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With substantial evidence of glassy behavior in the phase diagram of high Tc superconductors
and its co-existence with superconductivity, we attempt to answer the question: what are the
properties of a superconducting state where the force driving cooper pairing becomes dissipative?
We find that when the bosonic mediator is local, dissipation acts to reduce the superconducting
critical temperature (Tc). On the other hand, contrary to näıve expectations, Tc behaves non-
monotonically with dissipation for a non-local mediator – weakly dissipative bosons at different
energy scales act coherently to give rise to an increase in Tc and eventually destroy superconductivity
when the dissipation exceeds a critical value. The critical value occurs when dissipative effects
become comparable to the energy scale associated with the spatial stiffness of the mediator, at which
point, Tc acquires a maximum. We outline consequences of our results to recent proton irradiation
experiments (M. Leroux et al., [1]) on the cuprate superconductor La2−xBaxCuO4 (LBCO) which
observe a disorder induced increase in Tc even when the transition temperature of the proximate
charge density wave (CDW) seems to be unaffected by irradiation. Our mechanism is a novel way
to raise Tc that does not require a ‘tug-of-war’ -like scenario between two competing phases.

INTRODUCTION

In s-wave superconductors (SCs) where the quasiparti-
cle excitation spectrum is fully gapped and has a constant
sign of the pairing form factor across the Fermi surface,
Anderson’s magic theorem keeps the critical temperature
(Tc) robust to weak, non-magnetic impurities. In higher
angular momentum SCs (p-,d-wave etc) or SCs where
the sign of the gap changes across parts of the Fermi
surface (such as s± pnictide SCs), Tc is drastically sup-
pressed with the addition of impurities−magnetic or oth-
erwise [2]. These effects hold in the independent disorder
limit and in the absence of electron correlations.

At a collective level when electron correlations are
taken into account, randomness can yield several inter-
esting phases of matter [3]. Amongst these is the spin
glass (SG) phase widely observed in the phase diagram of
many strongly correlated systems like high Tc SCs [4–20].
The SG phase exhibits a remarkable phenomenology [21]
– a transition into the SG defined by a broad cusp in the
specific heat, a split in the DC magnetization at the SG
transition depending on whether the SG phase is field
cooled (FC) or zero field cooled (ZFC), linear tempera-
ture dependence of the AC susceptibility peak, and aging.
Theoretically, SGs are described by an order parameter
where the spin average on each site is non-vanishing but
goes to zero when averaged over the lattice [22]. Impor-
tant to the discussions that follow, spin correlators at the
SG critical point follow a power law of the form [22–25]

D(τ) ≡
[
〈Siµ(τ)Siµ(0)〉

]
∼ 1

τ2
, (1)

which in frequency space reads D(ω) ∼ |ω|. Here, Siµ is
the µ−th component of the spin at site i, and the angular
and square brackets denote thermal and site averages re-
spectively. The linear frequency dependence of the spin
correlators indicates that dissipative dynamics is a nec-

essary – albeit not sufficient – ingredient of SGs.

In this work, we explore the robustness of Tc and prop-
erties of a superconducting state where the dynamics of
the pairing mediator is rendered dissipative due to collec-
tive disorder (in the aforementioned sense). To this end,
we add to the Lagrangian describing the mediator a dissi-
pative term [26–29] ∆L =

∑
k,ωn

η|ωn||Ψ(k, ωn)|2. Here
k and ωn are the momenta and Matsubara frequencies,
η is a measure of dissipation, and Ψ(k, ωn) is the bosonic
field. We find that dissipative effects generally act to sup-
press Tc when the mediator is local. This occurs because
dissipation has the effect of reducing the attractive in-
teraction mediating cooper pairs. However, contrary to
näıve expectations, Tc behaves non-monotonically with
dissipation for a non-local mediator. In this scenario,
weakly dissipative bosons at different energy scales act
coherently to give rise to an increase in Tc and eventu-
ally destroy superconductivity when the dissipation ex-
ceeds a critical value. The critical value occurs when the
dissipation parameter, η, becomes comparable to the en-
ergy scale associated with the velocity of the mediating
bosons (or the spatial stiffness); at this crossover, Tc ac-
quires a maximum value. We also study the effects of

dissipative mediator on the ratio 2∆(0)
Tc

and the heat ca-
pacity jump at the superconducting transition and find
departures from values predicted by BCS theory.

EXPERIMENTAL BASIS

We now make our case for a dissipative or ‘glassy’ me-
diator from experiments on a variety of high Tc SCs. The
SG phase has been observed extensively in the under-
doped and regions proximate to superconductivity in
the phase diagrams of both the cuprate [4–14] and iron
based superconductors [15–20]. Existing evidence is also
spread over several techniques such as DC magnetiza-
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tion [4, 5, 17–20], NMR/NQR [7, 11–15], µSR [9, 10] and
neutron scattering [9, 16]. Given the strong evidence of
a SG phase and its proximity to the superconducting
dome in high Tc SCs, it is already reasonable to consider
its effect on the pairing problem. Additionally, there is
ample experimental evidence lending credence to a dis-
sipative character of fluctuations that mediate Cooper
pairing. First, disorder causes the d-electron spins (Cu
spins in the cuprates and Fe spins in the iron supercon-
ductors) to exhibit glassy behavior and not the dopant
spins [4, 8, 15, 19] (although in certain iron based sys-
tems, it is the dopant spins become glassy [30]). Sec-
ond, SG and SC phases actually co-exist in a variety
of high Tc SCs [12, 15, 19]. This indicates a strong
inter-mixing of properties of the two phases, similar to
what is expected in the context of other mean-field or-
ders (such as density waves) acquiring a glassy behav-
ior [31]. Third, neutron scattering and NMR/NQR mea-
surements in the cuprate SCs La2−xSrxCuO2 (LSCO)
and La2−xBaxCuO4 (LBCO) have found a direct ‘slow-
ing’ of spin fluctuations in the vicinity of glassy or-
ders [7, 9, 14, 16]. Finally, early theoretical predictions
on doping La2CuO4 clearly point to a frustration induced
glassy behavior of the Cu d-orbital spins in the phase di-
agram [32].

Hence, the notion of a dissipative pairing mediator in
high temperature superconductors has firm foundations
in both experiment and theory. As will be argued later
in this paper, non-local dissipative mediators can help
throw light on recent proton irradiation experiments [1]
on LBCO which observe a disorder induced increase in
Tc even when the transition temperature of the proximate
charge density wave (CDW) is unaffected by the presence
of radiation disorder. The mechanism we propose in this
paper forms an alternative way to raise Tc of a supercon-
ductor that does not require a ‘tug-of-war’ -like scenario
between two competing phases.

MODEL AND GAP EQUATION

We begin by writing the conjectured model for the
bosonic propagator. The total action consists of a free
part S0[Ψ,Ψ∗] and a dissipative part Sdis[Ψ,Ψ

∗] defined
by

S[Ψ,Ψ∗] = S0[Ψ,Ψ∗] + Sdis[Ψ,Ψ
∗]

S0[Ψ,Ψ∗] =

∫
ddrdτ

[
κ|∇Ψ(r, τ)|2 + |∂τΨ(r, τ)|2

+M2|Ψ(r, τ)|2
]
,

where κ is the spatial stiffness or energy scale associated
with the boson velocity, and the squared mass, M2, is
proportional to the inverse correlation length. As out-
lined in the introduction, we take the dissipative term

FIG. 1. Effect of a local dissipative mediator: (Left) Super-
conducting critical temperature Tc (normalized to its value at
M = η = 0) as a function of the mass parameter M . The cou-
pling constant λ is chosen to be equal to 1 meV. (Right) Same
quantity now plotted as a function of the coupling constant
λ for M = 0.1 meV. A crossover from Tc ∼

√
λ to Tc ∼ λ

occurs as a function of η.

to be form Sdis[Ψ,Ψ
∗] =

∑
k,ωn

(2η |ωn|)|Ψ(k, ωn)|2 in
Fourier space with the various quantities defined previ-
ously. With this total action, the bosonic propagator,
D(q, iωn − iωm), takes the form

D(q, iωn) =
α

κq2 + ω2
n + 2η|ωn|+M2

.

Here q = |q| and α is a constant with dimensions of en-
ergy that can be absorbed into an effective coupling con-
stant (similar to spin fluctuations; see for example [33]).
Tc, local case (κ = 0): We choose a quadratic electron

dispersion ξk and gap function denoted by ∆(iωn,k).
Substituting D(q, iωn − iωm) into the gap equation,

∆(iωn,k) =
|g|2

βV

∑
q,ωm

D(q, iωn − iωm)∆(iωm,k + q)

ω2
m + ξ2

k+q + ∆(iωm,k + q)2
,

(2)

and assuming an isotropic, frequency independent s-wave
gap (defined by the k = 0 value and denoted by ∆ hence-
forth), the equation determining Tc (setting ∆ = 0) re-
duces to 1 = πλT

∑
ωm<Λ

1
|ωm|(ω2

m+2η|ωm|+M2) where T

is set to Tc. Here β is the inverse temperature, g is the
interaction strength, λ ≡ N(0)|g|2α is the coupling con-
stant, Λ is the high energy cut-off and N(0) is the density
of states at the Fermi energy. The sum over ωm can be
performed exactly to yield the equation for Tc as (c.c is
complex conjugate)

1 =
λ
(
η − iM̄

)−1

2iM̄

[
ψ

(
1

2
+

η

2πTc
− i M̄

2πTc

)
− ψ

(
1

2

)]
+ c.c, (3)

where M̄ ≡
√
M2 − η2 and ψ(x) denotes the digamma

function. The solutions for Tc as a function of the pa-
rameters M and η are shown in the left panels of Figs 1
and 2. The reduction in Tc as a function of the mass and
dissipation can be intuitively understood by taking the
limit of M � T, η and η � T,M respectively. In these
limits, η and M2 can be factored out of the Matsubara
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sum which, in effect, reduces the coupling constant λ and
hence suppresses Tc.

FIG. 2. (Left) Superconducting critical temperature Tc (nor-
malized to its value at M = η = 0) as a function of the
dissipation parameter η for different masses M when the me-
diator is local. The coupling constant λ is chosen to be equal
to 1 meV. (Right) The case when the mediator is non-local
for M = 0: plot of the dimensionless T̄c = Tc/κ as a function
of η̄′ = η′/κ for different dimensionless coupling strengths
λ̄ = λ/κ2. The peak in Tc is set by κ, the energy scale asso-
ciated with bosonic velocity.

Tc, non-local case (κ 6= 0): We can make similar as-
sumptions on the superconducting gap for the κ 6= 0 case.
To maintain analytical tractability and focus on the ef-
fect of dissipation parameter η, we will later set the mass
(now renormalized by the chemical potential; we use the
same symbol for ease of notation) to zero. We can now
substitute the bosonic propagator with κ 6= 0 back into
the gap equation Eq 2. The resulting energy integral can
be solved exactly by the method of residues and takes the
form

∫∞
−∞

dξ
(ξ2+r2)(κξ+s) = πs

(κ2r2+s2)r , where r2 = ω2
m+∆2

and s = ω2
m + η′|ωm| + M2. Performing the remaining

Matsubara sum we obtain the equation for Tc as

1 = −λ

[
ψ
(

1
2 + η′−iκ

2πTc

)
2 (η′ − iκ)

2 +
ψ
(

1
2 + η′+iκ

2πTc

)
2 (η′ + iκ)

2

+
κ2 − η′2

(κ2 + η′2)2
ψ

(
1

2

)
− π2η′

4πTc(η′2 + κ2)

]
(4)

where η′ ≡ 2η. The solution for T̄c = Tc/κ is plotted
in the right panel of Fig 2 as a function of of η̄′ = η′/κ.
As is evident, for the case of a non-local mediator, Tc
behaves non-monotonically with dissipation and rises up
to 40% of the initial η = 0 value. This happens because
weakly dissipative bosons at different energy scales act
coherently to give rise to an increase in Tc but eventu-
ally destroy superconductivity for large dissipation. The
critical value occurs when the dissipation parameter is
of the order of the stiffness constant (2η ∼ κ); at this
point, Tc acquires a maximum with respect to η. This
physics follows from the energy integral leading to Eq. 4
above. To see this, notice that the role of the stiffness pa-
rameter κ is to induce non-monotonicity in an ‘effective’
coupling constant as a function of η – while η acts only to
reduce the effective coupling constant for the local case,

the energy integral (leading to Eq. 4) for the non-local
mediator forces the gap equation to acquire dissipative
contributions that both increase and decrease the effec-
tive coupling constant. Consequently, this translates into
a non-monotonic behavior in Tc.

FIG. 3. Temperature dependence of the superconducting gap
for λ = 5 meV. (Left) as a function of the dissipation param-
eter η and M = 1 meV. (Right) As a function of the mass

parameter M and η = 0.1 meV. The BCS ratio ∆(0)
Tc

increases

(decreases) with the dissipation (mass) parameter.

GAP AND SPECIFIC HEAT JUMP

We now study the variation of the gap with temper-
ature and the specific heat jump at Tc. In Fig 3 we
plot the temperature dependence of the superconducting
gap as a function of the dissipation and mass parameters
for κ = 0. Both η and M reduce the zero tempera-
ture gap ∆(0) and Tc; however, dissipation (mass) has a
greater (smaller) effect on Tc compared to ∆(0). Hence,

the BCS ratio ∆(0)
Tc

increases (decreases) with the dissi-
pation (mass) parameter. To get an analytical handle for
the gap near Tc, we begin with the case of η = M = 0
where the gap equation becomes

1 = λ

∫ ∞
−∞

dξ

 1

4T (ξ2 + ∆2)
−

tanh

√
ξ2+∆2

2T

2(ξ2 + ∆2)3/2

 . (5)

We have made use of the summation identity∑
m

1

(|ωm|2 + x2)|ωm|2
=
x− 2T tanh x

2T

4x3T 2
(6)

above. We next expand for small gaps near Tc to obtain

1

λ
=

∫ ∞
−∞

dξ

[
βξ − 2tanh

(
βξ
2

)
4ξ3

−3βξ + 6 tanh
(
βξ
2

)
+ βξ tanh2

(
βξ
2

)
8ξ5

∆2 + ..

]

' β2a(T )

4π2
− b∆2, (7)

where

a(T ) =
1

2

[
ψ

(
2,

3

2
+
βΛ

2π

)
− 1

2
ψ(2,

1

2
)

]
(8)
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is weakly temperature dependent in the limit of βΛ→∞,

b ' 31
32
β4
cξ(5)
π4 and ψ(n, x) is the n-th order digamma func-

tion. Setting the gap to zero in Eq 7, we can read off the
dependence of Tc on the coupling as Tc ∼

√
λ, which

grows faster than the conventional BCS relation. The
temperature dependence of the gap can be derived as

∆2(T ) = 2a(0)Tcπ
4

4π2(31/32)ξ(5) (Tc − T ), and therefore, the nor-

malized specific heat jump at Tc is (γ = 2π2N(0)/3 is

the normal state specific heat) ∆C
γTc

= 3a(0)
4ξ(5)

(
32
31

)
' 6,

which is greater than the BCS value. Similarly, in
the limit where the dissipation is much larger than the
temperature and mass (η|ωm| � |ωm|2,M2), we have
1
λ '

u(T )
4πTη −

v
8ηπ4T 3

c
∆2. Here

u(T ) = π2 − 2ψ

(
1,

3

2
+
βΛ

2π

)
, (9)

v =

∫ ∞
0

dx

[
H(− 1

2 − ix) + c.c+ Log16

x4

+
ix
2

(
ψ(1, 1

2 − ix)− c.c
)

x4

]
, (10)

and H(z) is the Harmonic number. Tc can be evaluated
again by setting ∆ = 0 and we see that, in this limit,
Tc ∼ λ

η . The cross-over from Tc ∼
√
λ to Tc ∼ λ as a

function of η is shown in Fig 1(right). The temperature
dependence of the gap can be evaluated from above as

∆(T )2 = 2π5Tc

v (Tc − T ); hence, the specific heat jump

at Tc takes the value ∆C
γTc

= 3π3

v ∼ 3.64 which is again
greater than the BCS value.

On the other hand, expanding the gap equation for a
non-local mediator (κ 6= 0) in the limit of η = M → 0, we

obtain κ2

λ ' F
(

κ
2πT

)
− G

(
κ

2πT

)
∆̃2. The dimensionless

functions F (x), G(x) and ∆̃ are defined as

F (x) =
1

2

[
H

(
−1

2
− ix

)
+ c.c+ Log 16

]
, (11)

G(x) =
−1

x2

[
10(γE + Log4) + 5ψ

(
0,

1

2
− ix

)
+ c.c

+ix ψ

(
1,

1

2
− ix

)
+ c.c− 42x2ξ(3)

]
, (12)

∆̃ = ∆
2πT , and γE is the Euler gamma constant. In the

limit x � 1, the functions F (x) and G(x) satisfy the
property F (x) = C1x

2 and G(x) = C2x
2, where C1 and

C2 are numerical constants. The dependence of Tc on
λ goes as Tc ∼

√
λ and the temperature dependence

of the gap takes the form ∆(T )2 = 8π2C1Tc

C2
(Tc − T ).

This implies that the specific heat jump is ∆C
γTc
∼ 5.6,

again larger than the BCS value. However, in the limit
η|ωm| � |ωm|2,M2 the expansion of the gap equation

gives

1

λ̄
=

1

2πT

[
η̄′π2

1 + η̄′2
− η̄′π4(3 + η̄′2)

12(1 + η̄′2)

(
∆

2πTc

)2

+ ...

]
(13)

where λ̄ = λ/κ. Setting ∆ = 0, we see that Tc ∼ λ̄
and the temperature dependence of the gap is given by

∆(T )2 = 24Tc(Tc−T )(1+η̄′2)
(3+η̄′2) . Hence, the specific heat jump

is (weakly) dependent on the dissipation parameter and

is given by ∆C
γTc

= 36(1+η̄′2)
π2(3+η̄′2) . For small η̄′, the normalized

specific heat jump is ' 1.2 and is smaller than the BCS
value consistent with specific heat experiments in under-
doped cuprates [34] and the pnictides [35].

DISCUSSIONS AND EXPERIMENTS

Several theoretical works have explored mechanisms
that yield an enhancement of Tc with disorder strength.
These phenomena range from competition of supercon-
ductivity with a proximate density wave phase [36–39],
multiorbital effects [40], local inhomogeneities in the
pairing interactions and mediators [41–46] to localiza-
tion [47–50]. A few works have also explored the interplay
between glassy phases and superconducting Tc [51, 52].
In [52], the authors study a spin-glass formed by RKKY
interactions between paramagnetic spins in a supercon-
ductor, and find an interaction driven enhancement of
Tc for a fixed impurity density. As a function of im-
purity concentration, however, the authors find that the
Tc decreases monotonically. Ref. [51] also finds a sim-
ilar decrease in Tc due to a reduction of the effective
interaction induced by a SG phase that does not take
into account the role of dissipation explicitly. Our results
can alternatively viewed from the perspective of the well
studied spin-fermion model [53–57] where the dissipation
parameter is proportional to the inverse spin-fluctuation
frequency ωSF . In all of these works, ωSF and the cor-
relation length ξ parameters are held fixed for different
materials (see Table I of Ref. [53]) at T = Tc. Although
these works do not study the effect of ωSF and ξ on Tc, le-
gitimate questions can be raised with regards to whether
these quantities can be varied by an experimentally con-
trolled tuning knob. In the case relevant to the present
context, the effect of disorder on ωSF and ξ needs fur-
ther examination, and perhaps the current works brings
forth the need for a microscopic understanding of the re-
lationship between disorder strength and the dissipation
parameters η and ωSF . In the following paragraphs we
argue for the applicability of the mechanism presented in
this paper to the cuprates.

We begin by emphasizing that the change in Tc in
our work is due to modification of the ‘effective’ cou-
pling by dissipation, and is unrelated to pair-breaking
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effects originating from lowering translational symmetry
(say due to magnetic/non-magnetic inhomogeneities, like
those summarized in Ref. [2]). Hence, it can be intuited
that qualitative aspects of our conclusions must hold for
higher angular momentum pairing as well (albeit with
tedious calculations). This can be more readily seen by
noting that when the summand in the gap equation (in
Eq 2) is decomposed into its partial fractions, there is
always at least one (non-zero) term present where the
dissipation parameter contributes to enhance the effec-
tive coupling strength (similar to Eq 4). This term(s)
generally competes with other terms which suppress Tc,
but gives rise to a Tc increase when the dissipation is
weak enough. Furthermore, according to our proposal,
disorder acts as an external tuning knob of the parame-
ter η; hence, increased irradiation leads to larger dissipa-
tion. Recent magnetization and tunnel diode (penetra-
tion depth) experiments [1] on proton irradiated LBCO
at 1

8 doping found up to a 50% increase in Tc as a func-
tion of radiation dosage. An increased dosage above a
critical value gradually suppressed Tc until the eventual
destruction of superconductivity. LBCO also hosts a
rich phase diagram with evidence of density wave orders
(CDW, SDW [58–60] as well as spin- glass behavior [6] in
conjunction with superconductivity in the under-doped
regime. Hence, it is natural to anticipate an influence
of these phases on superconductivity and examine their
implications to Tc variation as a function of disorder.
Of the aforementioned existing mechanisms of Tc en-
hancement proposed in literature, a competition-based
scenario between superconductivity and a density wave
order seems the most promising at first sight – especially
given the close proximity of the CDW phase to the su-
perconducting dome. Indeed, this was the point of view
first suggested by Leroux and co-workers in [1]. How-
ever, a closer examination of the data points to detaills
that render this mechanism debatable. First, assuming
that x-ray scattering is primarily sensitive to long-range
CDW order [61], the CDW transition temperature seems
unaffected by irradiation [1]. But a mechanism involving
the competition between two mean field phases necessary
involves a tug-of-war scenario where one phase gains sta-
bility at the expense of its competitor [38]. Second, it is
unclear how non-magnetic disorder affects two different
mean field phases (CDW, SDW, SC etc) asymmetrically
in a parameter independent manner, except under very
specific circumstances [38, 39] which do not necessarily
hold in the case of LBCO and cuprates. Third, other
non-magnetic impurities are well known to kill d-wave
superconductivity monotonically [2]. Thus a consistent
picture which distinguishes proton and electron irradia-
tion with other point impurities like Zn at a microscopic
level is absent. Finally, from Anderson’s theorem, one
can expect that a Tc enhancement that occurs through
a competition based scenario must be more prevalent in
s-wave SCs rather than higher angular momentum SCs

which are far less robust to non-magnetic impurities. Ex-
periments on the s-wave superconductor 2H-NbSe2, how-
ever, draw conclusions that are mixed at best [62–64].
Hence, a reasonable explanation for non-monotonic Tc
dependence as a function of disorder in LBCO must nec-
essarily involve a mechanism that does not depend on the
competition of two mean-field like phases. The proposed
mechanism in this paper, along with the experimental
evidence provided in the introduction, forms a feasible
alternative that fits experiments.

In conclusion, motivated by the close proximity of
glassy phases to the superconducting dome in high Tc
SCs, we explored the role of dissipation on supercon-
ducting properties such as Tc, the temperature depen-
dence of the gap, BCS ratio and the specific heat jump
at Tc. We found that when the mediator is local, dissipa-
tion acts to reduce the effective coupling constant and Tc
monotonically. On the other hand, when the mediator is
non-local, two competing effects of dissipation determine
the Tc variation – first, the dissipative contributions of
individual bosons at a given energy that act to suppress
Tc, and second, collective contributions where dissipa-
tion acts to connect bosons at different energy scales that
combine coherently to increase the effective coupling and
Tc. The former (latter) contribution dominates when the
dissipation parameter is greater (lesser) than the bosonic
spatial stiffness, i.e., η > κ (η < κ); Tc peaks when these
two scales are comparable to each other. We also studied

the effects of a dissipative mediator on the ratio 2∆(0)
Tc

and
the heat capacity jump at Tc, and found departures from
values predicted by BCS theory. In particular, the spe-
cific heat jump at Tc acquires a value smaller than that
predicted by BCS theory when the mediator is both dis-
sipative and non-local, consistent with experiment. We
pointed out consequences of our results to recent pro-
ton irradiation experiments in LBCO [1] where super-
conducting Tc is enhanced with increased radiation dis-
order despite a robust CDW transition temperature, and
concluded that one does not require a ‘tug-of-war’ like
scenario between two competing phases to enhance su-
perconductivity.
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