the nu-
merical results from exact diagonalization. The calculation is
done for 800 unit cells within each 60◦ slice.

bound state energy with respect to external flux for dif-
ferent m are different, adding an external flux Φ = −π/2
(Φ = +π/2) can restore the particle hole symmetry, and
move the bound state energy to zero. Thus we can de-
fine Φ0 = |B/(1 +A)| = (

∑
i θi) mod π, which is fixed

for given f . Note that
∑
i θi is the total phase mismatch

at the junction. With these Eq.[A23] can be reduced to:

E

m
= sin

[
(1 +A)π(Φ0/π ± Φ/π)

6− f

]
. (A24)

The plus or minus sign here depends on whether the local
Chern vector is align with or opposite to the direction
of external flux. Now we only need one date point (for
example, the energy of bound state in the absence of
external flux) from exact diagonalization to get the value
A in Eq.[A24] and reproduce Eq.[17] directly. For m =

3
√

3t1 ≈ t0 = 1, we derive A first and Eq.[A24] is then
simplified as:

ETetrahedron(Φ) = cos

(
2Φ

3
+
π

6

)
,

EOctahedron(Φ) = cos

(
2Φ

4
+
π

2

)
,

EIcosahedron(Φ) = cos

(
2Φ

5
+

7π

10

)
,

(A25)

which is Eq.[17] in the presence of external flux Φ.

We further compare the results from Eq.[17] with full
numerical results derived from exactly diagonalizing the
tight-binding Hamiltonian Eq.[16], as shown in Fig.[A2].
We plot the bound state energy with external flux (Φ)

under different Haldane mass m = 3
√

3t1 and different
Frank index f . The direct fittings of numerical results do
take the form of Eq.[A24], as shown in the left-bottom of
each sub-figure.

d. Comparison to numerical results from continuous model

FIG. A3. (a) Bound state energy with external flux. The
dots are numerical results for solving Eq.[A26]. The blue
dots are for one vertex of tetrahedral topological fullerenes
(disclination with Frank index f = 3). The green dots are
for one vertex of octahedral topological fullerenes (disclina-
tion with Frank index f = 2). The black dots are for one
vertex of icosahedral topological fullerenes (disclination with
Frank index f = 1). The red lines are relevant results from
Eq.[A14]. (b-c) The wave function density for mid gap state
in (b) Quadrupole insulator, and (c) 2d SOTI from Eq.[9]
proposed in main text. The red and blue dashed lines stand
for the reflection symmetric axes for x− and y− directions,
respectively. The green solid lines stand for the boundary.

The bound state energy with respect to external flux
from continuous model for conical singularities24 is given
by: √

m− E
m+ E

=
Kν−1/2(κρ)

Kν+1/2(κρ)
(A26)

where

κ =
√
m2 − E2, ν =

j − Φ
2π + f

4

1− f
6

. (A27)

Here m is the Haldane mass, ρ stands for the radius of
the hole in disclination, E is the bound state energy,
j is half integer, f is Frank index and stands for the
number of π/3 wedges removed, Φ denotes the external
flux, and K(κρ) is modified Bessel functions of the second
kind. We have set the positive direction of external flux
opposite to local Chern vector. In practice, in order to
derive full energy-flux relation for given m, one may need
(at least) one data point (bound state energy at given
Φ) from exact diagonalizing Eq.[9] to get the value of
effective radius ρ. After that we can derive the bound
state energy with external flux from (numerically) solving
Eq.[A26].
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We have shown that our analytic results in Eq.[A24]
fit quite well with the numerical results from diagonal-
izing tight-binding model in previous subsection. Our
method also give the proper results from solving Eq.[A26]
directly, as shown in Fig.[A3.(a)]. From here we know
that, the phase shift

∑
i αi should be a function of Hal-

dane mass m and effective radius ρ.

3. Boundary Hamiltonian for arbitrary edge

In this section we derive the effective edge Hamilto-
nian for an arbitrary edge. Note that the in gap state
wave function distribution for our Tetrahedral type TI
(Eq.[10]) is different from that of Quadrupole insulator,
see in Fig.[A3.(b,c)]. We further show that our Tetra-
hedral type 2d SOTI can hold fractional charge at the
corner of rectangular boundaries, regardless of the orien-
tation of the rectangle.

FIG. A4. (a) Edge along ê2 = cos ζêx + sin ζêy direction
(marked by dashed line). (b,c) Corner charge (in gap state
wave function density) in the presence of different boundary
conditions. The dashed blue and red lines stand for two reflec-
tion symmetric axes, the green solid line denotes the boundary
of tetrahedral type TI. The corner localized charge is marked
by red circles. (b) Boundary configuration respects original
reflection symmetry. (c) Boundary configuration does not re-
spect original reflection symmetry.

The Bloch Hamiltonian for our Tetrahedral type TI is
Eq.[10], as shown in main text. In the absence of inter-
layer coupling, i.e. λ = 0, the system can be viewed as
index spin hall effect:

H(~k)QSH =2tso sin (kx)τ1 + 2tso sin (ky)τ2

+(mz − 2tx cos kx − 2ty cos ky)τ3σ3.
(A28)

Around (kx = 0, ky = 0), the low energy version for
Hamiltonian Eq.[A28] is given by:

h(~k) = 2tsokxτ1 + 2tsokyτ2 + (m̃z + txk
2
x + tyk

2
y)τ3σ3,

(A29)
where m̃z = mz − 2tx − 2ty. For simplicity we assume
tx = ty = t0.

We define ζ as the angle between one edge and pos-
itive x-direction. In order to figure out the edge states
at the cut along ~e2 = cos ζêx + sin ζêy direction (see in
Fig.[A4].(a)), we define a new set of basis in both spatial
and momentum spaces:{
x = x1 sin ζ + x2 cos ζ,

y = −x1 cos ζ + x2 sin ζ,

{
kx = k1 sin ζ + k2 cos ζ,

ky = −k1 cos ζ + k2 sin ζ.
(A30)

Substituting Eq.[A30] into Eq.[A29], the Low energy
Hamiltonian can be written in the form of k1,2:

h(~k) =2tso(k1 sin ζ + k2 cos ζ)τ1 + (m̃z + t0k
2
1 + t0k

2
2)τ3σ3

+2tso(−k1 cos ζ + k2 sin ζ)τ2.
(A31)

Consider the model Hamiltonian Eq.[A31] defined on the
half-space x1 > 0 in the x1 − x2 plane. We replace k1 →
−i∂x1

, k2 → 0, and neglect the higher order terms in
Eq.[A31]:

h̃(x1) = (−i∂x12tso sin ζ)σ1 + (i∂x12tso cos ζ)σ2 + m̃zσ3τ3.
(A32)

By using the ansatz ψ0 = eηx1φ, we can find a pair of
counter-propagating chiral edge states:

Ψ+ =
e−2tsox1/m̃z√

N+

(e−iζ/2, eiζ/2, 0, 0)T ,

Ψ− =
e−2tsox1/m̃z√

N−
(0, 0,−e−iζ/2, eiζ/2)T ,

(A33)

where N+(−) is the normalization constant. Here + and
− denotes, respectively, the upper and lower layer index.
This procedure5 leads to a 2 × 2 effective Hamiltonian

defined by Hα,β
edge(k2) = 〈Ψα|h(~k) |Ψβ〉, to the leading

order in k2, we arrive at the effective Hamiltonian for
helical edge states:

h0
edge = 2tsok2σz. (A34)

Similarly, the inter-layer coupling λ1τ1σ1 (or λ2τ2σ2),
under the basis Ψα,β , gives birth to an additional term
−λ1 sin ζσy (or −λ2 cos ζσx). In summary, under the ba-
sis Ψα,β , the total effective edge Hamiltonian is given by:

hedge = 2tsok2σz − λ2 cos ζσx − λ1 sin ζσy. (A35)

By following the method introduced in previous work20,
one can verify that Eq.[A35] is capable to describe not
only an individual edge but also the closed loop formed
by edges.

We want to point out here, two original commuting
matrices S1 = τ1σ1 and S2 = τ2σ2 defined in 2d bulk can
be anti-commuting after projecting into 1d edges in our
2d SOTI. To see this, let’s define a projection operator:

P̂ = |Ψ+〉 〈Ψ+|+ |Ψ−〉 〈Ψ−| , P̂ 2 = P̂ . (A36)

For simplicity we only take the spinor part of Eq.[A33]
into considerations. Thus the projection operator, in the
matrix form reads:

P̂ =
1

2
(τ0σ0 + cos ζτ3σ1 + sin ζτ3σ2). (A37)

The projection of S1,2 on the edges are:

ŝ1(2) = P̂S1(2)P̂ . (A38)
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The projected operators ŝ1,2 anti-commute with each
other:

{ŝ1, ŝ2} =P̂ (S2P̂S1 + S1P̂S2)P̂ = 0. (A39)

This result is independent of ζ (the direction of the edge
with respect to positive x-direction). We further con-
firmed this in finite size lattice model. We did an ex-
act diagonalization of unperturbed index spin hall effect
tight-binding Hamiltonian (λ1,2 = 0 in Eq.[9]), and got
the wave-function of helical edge states numerically. We
took the wave-function on a certain edge as the basis,
and verified the anti-commutation relation of the pro-
jected onsite potential λ1τ1σ1, λ2τ2σ2 in lattice.

In 2d bulk, S1,2 can stand for reflection symmetry op-

erators: Ûx = S2 = τ2σ2, and Ûy = S1 = τ1σ1. Therefore
ŝ1(2) can be understood as the projected reflection sym-
metry operators on edges, but well defined if and only
if the individual edge is y(x)- reflection symmetric. We
can only define one reflection symmetry for an isolated
1d edge, and the projection of symmetry operators to 1d
edge is conducted for each edge independently. Thus the
commutation relation of projected reflection symmetry
operators defined on two different edges is not meaning-
ful.

If λ1 = λ2 = λ, the above low energy Hamiltonian
Eq.[A35] is reduced to:

hedge = 2tsok2σz − λ cos ζσx − λ sin ζσy, (A40)

and we can define the effective mass term as:

Mi = −λ(cos ζiσx + sin ζiσy)

= −λ(cos ζiêx + sin ζiêy) · (σxêx + σy êy + σz êz)

= −λ~ei · ~σ.
(A41)

This related the effective mass term of i-th edge to its
orientation êi = cos ζi~ex + sin ζi~ey. According to our
previous results, the kink of effective mass term at the
corner can give birth to corner localized charge. The
value of the charge (edge soliton) Ns is:

Ns = −(−ζ2 − ζ1
2

) =
δζ

2
, (A42)

where the additional minus sign is from −λ < 0, com-
pared with the terminology in main text. For any rect-
angular boundary, δζ = −π/2 since two adjoint edges are
perpendicular to each other. Thus the corner localized
fractional charge should be −1/4e, regardless the orien-
tation of rectangle. We have confirmed this by exact di-
agonalizing the tight-binding Hamiltonian, as shown in
Fig.[A4.(b,c)]. This result can be generalized to the cor-
ner state with arbitrary fractional charge by tuning the
angle ζ between two adjoint edges.

4. 2d SOTI and zero mode

As we have mentioned in main text, if λ2 = 0 but
λ1 6= 0, the Eq.[10] describes a 2D SOTI in BDI class
with two additional symmetries U++

x and U+−
y . The low

energy Hamiltonian Eq.[A29] can be written as: hlow =
kxγ1 + kyγ2 +mγ0, where γ1 = τ1σ0, γ2 = τ2σ0, m = m̃z

and γ0 = τ3σ3. For BDI class we can build the real
Clifford algebras51,65: Cl3,3 = {iγ1, iγ2, iT P,P, iP, γ0}
whose generators are anti-commuting with each other.
Similar to previous works51, one can define an ad-
ditional symmetry operator Mx = iγxU

++
x , where

M2
x = +1 and Mx anticommutes with all operators

in the bracket. The extension problem of Clifford al-
gebras, Cl3,3 = {iγ1, iγ2, iT P,P, iP, γ0} → Cl3,4 =
{iγ1, iγ2, iT P,P, iP, γ0,Mx}, whose classifying space is
R0, gives a classification π0(R0) = Z. One can further
add an additional symmetry operator My = iT PγyU+−

y ,

where M2
y = 1 and My commutes with every generator in

Cl3,4. Thus My can block diagonalize the bulk into two
copies of BDI + U++

x , each of which has a Z classifica-
tion. On the other hand, one reflection symmetric edge
automatically breaks the other reflection symmetry since
the edge is a 1d system. For example, the x− reflection
symmetric edge automatically breaks the y− reflection
symmetry, which reduce the classification to one copy of
BDI + U++

x (Z). This leads to gapless edge states on
Ux symmetric edges. By further locally breaking Ux for
x-reflection symmetric edge, the edge states is gapped
out by a unique mass term which is odd under Ux and
guarantees the presence of zero mode. Thus the corre-
sponding 2d SOTI has an intrinsic Z classification.

The presence of zero mode can also be explained by
edge network theory. When λ2 = 0, the effective edge
Hamiltonian Eq.[A35] is reduced to:

hedge = 2tsok2σz − λ1 sin ζσy. (A43)

For each edge, one can assign a set of coordinate with
positive direction along ê2,i = cos ζiêx + sin ζiêy, as in
Fig.[A4.(a)]. The coordinates for the left-upper edge
(ζ1 = +π/4) and right-upper edge (ζ2 = −π/4) are
shown in Fig.[A5.(a)]. The effective mass term changes

from M1 = −λ1/
√

2 to M2 = +λ1/
√

2, leading to
a zero mode (Fig.[A5.(b)]) localized at the intersection
(Fig.[A5.(a)]).

5. Fractional charge for edge soliton

In the absence of particle hole symmetry, the domain
wall state for a SSH chain can hold bound state with non-
zero energy and fractional charge aside from −1/2e40,41.
In this section, we summarized and slightly modified their
previous works41 and derive the similar results for edge
solitons. This is in accordance with the results Eq.[6]
from bosonization in Sec. II.

Suppose we have a one-dimensional Dirac Hamiltonian
in the external field ϕ:

Ĥ(ϕ) = −i∂xσz + εσx + ϕ(x)σy. (A44)
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FIG. A5. Numerical results from model Hamiltonian Eq.[9]
in 2D SOTI region. (a) Wave function density for the occu-
pied in gap state, each square stands for one unit cell. (b) The
energy spectrum close to Fermi surface for the corresponding
boundary condition in (a). The squares stand for the corner
modes, and the red (blue) stands for the occupied (unoccu-
pied) states at half filling. The calculations are done with
tx = ty = t0, tso = 0.8t0, M = 0.90t0, and λ1 = 0.3t0, λ2 = 0
for 30× 30 lattice.

For simplicity we assume that ε > 0. Up to a global nor-
malization constant and a unitary transformation this
Hamiltonian can be connected to Hamiltonian Eq.[A40].
In the absence of εσx, the Hamiltonian respects the
charge conjugation symmetry and can hold zero mode
when ϕ(x) has a kink. The presence of εσx breaks the
charge conjugation symmetry of the system. We will see
later on that this Hamiltonian can hold bound state with
nonzero energy and fractional charge.

In the vacuum where the system does not hold a soli-
ton, ϕ = ϕ0 = const. We denote ϕ0 = µ for simplicity. In
the presence of a soliton, ϕ(x) = ϕs(x), and in principle
the ϕs(x) should have a kink. In order to compute the
charge, we need to derive the eigenstates of this two situ-
ation. The Schrodinger equation for these two scenarios
can be written as:

Ĥ(ϕ0)ψ0
E = E0ψ0

E , Ĥ(ϕs)ψ
s
E = EsψsE , (A45)

where ψ0
E stands for the normal state without solitons,

ψsE stand for the situation in the presence of soliton.

The charge density at level E is ρE(x) = ψ†E(x) ×
ψE(x), and the physical charge density is got by inte-
grating ρE over all negative E, since the negative energy
levels are filled in the half-filling:

ρ(x) =

ˆ 0

−∞
dEρE(x). (A46)

Finally the soliton charge is obtained by integrating the
charge density in the soliton field over all x, but to avoid
an infinity, we must subtract a similar integral of the
charge density when no soliton is present:

Q =

ˆ
dx(ρs(x)− ρ0(x)). (A47)

We can calculate the exact value of Q even if we do not
know the exact form of ϕ(x). All we need to know about

ϕs is that it interpolates between opposite “vacuum” val-
ues as x passes from −∞ to +∞:

ϕs(+∞) = |ϕ0| = µ, ϕs(−∞) = −|ϕ0| = −µ. (A48)

We now study the eigenstates of Eq.[A45]. The vacuum
problem is trivial: the wave functions are plane waves
∝ eikx and the spectrum is continuous E0 = ±(k2 +µ2 +
ε2)1/2.

In the presence of soliton, we first assume that the
wave-function of the eigenstate is (u, v)T . Thus we have:(

−i∂x −iϕ(x) + ε
iϕ(x) + ε i∂x

)(
u
v

)
= E

(
u
v

)
, (A49)

which can be simplified as:{− i∂xu+ (−iϕ(x) + ε)v = Eu,

(iϕ(x) + ε)u+ i∂xv = Ev.
(A50)

In order to solve these two equations, we first add up two
equations:

− i∂x(u−v)+ iϕ(x)(u−v)+ε(u+v) = E(u+v), (A51)

and then subtract the second equation from the first one,
such that we have:

− i∂x(u+v)− iϕ(x)(u+v)−ε(u−v) = E(u−v). (A52)

We define the new parameters:

U =
u+ v√

2
, V =

u− v√
2
, (A53)

then we can rewrite the result as:{
(−i∂x + iϕ(x))V = (E − ε)U,
(−i∂x − iϕ(x))U = (E + ε)V.

(A54)

From the second line of Eq.[A54] we know that

V =
−i(∂x + ϕ(x))

E + ε
U. (A55)

Substitute this into the first line of Eq.[A54], we have:

− (∂2
x − ϕ2(x) + ∂xϕ(x))U = (E2 − ε2)U. (A56)

From Eq.[A54] and Eq.[A56] we can figure out a possible
solution:

U = exp[−
ˆ x

dx′ϕx(x′)], V = 0, (A57)

corresponds to the energy E = ε. Note that the U is
localized at the kink x = 0 due to the form of ϕs(x).

To calculate the particle density, we still need to know
the eigenstate for all negative energy solutions. We as-
sume that U ∝ eikx and ϕ ≈ ±µ at large x limit, thus
we have the normalized factor:

1 = |uk|2 + |vk|2 = |Uk|2 + |Vk|2 = U2 2E

E + ε
, (A58)



15

from which we can figure out the normalized wave func-
tion for the negative energy:

U =

√
E + ε

2E
Uk, V = − i√

2E(E + ε)
(∂x + ϕ(x))Uk.

(A59)
This gives the wave function in originally basis:

ψk =

(
uk
vk

)
, (A60)

where
uk =

1√
2

(√
E + ε

2E
− i√

2E(E + ε)
(∂x + ϕ(x))

)
Uk,

vk =
1√
2

(√
E + ε

2E
+

i√
2E(E + ε)

(∂x + ϕ(x))

)
Uk.

(A61)
The wave function ψk satisfies:

Ĥ(ϕ)ψk = Eψk, E = −
√
k2 + µ2 + ε2. (A62)

The Charge-density at negative E is given by:

ρk(x) = |uk|2 + |vk|2

= [(E + ε/2E)]|Uk|2 + [2E(E + ε)]−1|(∂x + ϕ)Uk(x)|2

= |Uk(x)|2 + [4E(E + ε)]−1∂2
x|Uk(x)|2

+ [2E(E + ε)]−1∂x[|Uk(x)|2ϕ(x)]
(A63)

where the validity of second line comes from Eq.[A56].
The soliton charge is the integral over all x and k above

evaluated with ϕ = ϕs, minus a similar integral in the
vacuum; but in the vacuum, |Uk|2 ≡ ϕ(x) = µ, such that
the last two term in Eq.[A63] vanished. Thus we have
the soliton charge:

Ns =

ˆ
dx

ˆ +∞

−∞

dk

2π
[|Usk(x)|2 − |U0

k (x)|2] +

ˆ ∞
−∞

dk

2π

1

4E(E + ε)
[∂x|Usk(x)|2 + 2|Usk(x)|2ϕs(x)]|x=+∞

x=−∞. (A64)

The double integral can be evaluated by completeness:
The U0

k represent all the Schrodinger modes in the vac-
uum, while the Usk are one short of being complete in
the soliton sector, since the normalized bound state is
not among them. Hence the first term contributes −1 to
Q. To evaluate the second term in Eq.[A64], let us con-
sider the wave function in the presence of a soliton when
x = ±∞. These may be given in terms of transmission
(T ) and reflection coefficients (R):

Usk(+∞) = Teikx, Usk(−∞) = eikx +Re−ikx. (A65)

Thus, upon dropping oscillatory terms, we are left with
the soliton charge:

Ns = −1+

ˆ +∞

−∞

dk

2π

µ

2E(E + ε)
[|T |2 +(|R|2 +1)], (A66)

where the plus sign between the contributions at x = +∞
and at x = −∞ arises because of sign reversal in ϕs(x).
Unitarity, |T |2 + |R|2 = 1, permits a final evaluation:

Ns = − 1

π
arctan

(
µ

ε

)
. (A67)

Note that, if we denote ε = m cos θ and ϕs(±∞) = ±µ =
m sin(∓θ), Eq.[A67] is reduced to:

Ns = − 1

π
arctan(tan θ) = −θ − (−θ)

2π
, (A68)

which is in accordance with Eq.[6] derived from bosoniza-
tion of the helical Luttinger liquid.
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