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Abstract

We have studied non-equilibrium phase transitions in the vortex lattice in superconducting MgB2,

where metastable states are observed in connection with an intrinsically continuous rotation tran-

sition. Using small-angle neutron scattering and a stop-motion technique, we investigated the

manner in which the metastable vortex lattice returns to the equilibrium state under the influence

of an ac magnetic field. This shows a qualitative difference between the supercooled case which

undergoes a discontinuous transition, and the superheated case where the transition to the equi-

librium state is continuous. In both cases the transition may be described by an activated process,

with an activation barrier that increases as the metastable state is suppressed, as previously re-

ported for the supercooled vortex lattice [E. R. Louden et al., Phys. Rev. B 99, 060502(R) (2019)].

Separate preparations of superheated metastable vortex lattices with different domain populations

showed an identical transition towards the equilibrium state. This provides further evidence that

the vortex lattice metastability, and the kinetics associated with the transition to the equilibrium

state, is governed by nucleation and growth of domains and the associated domain boundaries.
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I. INTRODUCTION

For physical systems in equilibrium, it is customary to classify phase transitions as

discontinuous (first order) or continuous (second order). However, the characteristics

of non-equilibrium phase transitions may differ significantly.1,2 Vortex matter in type-II

superconductors3–5 offers a conceptually simple two-dimensional system to explore funda-

mental problems such as non-equilibrium phase transitions and kinetics, structure formation

and transformation at the mesoscopic scale, and metastable states. In addition, vortex mat-

ter shows many similarities with magnetic skyrmions;6,7 soft matter systems such as liquid

crystals, colloids and granular materials;8 and glasses.9 Insights gained from vortex studies

may therefore be applicable to a wide range of material systems.

In the hexagonal two-band superconductor MgB2 the equilibrium vortex lattice (VL)

phase diagram consists of three likewise hexagonal phases connected by a continuous ro-

tation transition.10,11 Cooling or warming across the equilibrium phase boundaries leaves

the VL in robust metastable states.12 The metastability is a collective vortex phenomenon

most likely due to the presence of robust VL domain boundaries, and is notably not due

to pinning.13 Field/temperature history dependent metastability has also been observed in

connection with structural transitions of the skyrmion lattice (SkL).14–16 Compared to the

SkL, the VL can more easily be perturbed by varying the magnetic field and used to study

transitions between metastable and equilibrium phases. In addition to the SkL, one may ex-

pect similarities between the VL and other physical systems governed by domain nucleation

and growth, such as martensitic phase transitions17 or domain switching in ferroelectrics.18

The equilibrium VL phase diagram for MgB2 with the magnetic field applied parallel to

the c axis is shown in the inset to Fig. 1(a). In both the F and I phases a single global

orientational order is observed by small-angle neutron scattering (SANS), indicated by six

VL Bragg peaks aligned with respectively the a and a
∗ direction within the basal plane.12

In the intermediate L phase, the VL rotates continuously from the a to the a
∗ orientation,

where the presence of both clockwise and counterclockwise domain rotations leads to 12

Bragg peaks. A diffraction pattern corresponding to a metastable VL, created by supercool-

ing across the F-L phase boundary, is shown in Fig. 1(b). The corresponding equilibrium

VL, obtained at the same place in the phase diagram, is shown in Fig. 1(c). The latter was

achieved by applying a damped dc field oscillation, as thermal excitations are insufficient to
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drive the VL to the equilibrium configuration.12 The experimentally determined equilibrium

phase diagram has been corroborated by numerical calculations.11

The simplest model for the single domain VL free energy that allows for a continuous

rotation connecting the F, L and I phases is given by

δF = K6 cos [6(ϕ− ϕ0)] +K12 cos [12(ϕ− ϕ0)], (1)

where K6/12 are field and temperature dependent coefficients.12,19 This yields the curves

in Fig. 1(d), which show a qualitative difference between the metastable F (2.6 K) and L

(14.2 K) states. In the first case (pt. 2), the supercooled F phase is in unstable equilibrium

[d(δF )/dϕ = 0; d2(δF )/d2ϕ < 0]. In the second case (pt. 4), the superheated L phase is in

a true non-equilibrium configuration [d(δF )/dϕ 6= 0].

The difference in the free energy configuration between the supercooled and superheated

VL provides the motivation for the current work. Recent studies of the transition kinetics,

associated with driving a supercooled VL from the metastable state (MS) to the equilibrium

state (ES) by inducing vortex motion, showed an activated behavior.20 Furthermore, the

activation barrier was found to increase as the metastable state was suppressed, correspond-

ing to an aging of the VL where the ac field amplitude and cycle count are equivalent to,

respectively, an effective “temperature” and “time”. Here we report on SANS studies of

the VL that compare the MS to ES transition for the supercooled and superheated cases.

We find a qualitative difference between the the superheated case, where the transition to

the ES is continuous, and the discontinuous transition previously observed for the super-

cooled case. Despite this difference, the transition to the ES is in both cases described by

an activated process, with an activation barrier that increases as the metastable state is

suppressed. Furthermore, superheated MS VLs with different domain populations showed

an identical transition towards the ES, providing further evidence that the VL metastability

and the transition kinetics is governed by nucleation and growth of domains.

II. EXPERIMENTAL DETAILS

Measurements were performed on the CG2 General Purpose SANS beam line at the

High Flux Isotope Reactor at Oak Ridge National Laboratory, and the D33 beam line at

Institut Laue-Langevin. The data presented here were collected at D33,21 but consistent
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results were found at both facilities. All experiments were conducted with the incoming

neutrons parallel to the applied magnetic field,22 using a tightly collimated beam in order

to resolve closely spaced VL Bragg reflections. The D33 beam collimation was defined by a

2 mm sample aperture which is comparable to the sample size, and a 10 mm source aperture

separated by 12.8 m. The azimuthal resolution wres = 3.1◦ was estimated from the width of

the undiffracted beam on the detector, ∆q. Considering a peak of this size at the expected

qVL = 0.105 nm−1 for a vortex lattice at 0.5 T, the angular azimuthal resolution is given by

tan (wres/2) =
1
2
∆q/qVL. The D33 data was collected using a wavelength of λ = 0.7 nm and

spread of ∆λ/λ = 10%.

We used the same 200 µg single crystal of MgB2 (Tc = 38 K, µ0Hc2 = 3.1 T) as in

prior studies. The MgB2 crystal had a flat plate morphology, with an area of ∼ 1× 1 mm2

and a thickness of ∼ 50 µm. The sample was grown with isotopically enriched 11B to

decrease neutron absorption, using a high pressure cubic anvil technique that has been shown

to produce good quality single crystals with a mosaicity of a few tenths of a degree.23,24

The observation of VL diffraction peaks belonging to a single F or I phase at low/high

fields excludes the possibility of a polycrystal. Demagnetization effects are expected to be

negligible for the measurement field and geometry, which is supported by the equality of the

applied field (µ0H) and measured internal magnetic induction (B).13 The VL metastability

has been confirmed in other single crystals of MgB2,
12 and recently also in crystals from a

different source.25

Vortex motion was induced using a bespoke coil to apply a controlled number of ac field

cycles parallel to the dc field used to create the VL. A sinusoidal wave function was used,

with peak-to-peak amplitudes between 0.5 and 1.5 mT and a frequency of 250 Hz. The

ac amplitudes are roughly two orders of magnitude smaller than that of the damped field

oscillation used to obtain the ES VL. This leads to a gradual evolution of the VL from the

MS to the ES, and allows for a detailed study of the relaxation process. The low frequency

is equivalent to a “fast dc” field oscillation, but more precise than what can be achieved

using the superconducting cryomagnet used to apply the static 0.5 T field. The ac field

frequency and amplitudes were chosen to allow, in a reasonable amount of time, a controlled

relaxation of the VL affecting the entire sample volume.
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III. RESULTS

A. Equilibrium F-L phase boundary

Prior to beginning systematic measurements of the MS to ES transition, the exact location

of the F-L phase boundary with H‖c at 0.5 T was determined from the VL peak separation

(∆ϕ), as shown in Fig. 1(a). The azimuthal position (ϕ) of the VL Bragg peaks are measured

relative to the crystalline a direction (ϕ0). At each temperature, a damped dc field oscillation

with an initial amplitude of 50 mT around its final value of 0.5 T was applied to obtain

the equilibrium VL prior to the SANS measurements. Since the VL density is directly

proportional to the applied field, this gives rise to a breathing motion where vortices are

pushed into and out of the sample. In superconductors with low pinning, such as MgB2,

this is expected to result in a well-ordered, equilibrium VL configuration. We will discuss

this is further detail in Sect. III C.

Gaussian multi-peak fits to the data were used to determine ∆ϕ around ϕ0, with ∆ϕ = 0◦

corresponding to the F phase. The larger error bars at 13.2 K result from forcing a two-

peak guassian fit to data where the peaks have minimal, if any, separation. The value of

TFL = 13.2 K is consistent with the phase diagram originally established by Das et. al.12 At

14.2 K, a single peak fit to the data yields a full width half maximum (FWHM) that agrees

within error with those obtained for the ES L phase peaks at 2.6 K.

B. Nature of the metastable to equilibrium state transition

All SANS measurement sequences were performed with a 0.5 T dc field parallel to the

crystal c axis. A schematic illustrating the measurements are shown in Fig. 1(e). Prior

to each measurement sequence, a pristine supercooled (superheated) MS VL was prepared:

First, an equilibrium VL was obtained at 14.2 K (2.6 K) by performing a damped oscillation

of the dc magnetic field. Second, the ES VL was cooled (warmed) to 2.6 K (14.2 K) across

the F-L phase boundary in a constant field to obtain a MS. The temperatures were chosen to

lie well within the relevant F or L phase, as shown in Fig. 1(a). Despite leaving a metastable

VL for periods as long as one day, no spontaneous transition towards the ES was observed.

Based on this we conclude that the VL relaxation is not thermal, and consequently the

rate of cooling/heating will not influence the MS. For the measurement sequences we used a
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stop-motion technique, alternating between imaging the VL by SANS and application of ac

field cycles. As the vortex density is directly proportional to the applied field the ac cycles

gives rise to a breathing motion with vortices being pushed into and out of the sample,

which in turn causes the VL to evolve gradually towards the ES.

A typical measurement sequence for the supercooled MS is illustrated in Fig. 2(a) to (d)

for µ0Hac = 0.93 mT.20 Panel (a) shows the azimuthal intensity distribution, I(ϕ), for the

pristine MS VL with a single Bragg peak at ϕ = ϕ0 corresponding to the F phase. After

applying 96 ac field cycles (b) additional Bragg peaks, corresponding to the L phase, are

observed at ϕ ≈ ϕ0 ± 7.2◦. This indicates the coexistence of MS F and ES L phase VL

domains in the sample. Following a total of 786,432 cycles (c), the VL has been driven

to the ES within most of the sample. The evolution from the supercooled MS to the ES

is summarized in Fig. 2(d) and a movie of the transition is included in the Supplemental

Material.26 This shows that the ES domains nucleate in their final orientations and grow at

the expense of the MS domains.

An analogous measurement sequence for the superheated MS is shown in Fig. 2(e) to (h).

Here, the metastable VL (e) corresponds to the L phase, with two domain orientations at

ϕ ≈ ϕ0 ± 7.3◦. After 192 ac cycles (f), the Bragg peak separation has decreased roughly

by a factor of two. Following a total of 36,864 cycles (g), the separation is further reduced,

resulting in a single, broadened peak. The evolution from the superheated MS to the ES is

summarized in Fig. 2(h) and in a movie in the Supplemental Material.26 The MS domains

rotate continuously towards the final ES position, but never fully merge at ϕ = ϕ0. This

continuous rotation is in sharp contrast to the transition for the supercooled case. Changing

the ac field amplitude affects how quickly the VL returns to the equilibrium configuration

but not the qualitative difference between the supercooled and superheated case. Finally,

the data in Fig. 2(g) and (h) shows that the ac cycles affect the VL throughout the entire

sample as no measurable intensity persists at the angular positions corresponding to the

intial MS.

To analyze the neutron scattering data, the intensity was binned along the azimuthal

direction and fitted with multi-peak gaussians, as shown in Fig. 2(a) to (c) and (e) to (g).

The width of the VL Bragg peaks remained constant within our measurement precision, and

a single average value (≃ 4◦) was used for all gaussian peaks within the same measurement

sequence. The exact value of the width for a given sequence was determined from initial un-
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constrained fits to the individual SANS measurements where all peaks were clearly resolved.

Bragg peak positions, obtained by multi-peak Gaussian fits to the data, are indicated by

the white circles in Figs. 2(d) and (h). More details regarding the fitting procedure can be

found in Appendix A.

C. Characterizing the VL equilibrium state

Several competing factors determines both the structural and dynamic properties of vor-

tex matter. While the repulsive vortex-vortex interaction favors the formation of an ordered

VL, thermal effects and/or pinning to imperfections can lead to disordering. For example

cooling through the superconducting transition in a constant field will produce an uniform

vortex density, but can lead to a disordered VL in materials with a strong peak effect.27,28

In such cases an annealing is required to remove disorder frozen in close to the upper critical

field and obtain an ordered VL with a well-defined diffraction pattern. In materials with

weak pinning this can be achieved by applying a damped magnetic field oscillation with an

initial amplitude of ∼ 10% to “shake” the vortices free of their pinning sites, and allow them

to find their equilibrium positions.29–31 In contrast shaking can lead to a further disordering

of the VL in superconductors with strong pinning.

Magnesium diboride exhibits very weak pinning,32,33 and always forms an ordered VL

with sharp SANS diffraction peaks irrespective of the field/temperature history.12 However,

as evident from the extensive metastability, in this case a high degree of order does not imply

that the vortices are in the ES favored by the vortex-vortex interaction. Classifying the VL,

obtained following the damped magnetic field oscillation with an initial amplitude of 50 mT,

as the ES is supported by the diffraction patterns in Fig. 3. Panels (a) to (c) shows part of

the data from Fig. 2(d), where the MS F phase is driven towards the ES L phase by successive

applications of ac field cycles. After a single cycle the bulk of the sample remains in the F

phase, but some faint L phase intensity is visible at ϕ = ϕ− and ϕ+ (b). Additional ac field

cycles will drive the VL further towards the L phase, but even after 786,432 cycles there is

still some remnant intensity at ϕ0 (c). A damped field oscillation eliminated the residual F

phase intensity, resulting in a L phase throughout the entire sample (d). Further applications

of the same field oscillation without any temperature cycling changes the relative intensity of

the two L phase peaks (Iϕ
−

/Iϕ+
) but not their location at ϕ−ϕ0 ≈ ±7.4◦(e,f). Importantly,
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we never observe the re-emergence of intensity at ϕ = ϕ0, confirming that the damped field

oscillation does indeed drive the VL to the ES. While it is likely that an initial amplitude of

less than 50 mT is sufficient to achieve an ES, this value was used to ensure that the results

are unaffected by potential surface barriers for vortex entry and exit. Moreover, the exact

value is not expected to affect the main results of this report.

The integrated intensity of the Bragg peaks, obtained from the multi-peak gaussian fits,

is proportional to the number of vortices within each of the corresponding VL domain

orientations. While there are most likely many separate domains for both orientations, the

total population of each orientation is given by the intensity of the corresponding Bragg peak.

For the particular supercooled case shown in Fig. 2(d) and Fig. 3(a) to (c), the intensity

ratio for the ES domains evolving from the single MS peak is close to unity. However this is

not generally the case, as demonstrated by the different values of the intensity ratio Iϕ
−

/Iϕ+

in Fig. 3(c) to (h). This highlights the large degeneracy associated with the L phase, arising

from the two possible orientations of individual VL domains. Successive applications of a

damped field oscillation appear to increase the intensity ratio as seen in Fig. 3(d) and (f),

corresponding to a prevalent F phase domain orientation throughout most of the sample.

Re-preparing a MS F phase at 14.2 K and cooling back to 2.6 K effectively resets the VL,

as indicated by the comparatively low intensity ratios in Figs. 3(g) and (h).

Figure 4 shows the relative populations of majority and minority domains, given by the

intensity ratio Imaj/Imin, for 11 different preparations of the L phase VL. This demonstrates

that the domain population is stochastic in nature, with intensity ratios as large as 2.4

and a majority orientation corresponding to either the negative or positive ϕ domain in a

seemingly random manner. In contrast to the intensity ratio, the Bragg peak separation

is roughly constant ∆ϕ ≈ 14.2◦. Heating the VL from 2.6 K to 14.2 K does not affect

this domain population, as seen for preparation #11. For simplicity Fig. 4 only includes

data following an initial damped field oscillation, but as shown in Fig. 3 (d) to (f) repeated

applications will change the intensity ratio.

D. Domain population during the metastable to equilibrium state transition

As discussed above, the relative domain population in the L phase varies from one prepa-

ration to the next. To determine whether this affects the MS to ES transition for the
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superheated VL, two different measurement sequences with different values of Iϕ
−

/Iϕ+
were

compared as shown in Fig. 5. Sequence A (prep. #10 in Fig. 4) is the same data set as

presented in Fig. 2(h), with an initial intensity ratio of ≃ 2.5:1. In comparison Seq. B (prep.

#11) is a less detailed measurement series, with an almost even initial intensity ratio ≃

1.2:1. The evolution from the MS to the ES proceeds in a similar manner for both prepara-

tions, with the VL domains rotating continuously towards but never fully reaching the ES

orientation ϕ = ϕ0.

A more detailed comparison of the azimuthal intensity distribution for the two measure-

ment sequences is given in Fig. 6. Two-peak gaussian fits to the data at several points

along the transition are shown in panel (a). The larger errors on the peak positions at the

highest cycle count is due to the uncertainty in fitting two maxima when the separation is

less than the width. Figure 6(b) shows the VL Bragg peak separation, ∆ϕ, vs the number

of applied ac cycles for both measurement sequences. Here the cycle count is offset by one

in order to include data for the pristine MS VL. Within measurement error, the results for

the two different preparations of the superheated MS VL agree.

The peak separation decreases in a logarithmic fashion up to ∼ 2 × 103 ac cycles, after

which it appears to stabilize at ∼ 3◦ . The finite value of ∆ϕ could in principle be due to

a disordered ES, which would lead to a broadening of the azimuthal intensity distribution.

While it is not possible to differentiate between a saturation or a broadening directly from

I(ϕ) when ∆ϕ is small, a significant disordering of the VL would also be expected to lead

to a decrease of the scattered intensity. Figure 6(c) shows the total scattered VL Bragg

peaks intensities for the superheated measurement sequences, with no observable change

throughout the transition from MS to ES. This makes a disordering of the VL unlikely, and

the saturation of ∆ϕ thus suggests that the ac field amplitude of 0.93 mT is insufficient to

completely eliminate all domain boundaries and drive the VL to the global ES. Similarly, a

small residual intensity is seen in Fig. 2(c) at ϕ = ϕ0 for the supercooled VL. In this case

the total scattered also remains constant throughout the measurement sequence, Fig. 6(c).

The lower scattered intensity for the superheated case is due to the higher measurement

temperature.34

Figure 7(a) shows the evolution of the intensity ratios corresponding to the two super-

heated measurement sequences. For seq. A, the ratio remains constant (≃ 3) up to ap-

proximately 103 cycles, after which it decreases rapidly towards unity. This shift towards an
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equal domain population coincides with the point where no further VL rotation is observed.

In contrast, the ratio for seq. B does not deviate significantly from unity for the entire mea-

surement sequence. The larger error bars on Iϕ
−

/Iϕ+
before the relaxation towards unity

for seq. A are due to the uncertainty in fitting the two close maxima of different magnitude.

Figure 7(b) shows the intensity ratio for the ES VL domains (ϕ−ϕ0 ≈ ±7◦), corresponding

to the supercooled measurement sequence in Fig. 2(a) to(d). This stays fairly constant and

close to unity for the whole measurement sequence. The error bars decrease as the intensity

of the ES domains increases.

E. Transition kinetics and activated behavior

The presence of metastable phases in MgB2 cannot be understood based on the single

domain free energy shown in Fig. 1(d). Rather, it requires the presence of additional energy

barriers to prevent individual VL domains from rotating to the equilibrium orientation. The

absence of any thermally driven relaxation towards the ES within experimental time scales

is consistent with the small Ginzburg number Gi ∼ 10−6 for MgB2.
35 It also implies that

the pristine MS VL will not depend on the heating or cooling rates, nor on the temperature

in the F phase where the damped field oscillation was performed for the supercooled case.

Previously we have reported studies of the MS to ES VL transition kinetics for the

supercooled case.20 Here the transition was quantified by the remaining metastable volume

fraction (fMS). The relaxation towards the ES was modeled as an activated behavior, driven

by an increasing number (n) of applied ac field cycles, using the an expression for the fMS

decay rate given by
dfMS

dn
= −fMS exp

[

−H̃/Hac

]

. (2)

Here the activation field H̃ represents the barrier between MS and ES VL domain orienta-

tions and the proportionality to fMS accounts for the remaining metastable volume available

for ES domain nucleation and/or growth. The activation field for the different values of Hac

collapse on a single curve, showing that the ac amplitude and cycle count act as, respectively,

the effective “temperature” and “time”.20

In the present work we extend measurements of the VL kinetics to the superheated case.

Figure 8(a) shows ∆ϕ versus n for the three the different ac field amplitudes used. As was

the case for the supercooled MS VL, fewer ac cycles are required to drive the VL towards
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the ES as Hac is increased. However, in the superheated case the transition to the ES is

continuous, and the entire VL will continue to rotate until the peak splitting reaches zero.

There is thus no depletion of the VL volume fraction which remains in the MS before the

transition is complete. As a result the transition is modeled by

d∆ϕ

dn
= −∆ϕ0 exp

[

−H̃/Hac

]

, (3)

where the prefactor ∆ϕ0 is the splitting of the pristine MS VL (rather than ∆ϕ). Figure 8(b)

shows the activation field obtained from Eq. (3), where each value of H̃ was determined from

two adjacent values of ∆ϕ(n) by H̃ = −Hac ln
[

− (∆ϕ(ni+1)−∆ϕ(ni))/∆ϕ0

ni+1−ni

]

. Within the scatter

of the data H̃ collapses onto a single curve, suggesting a near universal behavior consistent

with an activated transition. Like in the supercooled case the activation field increases as the

transition towards the ES progresses,20 equivalent to an aging of the VL when the ac cycles

count is interpreted as an effective “time”.2 However, the values of H̃ is twice as large for the

superheated case. We do not currently have an explanation for the difference in activation

field, but note that it may be due to the different nature of the transition (continuous vs

discontinuous). Furthermore, in the superheated case each MS VL domain will rotate either

clockwise or counterclockwise depending on the sign of ϕ whereas in the supercooled case

each VL domain has two decay “channels” corresponding to ES domains rotated in opposite

directions.

To parameterize the MS to ES transition, the Bragg peak separation was fitted by

∆ϕ(n) = ∆ϕ0 (n+ 1)γ, (4)

which again is in analogy with the functional form used previously for the supercooled

case.20 As seen in Fig. 8(a), the fits provide an excellent description of the data for all ac

field amplitudes and allow a direct calculation of the activation field by

H̃/Hac = ln

(

−
1

γ

)

+
γ − 1

γ
ln

(

∆ϕ0

∆ϕ

)

. (5)

From this we obtain a non-zero value of H̃(n = 0) ≃ 2 mT, which prevents a spontaneous

rotation of the MS VL. In addition, we find γ/(γ − 1) to be directly proportional to the ac

field amplitude, as shown in Fig. 8(c). Consequently, the superheated MS to ES transition is

determined by a single parameter, which depends only on Hac. Once again this is analogous

to be previously reported behavior for the supercooled case.20
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IV. DISCUSSION AND SUMMARY

The main results of this report is the qualitatively different nature by which the su-

percooled and superheated VL returns to the equilibrium state, while at the same time

exhibiting similar transition kinetics and activated behavior. In the supercooled case the

transition proceeds in a discontinuous manner, with VL domains nucleating at one of the

two equilibrium orientations and subsequently growing at the expense of the metastable

domains. This is in striking contrast to the continuous transition observed for the equilib-

rium VL, where domains gradually rotate away from ϕ = ϕ0 as a function of magnetic field

and/or temperature.12 Moreover, it is opposite to the common situation where a discontinu-

ous order transition may be broadened by defects or impurities and appear continuous.29,36,37

In contrast, the transition for the superheated case is continuous with domains that rotate

towards the ES orientation. This dichotomy in the MS to ES transition adds to the already

unusual behavior of the VL in MgB2, where the metastable states are associated with a

continuous equilibrium phase transition and therefore not expected to lead to hysteresis.

We speculate that the difference between the two cases arises from the qualitatively

different single domain free energy curves shown in Fig. 1(d). For the supercooled case

the system is in an unstable equilibrium configuration with d(δF )/dϕ = 0, and given the

energy costs associated with the creation of domain boundaries a small rotation would

likely result in a net increase of the total energy. Instead, it is more favorable for VL

domains to nucleate and grow in the ES orientation. In comparison the superheated VL is

already split into domains rotated in opposite directions. Moreover, the system is in a true

non-equilibrium configuration with d(δF )/dϕ 6= 0, where any gradual rotation of the VL

domains towards the ES orientation reduces the energy. Further experimental evidence for

the importance of domain boundaries in stabilizing the metastable VL states comes from the

results in Fig. 6(b). Here two different superheated VL configurations with different domain

population ratios were found to proceed towards the ES in exactly the same manner. This

shows that it is the presence of domain boundaries, rather than the size or distribution of

individual domains, that determines the VL behavior.

Since a rotation of the VL involves the rearrangement of a large number of vortices,

the existence of energy barriers is not surprising. The kinetics for the supercooled and

superheated VL is similar as shown in Fig. 8(b) and Ref. 20, with an activation barrier that
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increases as the system gets closer to the global equilibrium configuration. This indicates

that in both cases the behavior of the VL is likely governed by the same mechanism, despite

the different nature of the MS-to-ES transition. We also note that an increasing activation

energy has also been found for isothermal martensitic phase transformations in maraging

steel, where domain formation and the motion of domain boundaries are known to play a

crucial role.38

Given the many similarities between vortices and skyrmions, it is possible that the ef-

fects reported here for the VL will also occur for the skyrmion lattice (SkL). Recently, a

similar scenario was proposed to explain hysteretic behavior and slow dynamics at a nomi-

nally continuous transition of the helimagnetic order in MnSi.39 Discontinuous reorientation

transitions have also been observed for the SkL, and metastable configurations have been

achieved by different field/temperature histories14 or by rotating the sample in a constant

magnetic field.16 Moreover, an applied dc electric field can change the preferred orientation

of the SkL, which can be driven to the new equilibrium state in a continuous manner by the

application of ac magnetic field cycles.40 Finally, the skyrmion lattice (SkL) can be ther-

mally quenched far below the equilibrium phase, which expands the range of fields where

skyrmions are stable and may induce a symmetry transition from a hexagonal to a square

lattice.15,41

Finally we note that glasses are the quintessential example of a supercooled, metastable

configuration observed in conjunction with a thermally driven transition. Similarities be-

tween the metastable VL states and supercooled liquids and other structural glasses includes

an activated transitions between states resulting from a complicated energy landscape, and a

behavior that is governed by domains and domain walls.9,42,43 Further support for this anal-

ogy comes from the slowing kinetics (aging) in Fig. 8(b). Here it is important to acknowledge

that describing the MS VL as “supercooled” or “superheated” is strictly speaking incorrect,

as thermal excitations are too weak to affect the vortices in MgB2. We have nonetheless

used this nomenclature since it provides an intuitive and convenient way to discuss our mea-

surements and results. Further, there is, as already mentioned, a straight forward analogy

between the current situation and an ordinary thermally driven transition since the ac field

amplitude determines the magnitude of the vortex motion, and may therefore be interpreted

as an effective “temperature”. Similarly the number of ac cycles correspond to an effective

“time”.
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In summary, we have performed detailed measurements of non-equilibrium VL phase

transitions in MgB2. We studied how metastable VLs, obtained by either supercooling or

superheating across an intrinsically continuous phase transition, return to the ES under

the influence of an ac magnetic field. In the case of the supercooled VL, this occurs in

a discontinuous manner. In contrast, the transition takes on a continuous nature for the

superheated case. We suggest that this qualitative difference is due to being respectively

in an unstable equilibrium or a true non-equilibrium single domain configuration. Despite

the different nature of the transition for the two cases the kinetics are similar, with an ac-

tivation barrier that increases as the system approaches the equilibrium configuration. Our

results provide further evidence that domain boundaries are responsible for the metastable

VL states. Additional studies to provide real space information about the VL, either exper-

imentally (e.g. by STM) or by non-equilibrium molecular dynamics simulations,44 would be

a valuable complement to our SANS results. To our knowledge there has been only a single

theoretical study of VL domain boundaries,45 and more work is needed to fully understand

our observations.
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Appendix A: Fitting algorithm

The azimuthal intensity distribution in both the supercooled and superheated case is well

described by a sum of gaussians, corresponding to the Bragg peak for each of the VL domain

orientations:

I(ϕ) = I0 +

# peaks
∑

j=1

Ij
wj

exp

[

−2
√

log 4

(

ϕ− ϕj

wj

)2
]

. (A1)
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Here I0 is a constant accounting for isotropic background scattering, Ij is the integrated

intensity, wj is the full width half maximum (FWHM), and ϕj is the center for the jth Bragg

peak. The individual peak intensities (Ij) are proportional to the number of scatterers in the

corresponding domain orientation. All supercooled VL transition data were fit with three

gaussian peaks, while all superheated data were fit with two.

Figure 9 shows the centers and widths obtained from fits to Eq. (A1). In the super-

cooled case, the Bragg peak intensity is transferred from the MS domains (green) to the ES

domains (red, blue). Once the Bragg peaks for the ES domains are well developed (n ≥ 101)

the fitted widths are essentially resolution limited, and consistently smaller than those of

the metastable domains, Fig. 9(c). While more ordered ES domains (narrower peaks) would

not be surprising, it is not possible to make a definitive conclusion in this regard within the

precision of the fits. We note that error on the fitted peaks centers and widths are greater

for the low intensity peaks, such as the ES domains early in the supercooled sequence or the

MS domains after ∼ 102 ac cycles. In the superheated case, it is difficult to de-convolute the

effects of the domain rotation from a potential broadening due to VL disordering. Further-

more, once the peaks have merged near the end of the transition (n ≥ 102) it is not possible

to resolve two separate gaussians, leading to a large increase in the errors on the fitted posi-

tions and widths in Fig. 9(b) and (d). In summary, the data in Fig. 9 does not indicate that

the ac cycles cause a significant disordering of the VL. This conclusion is supported by the

constant total scattered intensity for both the supercooled and superheated measurement

sequences shown in Fig. 6(c). This is in contrast to the systematic decrease as the number

of ac cycles is increased, which one would expect in the case of a VL disordering.

Based on the above discussion we have constrained the fit of the SANS data, using a

constant width (wj ≡ w) for all the VL Bragg peaks throughout a given measurement

sequence. While this eliminates potential information contained in the peak widths, it leads

to a more precise determination of the peak positions and intensities. The following protocol

was used to determine the most appropriate width to use for a given sequence. First, initial

estimates for the peak positions and widths were determined from the clearly resolved peaks

in the first (n = 0) and last (n = nmax) measurements. These values were used to seed

independent fits of the individual SANS measurements in the sequence, using a common

width for all the peaks. The resulting widths are shown in Fig. 10. For the final fit of the

data the width was fixed to the average value, calculated from peaks where Ij/Itot > 10%

15



for the supercooled case and ∆ϕ > 1.75w for the superheated case. Data that meet these

criteria are shown by the open symbols in Fig. 10.
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FIG. 1. (Color online) Vortex lattice configurations for MgB2. (a) Equilibrium VL Bragg peak

separation at 0.5 T (open circles). The solid circle indicates the temperature used for measurements

of the superheated VL. The inset shows the equilibrium VL phase diagram for MgB2 consisting of

three hexagonal configurations. SANS diffraction patterns recorded at 0.5 T and 2 K show (b) a

MS and (c) an ES VL. High symmetry directions within the MgB2 hexagonal crystal basal plane

are shown in (b), and the reference angle (ϕ0) and Bragg peak splitting (∆ϕ) in (c). (d) Schematic

single domain VL free energy curves corresponding to the supercooled and superheated VL config-

urations. Solid (open) circles represent an ES (MS) VL. (e) Illustration of SANS measurements;

the numbers in parentheses correspond to the same states as in panel (d). Individual colorbars

represent the collection of SANS data, each providing one “slice” of the full transition sequence in

Fig. 2(d).
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FIG. 2. (Color online) VL evolution for the MS to ES transitions at 2.6 K and 14.2 K, with

µ0Hac = 0.93 mT. The supercooled case is summarized in panels (a-d), and the superheated

case in panels (e-h). Plots of I(ϕ) are shown for three different VL configurations in each case,

corresponding to the pristine MS (a,e); a representative intermediate distribution (b,f); and the

final measurement (c,g). Angles are measured relative to the crystalline a axis (ϕ0), as defined in

Fig. 1(c). Colormaps (d,h) show the azimuthal intensity vs. the number of applied ac cycles; the

left colorbar indicates the pristine MS VL. Open circles represent the peak positions obtained by

Gaussian multi-peak fits to the data.
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FIG. 3. (Color online) VL diffraction patterns obtained at 2.6 K following different

field/temperature histories. (a) F phase. (b), (c) Mixed MS/ES following respectively 1 and

786,432 ac field cycles with µ0Hac = 0.93 mT. (d), (e), (f) L phase observed after repeated appli-

cation of a damped field oscillation. (g), (h) L phase after a damped field oscillation at 14.2 K,

followed by a field oscillation at 2.6 K. Each diffraction pattern shows the same region of reciprocal

space (qx = [−0.15 , 0] nm−1, qy = [−0.15 , 0.15] nm−1). All data is normalized to exposure

time and uses the same color scale. Panels (d) to (h) were counted for a shorter length of time,

leading to a noisier appearance.
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FIG. 6. (Color online) (a) Two-peak gaussian fits to I(ϕ) at four positions along the superheated

measurement sequences with µHac = 0.93 mT. Vertical bars indicate the fitted peak centers (po-

sition) and uncertainties (width). (b) Fitted Bragg peak separation. (c) Total measured intensity

for the superheated sequences and the supercooled data in Fig. 2(d). Full lines show the averages.
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