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We explore the manifestation of quantum fluctuations across the superconductor-insulator tran-
sition (SIT) in three different local measurements: the two-particle density of states P (r, ω), com-
pressibility κ(r), and diamagnetic susceptibility χ(r) revealed through their local maps. The map of
χ(r) displays growing fluctuations upon increasing temperature as well as upon tuning the quantum
tuning parameter g, as expected, but remarkably, these fluctuations persist well below Tc as the
SIT is approached, indicating the quantum nature of these fluctuations. The map of κ(r) paints a
similar picture when tuned via g, but in contrast to χ(r), we find a fundamental difference in its
evolution with temperature, providing a complementary local probe to χ(r). P (r, ω), obtained us-
ing Maximum Entropy analytic continuation of Monte Carlo simulations on 2D quantum Josephson
junction arrays, shows strongly diminished zero-energy spectral weight in nearly-insulating islands,
correlating with regions of suppressed κ(r). We discuss the experimental implications of our results
for scanning Josephson spectroscopy, compressibility, and scanning SQUID measurements, the first
time these quantities have been discussed together in the context of quantum fluctuations.

I. INTRODUCTION

Since its discovery, superconductivity has long been
a rich environment for understanding the quantum na-
ture of our universe. Superconductors themselves are
macroscopic condensates of paired electrons that owe
their coherence to quantum mechanics. It is no sur-
prise then that superconductivity in disordered two-
dimensional thin film materials has proven to be a re-
warding playground for studying quantum phase tran-
sitions (QPTs).1–8 These QPTs are driven by quantum
fluctuations between two competing phases of matter at
zero temperature tuned by a non-thermal parameter g.9

For the superconductor-insulator transition (SIT) in
thin films, theory10–12 and experiment13–16 have both
shown that the single-particle gap in the superconduc-
tor persists into the insulator. While the local amplitude
remains finite and the single-particle density of states
shows a robust gap, the coherence peaks become dimin-
ished and global superconductivity is lost. This suggests
that Cooper pairs do not break up in the insulator, and in
fact superconductivity is destroyed by the loss of global
phase coherence between pairs on different islands. The
SIT, then, is predominantly driven by quantum phase
fluctuations.

We therefore use a bosonic description of a thin film
superconductor in terms of a Josephson junction ar-
ray (JJA) of superconducting islands, the Hamiltonian
of which is related to the quantum XY model.17,18,21

Here, amplitude fluctuations are ignored and we di-
rectly simulate the phase degrees of freedom using quan-
tum Monte Carlo (QMC). This gives us access to quan-
tum phase fluctuations, which have have been experi-
mentally observed in global measurements22–24 but have
only recently been imaged locally using scanning SQUID
techniques.25

In this paper we calculate local two-particle quanti-
ties such as compressibility, two-particle local density of
states (LDOS), and local diamagnetic susceptibility in

order to highlight their importance in observing local
quantum fluctuations. Local spectroscopies have pre-
viously played an important role in identifying a vari-
ety of physical phenomena, including the use of scan-
ning tunneling spectroscopy (STM) to map spatial in-
homogeneities in high-Tc cuprates,26–28 local compress-
ibility measurements to observe electron-hole puddles
in graphene,29 and a combination of STM and spin-
polarized STM to detect a possible signature of Majorana
fermions in ferromagnetic chains on a superconductor.30

Here we make predictions for experimental measurements
that can be performed using scanning Josephson spec-
troscopy (SJS)31 and compressibility probes, which can
be used to visualize quantum phase fluctuations. No-
tably, this is the first time each of these techniques has
been discussed together in the context of imaging quan-
tum fluctuations. Much like how temperature fluctua-
tions of the cosmic microwave background have given us
much insight into the structure of the early universe, we
hope that local imaging of quantum fluctuations moti-
vated by our results can expand our knowledge of quan-
tum criticality.

The number-phase uncertainty principle that is at the
heart of the SIT is also emerging as a paradigmatic
model in quantum information. The “quantum phase
slip” qubit describes a state with a well-defined flux in
which number fluctuations introduce phase slips. The
dual “Cooper pair box” is a qubit with well defined num-
ber of Cooper pairs in which Josephson tunneling creates
number fluctuations.32 We discuss below how the qubit
evolves across the SIT and connect these concepts to our
results on spectroscopies.

Previous work involving global measurements have
shown that the SIT is driven by phase fluctuations and
the formation of vortices destroys the superconducting
behavior. While the details of the phase transition on a
global scale have been studied, the inhomogeneous nature
of the transition remains an open question. Our results
fill that gap and we present the first visual representation
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of quantum fluctuations using several techniques. While
previous work has attempted to understand the nature
of the SIT, our work provides the first framework for
imaging quantum fluctuations in the context of multiple
spectroscopies: χ(r), κ(r), and P (r, ω). We discuss sev-
eral experimental probes that can be used to measure
these spectroscopies and image local quantum fluctua-
tions across the SIT.

Our specific results are as follows:
(1) The global two-particle DOS P (ω) is peaked at ω = 0
in the superconducting phase due to the presence of a
Cooper pair condensate. As the SIT is approached, this
peak diminishes and the spectrum becomes gapped at
the critical point, signaling a transition to a Cooper pair
insulator. The global two-particle compressibility κ is
also finite in the superconducting phase where Cooper
pairs are free to tunnel and vanishes at the critical point
where they become localized.
(2) The local compressibility κ(r) in a disordered sys-
tem captures the onset of quantum fluctuations as the
SIT is approached. In the superconducting phase, in-
creasing phase fluctuations create pockets of localized
Cooper pairs where the compressibility is small. The
LDOS P (r, ω) in these regions exhibits an ω = 0 peak
that is strongly suppressed whereas P (r, ω) outside of
these pockets resembles the global P (ω) of a supercon-
ductor. As g is increased toward the SIT, fluctuations of
κ(r) increase mirroring the presence of increasing phase
fluctuations. Interestingly, thermal fluctuations act to
obfuscate the presence of these insulating pockets instead
of increasing them in size. This provides an easy way to
separate quantum fluctuations from thermal fluctuations
in an experiment.
(3) The local diamagnetic susceptibility χ(r) also shows
increasing fluctuations as the SIT is approached from the
superconducting side. As a function of T/Tc, the stan-
dard deviation of χ(r) is peaked only in a narrow region
around Tc for g deep in the superconducting phase. As
g is increased toward the critical point, this peak broad-
ens around Tc, indicating that fluctuations of χ(r) are
appearing well-below Tc. The fact that these extra fluc-
tuations exist far below Tc provide evidence that they are
indeed of quantum origin.

II. MODEL AND METHODS

A useful model for understanding quantum fluctua-
tions across the SIT is the 2D JJA model with Hamil-
tonian

Ĥ =
EC
2

∑
i

n̂2i − EJ
∑
〈ij〉

cos(θ̂i − θ̂j) (1)

where n̂i and θ̂i are canonically conjugate Cooper pair
number and phase operators, respectively, that satisfy

the commutation relation
[
n̂i, θ̂j

]
= iδij . EJ links phases

on nearest neighbor sites via a Josephson coupling while
EC represents the charging energy of Cooper pairs on
each site. When EJ is large, the phases align and the
system is in a coherent superconducting phase. When
the EC term dominates, the system favors a well-defined
number eigenstate, leading to quantum phase fluctua-
tions that destroy the superconducting order and transi-
tion the system to a bosonic insulating phase. Thus we
use the ratio g = EC/EJ as a knob to tune the system
across a QPT between a superconductor and an insula-
tor. It is important to emphasize that loss of global phase
coherence is responsible for destroying superconductivity
in our model. We assume that fluctuations of the super-
conducting amplitude are small and that we are working
at temperatures well below the pair-breaking scale T ∗ of
the superconducting island.

We simulate this model using QMC two different ways
as shown schematically in Fig. 1a. In both cases we use
a quantum-classical mapping to map the quantum JJA
Hamiltonian to a classical action.17,18 First we map the
2D JJA to a (2+1)D XY model of classical phases, a lan-
guage that is well suited for calculating the two-particle
DOS P (ω) and compressibility κ. Simulations of the
(2+1)D XY model are performed using a Wolff cluster
algorithm33 on system sizes 64 × 64 for global calcula-
tions and 24 × 24 for local calculations. To calculate
diamagnetic susceptibility χ, we instead map the JJA to
a (2+1)D integer current model (ICM) because the cur-
rent basis is more natural for exploring the fluctuations
of diamagnetic currents. We simulate the ICM using a
worm algorithm34 on a 64×64 lattice for both global and
local calculations. See Supplementary I for more details
on these mappings.19,20,35

It is important to note that simulations calculating lo-
cal quantities require a small amount of disorder to be in-
troduced in order to create structure. Without disorder,
local structure is washed out by Monte Carlo averaging.
We introduce a small amount of disorder in the spatial
bonds of each model by randomly removing a fraction
p = 0.1 of Josephson couplings EJ throughout the lattice.
This creates regions where insulating sites can nucleate
and be detected by our local probes. There have previ-
ously been studies on disorder-tuned SITs,12,21 however
we emphasize that the disorder in our model is static and
the fluctuations we see are ultimately caused by tuning
g, not disorder. It should be noted that while the pres-
ence of disorder does change the universality class of the
transition,21 this change is does not affect the qualita-
tive relevance of our results. The Bose glass phase that
emerges at weak disorder is negligible compared to the
size of the superconducting and insulating regimes on the
phase diagram.36 We also note that while our microscopic
model has only phase fluctuations, upon coarse-graining
it contains both amplitude and phase fluctuations. The
Higgs mode can be measured in our simulations via the
dynamical conductivity.21 While the absorption thresh-
old vanishes with increasing disorder, the spectral weight
at finite energy remains.
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FIG. 1. Model and phase diagram. (a) We simulate the JJA
Hamiltonian by mapping to two separate classical actions:
XY and integer current model ICM. (b) Schematic phase di-
agram of the SIT along the g-T plane. At zero temperature,
the JJA can be tuned through an SIT at g = gc. At finite
temperature, both the superconducting and insulating phases
transition to normal states with increasing T . In-between
there is a quantum critical regime.

Both the global P (ω) and local P (r, ω) are calcu-
lated by analytically continuing imaginary time data to
real frequencies using the Maximum Entropy Method
(MEM).38,39 The procedure is delicate and we have per-
formed extensive tests, including checking sum rules, to
ensure the validity of our results (see Supplementary II
for more information).35

III. RESULTS

A. Bosonic spectral function

The bosonic Green’s function in imaginary time is
given by G(r, r′; τ) =

〈
â†(r′, τ)â(r, 0)

〉
where â, â† are

Cooper pair raising and lowering operators. In the lan-
guage of the JJA we can rewrite37 the raising opera-
tor in terms of its amplitude and phase as â†(r, τ) =√
n̂(r, τ)eiθ̂(r,τ), but since we are ignoring on-site am-

plitude fluctuations we can write the Green’s function
purely in terms of the phase variable as

G(r, r′; τ) =
〈
ei(θ̂(r

′,τ)−θ̂(r,0))
〉

(2)

which is a spin-spin correlation function in the classical
XY representation.

The real frequency spectral function P (k, ω) is the
imaginary part of the corresponding real frequency
Green’s function G(k, ω)

P (k, ω) = − 1

π
ImG(k, ω). (3)

However, since we are working with imaginary time in
our QMC, we need a way to analytically continue G(k, τ)
to a real frequency spectral function. This leads to the
following relation between G(k, τ) and P (k, ω)

G(k, τ) =

∫ ∞
−∞

dω

π

e−τω

1− e−βω
P (k, ω). (4)

Solving this equation for P (k, ω) amounts to inverting a
Laplace transform. However, performing this procedure
on QMC data of G(k, τ) with error bars is non-trivial
and requires the use of numerical analytic continuation
techniques. In our work, we use MEM to obtain P (k, ω)
from G(k, τ) and have validated our results by checking
relevant sum rules.

We are particularly interested in the DOS which is the
sum over momentum of the spectral function

P (ω) =
∑
k

P (k, ω) = A(|r− r′| = 0, ω) (5)

This amounts to performing MEM on G(|r − r′| = 0, τ)
data. In Fig. 2a we plot P (ω)/ω as a function of g across
the SIT. Since the form of (4) requires A(−ω) < 0, we
plot P (ω)/ω to obtain a quantity that more closely re-
sembles an experimentally measured DOS. We see that
P (ω)/ω is strongly peaked at ω = 0 in the superconduct-
ing phase, corresponding to the existence of a Cooper pair
condensate. As the SIT is approached, spectral weight
shifts from the central peak to the finite energy modes on
either side of ω until the system forms a gap for g > gc.
We plot the shift of this spectral weight from zero energy
to finite energy modes in Fig. 2d. In Fig. 2c we plot the
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FIG. 2. Global DOS and energy scales across the SIT. (a) Global two-particle DOS P (ω)/ω obtained from analytic continuation
of the imaginary time Green’s function G(τ) shown as a function of g. For g < gc ∼ 4.26 the DOS shows a zero energy peak
corresponding to the Cooper pair condensate. As g increases, this weight shifts toward finite energy modes and for g > gc the
system forms a gap characterized by the energy scale ωgap, signaling the transition to an insulating state. (b) Cuts of P (ω)/ω
plotted for g = 3 (superconducting) and g = 6 (insulating) highlighting the difference in two-particle spectra between the two
phases. (c) Energy scales near the SIT. The superfluid stiffness ρs and compressibility κ are finite in the superconducting
phase but go soft at gc. Similarly, on the insulating side, the two-particle gap scale ωgap is finite and approaches zero as gc is
approached. Note that the error bars are the size of the data points here. (d) We show how the spectral weight in P (ω) shifts
from ω = 0 to finite energy modes with increasing g. At small g, most of the weight is centered around zero energy, however
as g increases past the SIT this weight decreases to zero and increasingly shifts to finite energy states.

size of this gap ωgap as a function of g along with other
energy scales including the superfluid stiffness ρs and the
compressibility κ (described in the next section). As we
expect, ρs, κ, and ωgap go soft at gc from their respective
sides of the transition.

B. Compressibility

The global compressibility κ is a quantity that char-
acterizes fluctuations of the Cooper pair number density
operator n̂. We can define the average current along a
generic spacetime bond b in the XY representation as

〈jb〉 = −∂ lnZ

∂Ab
= 〈Kb sin(∂bθ −Ab)〉 (6)

where Z = Tre−βĤ is the partition function, Ab is the
element of an externally applied vector potential along
bond b, and Kb is the coupling constant along that bond.
We can then identify the average density 〈n〉 with the
current along temporal bonds 〈jτ 〉.17

The generalized electromagnetic response tensor

Υbb′ =
∂ 〈jb〉
∂Ab′

(7)

describes the response of a current jb along a spacetime
bond b to an externally applied vector potential Ab′ along
a bond b′. While the superfluid stiffness ρs can be ob-
tained from the static, transverse long wavelength limit
of the spatial response function Υxx, the compressibility
is given by the static long wavelength limit of the tem-
poral response function Υττ

40

Υττ (r, r′; τ, τ ′) =
∂ 〈jτ (r, τ)〉
∂Aτ (r′, τ ′)

(8)

= 〈−kτ (r, τ)〉 δ(r, τ)− Λττ (r, τ) (9)

where 〈−kτ (r, τ)〉 = 〈Kτ cos(∂τθ(r, τ))〉 and the
temporal current-current correlator Λττ (r, τ) =〈
K2
τ sin(∂τθ(r, τ)) sin(∂τθ(0, 0))

〉
. Note that since

we are performing linear response we take the limit
Aτ → 0, and we make use of translational symmetry in
the second line.

The compressibility κ is then the static, long wave-
length limit of Υττ (r, τ)

κ = lim
k→0

Υττ (k, iωn = 0). (10)

Note that this amounts to calculating the response of
the pair number density 〈n〉 ∼ 〈jτ 〉 with respect to an
externally applied electric potential φ ∼ Aτ , which is the
usual definition of compressibility.
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In Fig. 2c we show κ as a function of g. κ is finite in
the superconducting phase where Cooper pairs are phase
coherent and are able to tunnel across the system. κ
decreases as gc is approached and vanishes in the Mott
insulating phase where Cooper pairs become localized by
phase fluctuations.

C. Local quantities

We next turn our attention to calculations of the LDOS
P (r, ω) and local compressibility κ(r). P (r, ω) is related
to the local Green’s function (2) at r = r′ by inverting
(4) once again

G(r, τ) =

∫ ∞
−∞

dω

π

e−τω

1− e−βω
P (r, ω). (11)

The local compressibility κ(r) is given by the local re-
sponse function Υττ (r, τ) in (9)

κ(r) = Υττ (r, iωn = 0) = lim
Aτ→0

1

β

∑
r′,τ,τ ′

∂jτ (r, τ)

∂Aτ (r′, τ ′)

(12)

=
1

β

∑
r′,τ,τ ′

(〈−kτ (r, τ)〉 δ(r′, τ ′)− Λττ (r, r′, τ, τ ′)) .

(13)

In order to extract local structure from our QMC simu-
lations, we break translational symmetry by introducing
a small fraction of bond disorder. In Fig. 3a we show
a local map of κ(r) at g = 3.6, near the SIT. We see
that the system forms puddles where κ(r) is significantly
suppressed. These incompressible regions are locations
where a large density of bonds have been cut, resulting
in the formation of insulating islands. In Fig. 3b we plot
the corresponding P (r, ω) in two representative regions.
We see a strong spatial correlation between the strength
of κ(r) and the distribution of low-energy spectral weight.
The superconducting region highlighted in blue is highly
compressible and has most of its spectral weight peaked
strongly around ω = 0, reflecting the strength of the su-
perconducting condensate. The behavior of P (r, ω) in
this region matches that of the global P (ω) shown in
purple, which reflects that of a globally phase-coherent
superconductor. On the other hand, in the region high-
lighted in red with small compressibility, we see that the
ω = 0 peak in P (r, ω) is highly suppressed . Here we can
see evidence of a two-particle gap beginning to form as
spectral weight shifts from ω = 0 to finite energy modes,
indicative of an emerging Cooper pair insulator.

It is important to emphasize that the emergence of in-
sulating islands shown in Fig. 3a is caused by quantum
phase fluctuations due to proximity to a quantum criti-
cal point. To illustrate this, in Fig. 4a we also plot κ(r)
as a function of g and temperature T . As g increases
toward the SIT, fluctuations in κ(r) increase, leading to

an increase in the size and prevalence of incompressible
islands. Interestingly, as T increases the fluctuations in
κ(r) become smoothed out and the insulating islands be-
come smaller. This is due to the fact that κ is sensitive
specifically to number fluctuations. While quantum num-
ber fluctuations are expected to decrease as g increases,
thermal number fluctuations increase as T increases due
to higher energy number states becoming available. This
is clearly seen in Fig. 4b, where the distribution of
κ(r) broadens significantly with increasing g, but narrows
slightly with increasing T . This difference in behavior as
κ(r) evolves with g and T provides a way to distinguish
quantum fluctuations from thermal fluctuations. We pro-
pose that an experiment that measures κ(r) across the
SIT will be able to directly image the presence of quan-
tum fluctuations. The fact that these fluctuations are in
fact quantum phase fluctuations is further confirmed by
our results on the diamagnetic susceptibility.

D. Diamagnetic susceptibility

Phase fluctuations increase both as a function of tem-
perature and a function of g. The question becomes
how to separate thermal phase fluctuations from quan-
tum phase fluctuations. A well-known property of a su-
perconductor is the fact that it generates diamagnetic
supercurrents in the presence of a magnetic field. In gen-
eral the magnetization generated by an external field is
related to the free energy by

〈M〉 =
∂(T logZ)

∂B
(14)

where −T logZ is the free energy in terms of the parti-
tion function Z and B is an external applied magnetic
field. We can calculate the corresponding local diamag-
netic susceptibility χ(r), which is sensitive to phase fluc-
tuations, from linear response using a Kubo formula

χ(r) = −∂ 〈M(r)〉
∂B

= 〈M(r)M〉 . (15)

The local diagmagnetic susceptibility is the response of
a local induced magnetization M(r) to a global applied
magnetic field B. This amounts to calculating the cor-
relator between the local magnetization M(r) and the
global magnetization M . To obtain χ(r), we perform
QMC simulations in the dual ICM representation of the
quantum JJA model. This representation is more suited
to calculating quantities involving the supercurrent since
the QMC configurations themselves are given in terms of
integer currents (see Supplementary IB).35

In the language of the ICM, we can write the total mag-
netization, assuming a uniform B-field in the ẑ-direction,
as

〈M〉 =
1

2β
〈
∑
〈ij〉,τ

(xiyj − xjyi)jτij〉 (16)
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(b)(a)

0 0.15

FIG. 3. Local compressibility and LDOS in a disordered system near the SIT. (a) Map of the local compressibility κ(r) on a
24 × 24 lattice at g = 3.6, near the SIT. We introduce a small amount of bond disorder (p = 0.1) to produce local structure in
our QMC data. We see that while the majority of system has finite κ (superconducting), the local κ(r) map picks out large dark
regions with κ near zero (insulating), as we would expect for a system exhibiting strong quantum fluctuations. This is reflected
in the two-particle LDOS P (r, ω)/ω shown in (b). In the compressible region highlighted in blue, we see that P (r, ω)/ω has a
peak at ω = 0 characteristic of a superconductor. On the other hand, the incompressible region highlighted in red exhibits a
peak that is highly suppressed at ω = 0, indicating that this region is approaching an insulating regime. The global A(ω)/ω is
shown in purple for comparison.

0

0.15

(a) (b)

FIG. 4. Local compressibility maps and distributions. (a) Maps of the local compressibility κ(r) on a 24 × 24 lattice as a
function of g and temperature T on the superconducting side of the transition. We see that as the transition is approached
with increasing g, fluctuations of the compressibility also increase. Interestingly, with increasing T we see that fluctuations in
κ(r) actually become smoothed out due to increasing number fluctuations. Since the behavior of κ(r) as we evolve tuning g
or T is different, we can separate the effects of thermal fluctuations from quantum fluctuations. (b) Distributions of κ(r) for
various maps. We see that as g increases for fixed T , the distribution of κ(r) broadens significantly and the standard deviation
σ increases. However, with increasing T and fixed g, the distribution only changes slightly and actually becomes narrower.

where jτij is an integer current on a spatial bond connect-
ing sites i and j on timeslice τ . The spatial pattern that
jτij is summed along comes from the corresponding vector

potential of the uniform B-field, A = B
2 (−x, y, 0). M(r)

is calculated from the discrete analog of the magnetiza-

tion current j(r) = ∆ ×M(r) where j are the integer
currents. Inverting this for Mz(r) = M(r) gives us

M(r) =

∫
dr′ · (ẑ × j(r′)). (17)
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FIG. 5. Local diamagnetic susceptibility maps and standard deviation. (a) Local maps of the diamagnetic susceptibility χ(r)
obtained on a 64 × 64 lattice as a function of g and T using the ICM representation. We see that for small g, χ(r) is large
and uniform until the system approaches Tc, as expected of thermal fluctuations. However, as g is increased toward the SIT,
fluctuations in χ(r) begin to appear well below Tc, suggesting that these additional fluctuations are quantum in nature. In
(b) we plot the standard deviation of χ(r) for each value of g as a function of temperature. We see that while the standard
deviation is always peaked around Tc, this peak broadens as the SIT is approached, pointing to the increasing importance of
quantum phase fluctuations in this regime.

(a) (b)

-2 2

FIG. 6. DOS and qubits. (a) Evolution of the Cooper pair spectral function P (ω) across the SIT tuned by g = Ec/EJ , the
ratio of charging energy to the Josephson energy. (b) The first cut shows a “Quantum phase slip” qubit whose behavior is
consistent with a finite current at zero voltage, if we interpret the y-axis as the current and the x-axis as the voltage. In the
second cut, we approach the transition described by a finite slope around ω = 0, consistent with a finite resistance. The final
cut describes a “Cooper pair box” qubit whose behavior is consistent with zero current until a critical voltage is reached.

In Fig. 5a we show local maps of χ(r) as a function
of g and T/Tc. Here, Tc is the temperature at which
the superconductor transitions to a normal state but still
contains pairs; it should not be confused with the pair-
breaking transition, that occurs at a much higher temper-
ature. As expected, we observe that fluctuations of χ(r)
increase with T/Tc due to thermal fluctuations. Simi-

larly, fluctuations of χ(r) also increase with increasing g.
In both cases we see pockets with near-zero susceptibil-
ity beginning to form as phase fluctuations destroy the
ability for coherent supercurrents to exist. However, in-
terestingly, as g increases the fluctuations in χ(r) appear
at lower values of T/Tc. The fact that fluctuations appear
well below Tc when the system is near a quantum critical
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point suggests that the fluctuations with increasing g are
predominantly caused by quantum phase fluctuations.

This shows up as a broadening of the standard devia-
tion of χ(r) across T/Tc as shown in Fig. 5b. For small g,
the standard deviation is peaked mainly around Tc, sug-
gesting that only thermal fluctuations are relevant in this
regime. However as g increases the temperature range
where standard deviation is large broadens to include
temperatures well below Tc reflecting the importance of
quantum fluctuations. This broadening of the tempera-
ture range of χ(r) fluctuations was recently observed in
scanning SQUID experiments of the thin film supercon-
ductor NbTiN.25 In the experiment, a scanning SQUID
was used to directly image the local χ(r) and the corre-
sponding standard deviation as a function of temperature
and film thickness was found to qualitatively match that
of theory. Importantly, this was the first time quantum
fluctuations were directly imaged in an experiment.

IV. CONCLUSION AND OUTLOOK

For the first time, we have presented three different cal-
culations of local two-particle response functions across
the SIT: density of states P (r, ω), compressibility κ(r),
and diamagnetic susceptibility χ(r). We have shown how
these quantities can be used to probe the local structure
of fluctuations across the SIT, which has been an open
question until now. Particularly, for both χ(r) and κ(r)
we see an increase in local quantum fluctuations as the
system approaches the critical point from the supercon-
ducting side, independent of thermal fluctuations

Our aim is to connect these calculations to spectro-
scopic measurements that can be performed in an ex-
periment. We have already discussed how χ(r) can be
measured using scanning SQUID techniques. We next
turn our attention to measurements of P (ω) and κ(r). It
has previously been shown that it is possible capture the
local structure of the superconducting order parameter
using a combination of scanning tunneling spectroscopy
(STM) and scanning Josephson spectroscopy (SJS) using
a superconducting Pb tip.31 There, a suppression of the
zero-energy peak measured in the SJS conductance was
found on impurity sites, similar to our results on disorder
sites of the JJA. We propose an experiment that uses SJS
in conjunction with local compressibility measurements29

to map out the evolution of quantum fluctuations across
the SIT as we have done in Fig. 3 and 4. In partic-
ular, we expect a local compressibility measurement to
be able to more cleanly separate quantum fluctuations
from thermal fluctuations. In summary, we have made
the first predictions for three quantities to be measured
together in the context of imaging quantum fluctuations.
We hope that these results will drive experimental in-
terest in the visualization of quantum fluctuations and
expand our understanding of quantum phase transitions.

We are also interested in connecting with recent de-
velopments in quantum information and quantum com-
puting. As emphasized earlier, the essence of the SIT
is the number-phase uncertainty principle. This can be
used to define two types of dual qubits based on whether
the phase dominates with quantum phase slips (QPS)
disrupting that order (“QPS” qubit) on the SC site or
whether the number of Cooper pairs is well-defined with
Cooper pair tunneling disrupting the order (“Cooper pair
box” qubit) on the insulating side.32 The behavior of the
Cooper pair spectral function in Fig. 6 tracks the evolu-
tion of the qubit across the SIT .

QPS qubit: The QPS qubit is dominated by the induc-
tive energy EJ = Φ2

0/(2L), where L is the inductance of
the loop and Φ0 = h/(2e) is the SC flux quantum. The
charging term mixes states with different fluxoid number
f = Φ/Φ0 where Φ is the flux through the loop and lifts
the degeneracy at half-integer values of f . A current bi-
ased Josephson junction can be modeled as the dynamics
of the phase in a slanted washboard potential. The phase
is trapped in one of the minima yielding a zero voltage
state, a superconductor, until the current exceeds a crit-
ical value.

Cooper pair box qubit: In the dual regime, the insulator
has a fixed number of Cooper pairs on each island and is
dominated by the charging scale EC = (2e)2/(2C) where
C is the capacitance of the island. Josephson tunneling
mixes states with n and n + 1 Cooper pairs on an is-
land and lifts the degeneracy at half integer values. In
the voltage-biased configuration, charge is trapped in a
potential minimum resulting in a zero current state, an
insulator, for voltages below a critical value.

Once we understand how a qubit behaves in different
regimes, it in fact becomes a device to measure and quan-
tify the degree of fluctuations, both thermal and quan-
tum, across QPTs. We expect these ideas will motivate
developments in quantum measurement.
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