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Low-temperature scanning tunneling microscopy and spectroscopy has been used to image the
vortex core and the vortex lattice in FeSe single crystals. The local tunneling spectra acquired at
the center of elliptical vortex cores display a strong particle-hole asymmetry with spatial oscillation,
characteristic of the quantum-limit vortex core. Furthermore, a quasi-hexagonal vortex lattice at low
magnetic field undergoes noticeable rhombic distortions above a certain field ~ 1.5 T. This field H*
also reveals itself as a kink in the magnetic field dependence of the specific heat. The observation of
a nearly hexagonal vortex lattice at low field is very surprising for a materials with an orthorhombic
crystal structure and it is in apparent contradiction with the elliptical shape of the vortex cores.
These observations can be directly connected to the multiband nature of superconductivity in this
material, provided we attribute them to the suppression of superconducting order parameter in one
of the energy bands. Above the field H* the superconducting coherence length for this band can
well exceed the intervortex distance which strengthens the nonlocal effects. Therefore, in addition
to multiple-band effects, other possible sources that can contribute to the observed evolution of the
vortex-lattice structure include nonlocal effects which cause the field-dependent interplay between
the symmetry of the crystal and vortex lattice or the magneto-elastic interactions due to the strain

field generated by vortices.

I. I.INTRODUCTION

Vortices in superconductors reveal in different ways im-
portant aspects of the normal and superconducting state
properties. The spatial distributions of the quasiparticle
density of states in a vortex core depend on the specific
Fermi surface, gap anisotropy and symmetry of the su-
perconducting order parameter':2, and they are observ-
able only in the case of clean limit ¢ < [ (where ¢ is
the coherence length of the superconductor and [ is the
mean-free path), otherwise they can be suppressed by
the quasiparticle scattering. A broad variety of vortex-
core shapes has been observed in different clean super-
conducting materials. In 2H-NbSes; a six-fold symmet-
rical shape of vortices has been reported 3%, a four-
fold symmetry has been observed in YNiyByC 6 while
striped vortex core states which are largely influenced by
patches of different short-range order have been observed
in BigSroCaCusOgyy 7 Recently, vortices were also ob-
served in the heavy-fermion superconductor CeColns 8.
The core shows bound states located at zero bias, which
have an in-plane four-fold anisotropy and an asymmetric
spatial dependence 8. This four-fold core symmetry has
a strong relation to the anisotropic gap structures found

in macroscopic measurements °. An elongated two-fold
vortex core has been observed in FeSe films !! and sin-
gle crystals '? and it has been explained in terms of the
nematicity of the system 314,

Besides investigations of the vortex cores, the way the
symmetry of the vortex lattice is shaped by the materials’
properties has also been studied intensively using differ-
ent vortex imaging techniques. In isotropic superconduc-
tors vortices form a hexagonal vortex lattice (in absence
of pinning) %16, However, square vortex lattices have
been also reported in many materials 78, Indeed, the
difference in the free energy for the hexagonal and the
square vortex lattice is found to be only 2% 6. There-
fore, a weak anisotropy can change the balance and lead
to a distorted hexagonal or square vortex lattice. Many
theoretical papers have addressed the role of the symme-
try of the superconducting order parameter and the influ-
ence on the vortex lattice structure and they consistently
found that a square vortex lattice can be stabilized when
the applied magnetic field is increased in the case of d-
wave symmetry. '° 2!, On the other hand, the Fermi sur-
face anisotropy combined with nonlocal electrodynam-
ics can be also responsible for vortex lattice transitions.
Theoretically, the corresponding nonlocal corrections to



the London model have been used to calculate the vortex
lattice free energy and determine the stable vortex con-
figurations as a function of magnetic field 2224, Recently
a vortex lattice transition from hexagonal to a distorted
tetragonal has also been reported for CsFeyAs, that has
been explained considering the intervortex interactions
and the crystal structure?®. Other investigated structural
properties of vortex lattices include distorted hexagonal

symmetry, vortex chains 26, order-disorder transitions®7,

pinning by twin boundaries?®.

Among the Fe-based superconductors, FeSe has at-
tracted a lot of attention because the tetragonal-to-
orthorhombic structural transition is not accompanied
by an ordered magnetic state in the whole temperature
range down to the superconducting transition (in con-
trast to other Fe-based superconductors). Therefore, the
nematic state that sets in below the structural transi-
tion and manifests itself in many electronic properties,
persists also in the superconducting state?’. The mi-
croscopic origin of this nematic state is still extensively
debated. The key issue is whether this state is mostly
driven by spin or orbital fluctuations?®. Also, it is not
clear if there is any link between the nematic and super-
conducting orders. The Fermi surface consists of multiple
bands, with a hole pocket at the I' point and electron-like
pockets at the Brillouin zone corners3? 32,

In the following, we report low-temperature scanning
tunneling microscopy and spectroscopy (STM/STS) ex-
periments showing an anisotropic vortex core in the
quantum limit and a noticeable vortex lattice transfor-
mation. We discuss these results in the context of the
existing theories and the anisotropic multiband nature
of the superconductivity in this material.

STM/STS measurements provide a unique possibility
for directly probing both the changes in the structure
of the vortex lattice and the shape of individual vor-
tex cores. When STM/STS results are complemented by
thermodynamic measurements, the distinctive features of
the vortex matter can provide us a deeper insight into the
physics of superconducting correlations.

For the particular case of FeSe our experimental data
contain three important observations: (i) we find a char-
acteristic magnetic field H* ~ 1T separating the low-field
regime with an almost hexagonal vortex lattice and high-
field regime with gradually increasing orthorhombic dis-
tortions in the vortex lattice structure; (ii) The crossover
at the field close to the H* value reveals itself on the
field dependence of the specific heat (see Fig.4b) where
we clearly observe a change of the slope in the magnetic
field interval 1 T < H < 2 T. (iii) Our observation of a
nearly hexagonal vortex lattice at low magnetic fields is
a surprising result for an orthorhombic material which is
also in apparent contradiction with the elliptical shape
of vortex cores.

The paper is organized as follows. In Sec. II, we briefly
discuss some experimental details of our samples and ap-
proaches. In the main Sec. III, we present the results of
our experimental findings as well as the discussion and a

simple theoretical model describing the behavior of the
vortex lattice distortions. Finally, the results are sum-
marized in Sec. IV.

II. II. EXPERIMENTAL DETAILS

FeSe single crystals were grown in evacuated quartz
ampoules using the AICI3/KCl flux technique in a tem-
perature gradient (from 400°C to ~350°C) for 45 days3C.
The chemical composition of crystals was studied with a
digital scanning electron microscope TESCAN Vega II
XMU36,

The crystals have a plate-like shape with the c-axis
oriented perpendicular to the crystal plane with only the
tetragonal 3-FeSe phase present. The lattice parameters
¢ = (5.52+0.01)4 and a = (3.77 £ 0.01)A were found
via X-ray diffraction for FeSe single crystals.

Low-temperature scanning tunneling microscopy and
spectroscopy have been performed at T = 1.5K using
Unisoku UHV STM system, with a base pressure of
4 x 107! Torr. The samples were cleaved in UHV at
room temperature and soon after were transferred to the
STM at low temperature. Pt-Ir tips were used in all
of our experiments, therefore the tunneling conductance
between a normal electrode (tip) and a sample provides,
in the limit of low voltages, the local quasiparticle den-
sity of states of the sample. Tunneling spectroscopy was
performed using a standard lock-in technique with an ac
modulation of 0.2 mV at 373 Hz. The vortex lattice is
visualized by acquiring the lock-in signal (conductance)
maps at £ = Ep while scanning the tip over the sam-
ple surface at higher voltage (20 mV) at each location.
Topography was always acquired simultaneously to as-
sure the location where the spectroscopic information was
recorded.

Low-temperature specific heat data were obtained un-
der the applied field from 0 to 9 T using the Quantum
Design physical property measurement system (PPMS)
via the relaxation method.

III. TIII. RESULTS AND DISCUSSION

A. A. VORTEX CORE

Scanning tunneling microscopy measurements of FeSe
single crystals (with a superconducting critical tempera-
ture of ~ 9K) reveal atomically flat surfaces. Figure 1(a)
shows an atomic resolution topographic image of the sur-
face of FeSe at T' = 1.5K (topmost Se layer). The im-
age also shows the presence of dimer-like defects (bright
spots) surrounded by dark regions that are usually asso-
ciated with Fe vacancies?”. They are aligned both along
the a- and b-axis, which point to their independence from
a structural orthorhombic distortion®®. The inset of Fig-
ure 1(a) shows a zoom-in image of the Se lattice and
reveals a regular square lattice of the topmost Se atoms



with a lattice parameter of a = 3.77/1, consistent with
X-ray investigation. The small difference of the in-plane
lattice parameters that sets in at the structural transition
is below 1% and below the STM resolution.

Differential tunneling conductance spectra
dI/dV (7, E) recorded as a function of the sample-
tip voltage V, are proportional to the local density of
states (LDOS), N(7, E). In multiple-band materials,
partial densities of states of different bands contribute to
the tunneling conductance with different weights. When
a magnetic field is applied along the c-axis of the crystal,
Abrikosov vortices enter the sample and modify the
local density of states. Vortices can be imaged by STM
by mapping the local conductance at an energy where
a vortex alters the density of states. Therefore, STM is
a direct experimental technique to visualize vortices in
superconductors with high spatial resolution.

Figure 1(b) shows a map of the zero bias conductance
(ZBC) representing the LDOS at the Fermi level, of the
same scan area as in Figure 1(a). The image shows a
single vortex core elongated in one of the Fe-Fe bond
directions (at 45 degrees with the Se topmost lattice).

General theoretical models accounting for the vortex
shape include superconducting gap anisotropy 324 as
well as Fermi surface anisotropy ' 43. The competing
effects between these two factors in the optimal vortex
lattice structure for fourfold symmetric superconductors
are discussed in Ref.**. In general, the spatial decay of
the vortex core states happens on the length scale of
¢pos = hvp/mA, where h is the reduced Planck con-
stant, vp is the Fermi velocity and A is the gap ampli-
tude. Therefore, in the case of an anisotropic gap where
A(k) # const, the vortex shape in real space is directly
influenced by this anisotropy and, in particular, the vor-
tex extends in the directions of gap minima or nodes.
However, the directional dependence of vg(k) also af-
fects the vortex core shape, and in the case of Fe-based
superconductors in absence of strong nodes the Fermi
velocity anisotropy can determine the anisotropy of the
decay length of vortex core states®’.

STM can be used to probe the electronic states within
the vortex core directly. The spatial evolutions of the
tunnelling spectra along the long and short axis of the
elliptical vortex core are reported in the intensity plot of
N(7, E) in Figure 1(c) and (d). Individual spectra taken
at representative points are depicted in Figure 1(e) and
().

In clean superconductors, at the vortex core the tun-
neling conductance should show low-energy excitations
predicted by Caroli, de Gennes, and Matricon (CAGM)*6
due to the electron confinement. In conventional super-
conductors, due to the very small value of the ratio A/Ep
(where A is the superconducting gap and Ef is the Fermi
energy), these discrete energy levels appear as a broad
symmetric peak at Ep. Usually, away from the center
the zero-bias peak splits into two peaks symmetric in en-
ergy>*. If the temperature is low enough, such that the
quantum limit T/T. < A/EF is satisfied, low energy ex-

citations at E,, = (n+1/2)A%/Er (n=10,1,2...) should
become detectable in very clean materials. However, usu-
ally the quantum limit is reached in conventional super-
conductors at very low temperature (in NbSe, for exam-
ple at 7' < 50 mK). CAGM states for the quantum limit
have been argued for YNipByC8, BiySroCaCusOg s?7,
YBayCuz07_5*® and, more recently, in some Fe-based
superconductors?? 52,

In the case of FeSe, the evolution of the local den-
sity of states along the shorter direction is smooth (see
Figure 1(d)) with low-energy peaks that evolve spatially
and converge into the coherence peak. On the contrary,
there appears an oscillatory behavior along the longer
direction, where the intensities of vortex bound states
oscillate in space and it is particle-hole asymmetric, i.e.,
the differential conductance intensity of the bound state
peak on negative energy is larger than that on positive
energy (see Figure 1(c)). Such asymmetry appears in
the so-called 'quantum-limit’ vortex bound state®3. The
energy of the bound state along the longer direction is
at E,—¢o = 0.55 mV and almost does not shift when the
STM tip moves away from vortex center as it is shown
in Figure 1(e). This yields a value of Ep ~ 5 meV and a
ratio A/Ep~ 0.5 (where A = 2.35 meV) consistent with
other estimates®*5%. This small value of Ep confirms
that this material is in the quantum limit.

To extract the coherence lengths from the maps, we
fit the spatial dependence of the zero-bias conductance
in the vortex core with an exponential decay of the form

G(z,y) = Goo +AY, exp <_\/<Iz_ﬂﬁ>2 + M) Here

Long 5§hon

G 1s the conductance value in between the vortex cores
and the summation is performed over the first neighbors.
Keeping the neighboring vortices in the summation im-
proves the fit for the maps at high magnetic fields when
the vortices overlap. In the trivial case of a single-band
superconductor and an isotropic matrix element describ-
ing the tunneling from the STM tip to the surface, we
would expect that the lengths £rony and Espore can be
considered as the coherence lengths along different direc-
tions.

We find that £gpore 1/\/ﬁ + const, as expected for
a superconductor in the clean limit in large fields®®:>6
while 1ong =~ const. The extracted magnetic field de-
pendences of £1ony and gpors are shown in Figure 2(a).
The absolute values of the low-field coherence lengths are
consistent with the value Sgﬁ ~ 4.4nm, which can be
extracted from the low-temperature upper critical field
~ 17 T?*. Figure 2(b) reports the anisotropy of the co-
herence lengths that increases as the magnetic field in-
creases. The spatial dependence of the zero-bias con-
ductance along the two high-symmetry direction of the
vortex is shown in Figure 2(c) and (d) for the vortices in
the 2T image.

Quantitatively, the gap anisotropy for the I" band re-
ported in °7 is very large Amax/Amin ~ 15. If one
assumes that the contribution of the tunneling current
from the I' band dominates in the STM signal and the



anisotropy of the vortex core reflects properties of this
band, the gap anisotropy in the I' band ~ 15 should
be partially compensated by the vg anisotropy ~ 1.557.
Still this compensation can not provide the moderate
anisotropy of the vortex core shape ~ 1.5 — 2.5 observed
in Figure 2(b). This implies that the tunneling from the
electron pocket should be also taken into account. In-
deed, the gap anisotropy in the electron e pocket is op-
posite to the I pocket®”. Therefore, the magnetic field
dependence anisotropy of the vortex core seems to reflect
the multiband character of this material.

STM observation of the field dependence of the coher-
ence length has been reported in the single-band super-
conductor 4-BisPd®® and in the two-gap superconductors
NbSey®” and CaKFe As,%0, whereas a magnetic field in-
dependent coherence length has been observed in multi-
gap materials in the dirty limit such as 2H-NbSe; gS¢.2
and 2H-NbS,°8.

B. B. VORTEX LATTICE TRANSFORMATION

We used the STM conductance maps to visualize the
vortex lattice in this compound and found that its struc-
ture evolves with the applied magnetic field. A set of dif-
ferential conductance images for four applied magnetic
fields between 1T and 6T applied perpendicular to the
a-b plane of the sample is shown in Figs. 3(a)-(d). In
order to analyze the vortex structure, we performed De-
launay triangulation of the real-space images, as sum-
marized in Figs. 3(e)-(h). In this analysis each vertex
denotes the position of a vortex. Figs. 3(i)-(1) shows the
Fourier transform of the conductance maps showing an
almost hexagonal vortex lattice at low fields that trans-
forms in a rhombic lattice and then in a nearly square
lattice as the magnetic field is increased and the vortices
move closer together. The vortices interact with each
other through the circulating currents around each vor-
tex and form a lattice in equilibrium.

At small distances from the core, the current pat-
tern reflects the symmetry of the electronic states and
may give rise to a complex evolution of vortex lattice
structures with applied field**. In the case of the non-
magnetic borocarbides and A15 materials, the vortex lat-
tice transition observed have been explained in terms of
nonlocality, i. e. the property of clean superconductors
that the current density at any position r is determined
by the vector potential within a region of radius £ around
this position. As the connection between the current den-
sity and the vector potential depends on the shape of
Fermi surface, this shape will be reflected in the vortex-
vortex interaction and ultimately in the structure of the
vortex lattice. The analysis of these images is summa-
rized in Figure 4(a), where the average angle obtained
from the Delaunay triangulation is plotted as a function
of the applied magnetic field. An almost hexagonal lat-
tice is obtained at low field characterized by a unimodal
distribution of angles centered at about 60°, shown in

Figure 4(c). The probability distribution function with
three maxima at 45°, 60° and 80° is instead observed in
the transition region, pointing to a co-existence of hexag-
onal and rhombic lattices in the same scanning area (Fig-
ure 4(d)). At high fields a bimodal distribution with two
local maxima near 45° and 80° is observed as shown in
Figure 4(e).

The magnetic-field dependence of specific heat is an-
other excellent sensitive independent tool to probe the
vortex excitations in a mixed state. At low tempera-
tures, the specific heat in finite magnetic field usually
has linear temperature dependence, C(H,T) o v(H)T.
For the isotropic s-wave order parameter the coefficient
is proportional to the magnetic field, v(H) o H because
the specific heat in the vortex state is dominated by the
contribution from the localized quasiparticles in the vor-
tex cores. On the other hand, for a superconductor with
nodes in the gap, for example d-wave superconductors
with line nodes, Volovik et al.®? pointed out that the
Doppler shifts in the quasiparticle spectrum due super-
currents around a vortex core qualitatively modify the
field dependence as v(H) o vH.

The field dependence of the specific heat coefficient is
presented in Figure 4(b). The data deviate from both the
linear (y o< H) and square-root (y o< v/H) behavior in
agreement with other reports®3. FeSe indeed is not a sim-
ple isotropic s-wave or nodal superconductor!2°7:64:65  In
the case of a two-band superconductor with strongly dif-
ferent gaps, v(H) increases steeply with the field caused
by the suppression of the smaller gap by increasing mag-
netic field 6. Tt is evident that the slope of y(H) at
low field is larger than that at higher field, which has
been observed also in two-gap superconductors such as
MgB,%) and LugFe3Sis 7. After the magnetic field ex-
ceeds H*, the specific heat coefficient increases linearly
with the applied field. Based on this, the typical field H*
is evaluated as 1 T corresponding to the kink in the data
in Figure 4(b) and this value strongly correlates with the
observed onset of the vortex lattice transformation in the
STM data. We note that the value of v at H* is about
0.36,,, where 7, is the normal-state Sommerfield coef-
ficient. Note that the residual value 7, = v(H = 0)
is determined by the zero-field density of subgap states
which is presumably controlled by various types of de-
fects and, thus, indicates the quality of the investigated
single crystals.

C. C. DISCUSSION

To summarize, the key experimental observations
which should be explained by an appropriate theoretical
model can be listed as follows: (i) at low fields the vortex
lattice anisotropy strongly differs from the anisotropy of
the vortex core; (ii) the structure of the vortex lattice
exhibits a crossover from an almost hexagonal one at low
fields to the distorted square one at high fields; (iii) the
core anisotropy grows with the increasing magnetic field;



(iv) the crossover in the magnetic field dependence of the
heat capacity occurs at the field values close to the ones
corresponding to the onset of the gradual change in the
vortex lattice structure.

Naturally, an appropriate explanation of these experi-
mental findings should be developed taking into account
the previous results of the Refs.30 3268 indicating an es-
sential two-band nature of superconducting state in FeSe.
These observations include a noticeable difference be-
tween the gaps, Fermi velocities and, thus, the coherence
lengths €12 for the Cooper pair wavefunctions in dif-
ferent energy bands. Thus, the complicated structure of
the superconducting order parameter reflecting the su-
perconducting correlations at different bands is an ob-
vious reason of possible changes in the structure of the
vortex matter in this compound. The resulting multi-
component order parameter is well-known to be the cause
of a variety of phase transitions and clustering in the
vortex matterS®7" as well as the gradual changes in the
vortex lattice geometry™!.

As at low magnetic fields the intervortex interaction is
controlled only by the anisotropy of the London penetra-
tion depth, one can always obtain the hexagonal vortex
lattice by the coordinate rescaling with the anisotropy
factor™. To determine the field range where such pro-
cedure can give us a reasonable approximation, we per-
form a rescaling of the vortex lattice images at various
fields by fitting the scaling parameter so that to ob-
tain the hexagonal lattice: =z — z/v/k and y — yv/k,
where the parameter x has meaning of the effective lattice
anisotropy. At low fields x should coincide with the in-
plane anisotropy of the London penetration depth. The
field dependence of the evaluated scaling ratio x is shown
in the Fig. 5. At low fields, & is close to one suggesting
that the London penetration depth is almost isotropic
in the ab plane. Strictly speaking, this procedure is not
unique and rescaling with the factor x =~ 3 also gives a
hexagonal lattice. Neither of these values is consistent
with the anisotropy of the vortex core. We find that the
effective lattice anisotropy monotonically increases with
the magnetic field. Above the field equal to 4 T the scal-
ing ratio becomes independent of the field. It should be
noted that both the anisotropy of the vortex core shape
(Fig. 2(b)) and the anisotropy of the vortex lattice (Fig.
5(b)) gradually grow in the range 1T< H < 4T and sat-
urate approximately at H = 4T. The ratio x appears
less then the core anisotropy by a factor ~ 1.5 in a wide
field range. This can be interpreted assuming, e.g., that
the anisotropy of the London penetration depth at high
field is affected only by the anisotropy of the hole pocket
while the superconductivity in the electron pocket is sup-
pressed.

Our measurements of the density of states inside the
vortex core clearly demonstrate a substantial anisotropy
of the system: the ratio of the core dimensions is of the
order of 2. As a result, to explain the observation of
the square vortex lattice at high magnetic field we as-
sume that it arises from the distortion of the hexagonal

vortex lattice in the anisotropic superconductor with the
anisotropy of the effective masses of the order of /3.
Strictly speaking the latter anisotropy factor does not
coincide with the factor describing the core anisotropy.
This discrepancy may be connected with the additional
core distortion caused by the gap anisotropy at the Fermi
surface which does not necessarily coincide with the
anisotropy of the effective masses of the Cooper pairs.

For the qualitative theoretical description of the ob-
served experimental data, we suggest to use a two-
band Ginzburg-Landau (GL) model with the interband
Josephson coupling. We write the free energy in the fol-
lowing form:

) ) p@
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where a(1?), p(1:2) (1.2 and e are the phenomenologi-
cal parameters, D = —iV — (27/®()A. The tensors K1)
and K@ in general have different anisotropies, which
gives possibility of the transformation of the vortex lat-
tice. This two-band GL model suffers from too many free
parameters. Minimization of the free energy and analy-
sis of the phase diagram versus all the parameters of the
model seems redundant because it is difficult to verify a
particular choice of these parameters. Therefore we con-
sider two simplified cases of parameters which allow to
illustrate a possible qualitative explanation of our exper-
imental data by the simplest numerical analysis.

At first we consider the case of vanishing Josephson
interband coupling €; = 0, so that the order parameter
components interact only via the magnetic field in agree-
ment with the conclusions of Refs.”®™ for FeSe. At the
same time we should note that this assumption of zero
Josephson coupling contradicts to some recent numerical
works (see, e.g.,’®) modeling FeSe.

Introducing the Cooper pair wavefunctions in different
energy bands one can define two critical magnetic fields
HY? ~ 0y/(61:2)2 corresponding to the suppression of
different order parameter components by the approach-
ing vortex centers. Assuming Hc(g) < Hc(é), we see that a
complete suppression of superconductivity in both bands

should occur only at the upper critical field H c(%), while

the field H g) corresponds just to a strong suppression
of the superconducting correlations in one of the bands.
This line of reasoning allows us to assume that it is the in-
terplay between the dominant order parameter )(*) and
the growing below H g) subdominant order parameter
) which is responsible both for the kink in the spe-
cific heat data and the smooth transformation of vortex
lattice structure found in STM measurements.



To illustrate these simple arguments, we consider here
a range of fields where one of the order parameter com-
ponent is dominating while the other is significantly sup-
pressed. Therefore we can use London model for the first
component and use the Ginzburg-Landau approach!® for
the second component. Assuming for simplicity the vor-
tex centers in both order parameter components to coin-
cide we can write the free energy of the superconductor
as a sum of two terms:

1
F=_—
8

@))?
) 7

(@) i) () (o)

Here we introduce the normalized mass tensors () and
m(® following”™. We consider a strong type-II super-
conductor with A2 > ¢(1.2) Both tensors m(!) and
m® are determined by the crystal symmetry mean-
ing that they both can be diagonalized in the same
axes. The lattice structure should depend on the field
if these tensors have different anisotropy. At the high
fields above Hc(g) = ®y/(2m(£P))?) the lattice is com-
pletely described by the anisotropy of /(). Below this
field the second component comes into play starting to
modify the structure of the vortex lattice. In the case
€1 « €2 « A® « A the total effective penetra-
tion length is determined mostly by the A(?) value in
the low fields. Thus, the structure of the vortex lattice
should be consistent with the anisotropy of the tensor
m(®). In order to describe the transition from the hexag-
onal lattice at low fields to the distorted square lattice at
high fields we take for illustration the isotropic m(?) and
mg)/mg(,l) ~ 3.

The field dependence of the angles of the unit cell of
the vortex lattice calculated using this model are shown
on the Fig. 6. Above the field Hg) the lattice does not
experience any modifications. The transformation occurs

close to the field H* ~ 0.7H g) which is below the critical

field H.

In the above model we did not consider possible split-
ting in positions of vortices in two components of the
order parameter. However, this splitting has not been
observed in the LDOS patterns which clearly do not show
the doubling of the vortex images.

Now we proceed with the consideration of the oppo-
site limit of strong Josephson coupling |e;| > [a1?)].
Applying the linear transformation for the order param-
eters components 1) = M cosa — n@ sina, @ =
7 sin a4+ 7 cos o one can exclude the Josephson term
from the free energy expression written through the new
components 77(1)*77(2) + c.c.. In terms of the new order
parameter components 712 the free energy takes the
following form:

2
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where f; contains all the fourth-order terms of ()
and 7(®). In the case of the strong Josephson interaction
the parameters @) and @(® have different signs (for cer-
tainty @) < 0 and @® > 0), i.e. the n® component is
significantly suppressed. Further analysis can be simpli-
fied close to the upper critical field H.o, where the linear
equations for the order parameter components have the

following form:

i@ L DRIIDyM = (4)

a0y L DEOD,W — % (Df(uz)D)Q NONY
a
(5)

Here we have neglected the term proportional to K® ag
suming non-gradient term to be more significant. Thus,
in the limit of the magnetic field close to the upper criti-
cal field the two component GL model can be effectively
reduced to the single component model with the non-

local gradient terms. The anisotropy of the tensors KW

and K(12) is different in the general case so these non-
local terms can lead to the vortex lattice transformation.
The analysis of the GL model with the non-local term is
given in the Appendix A.

Finally, another possible reason for the observed vor-
tex lattice transformation is related to the ”magneto-
elastic” interactions, which appear because when the nor-
mal cores are nucleated they push slightly on the sur-
rounding superconducting phase. Therefore, there is an
additional contribution to intervortex interactions due to
the strain field generated by vortices. This interaction is
weak but long-ranged and affects the vortex lattice in
materials with large dT../dp, where p is pressure or strain
7. In fact, one might need to include this interaction
even to understand the vortex lattice in tilted fields in
NbSey with dT./dp ~ 0.5 K/GPa, because the standard
anisotropic London in this case gives the wrong answer
for VLs™. For iron-based materials, dT'./dp is on the or-
der of K/GPa and varies with doping””. Hence, all these
materials are good candidates for observing the vortex
structure evolution and transitions caused by strain in-
duced interactions. A square vortex lattice transition has
recently been reported in LiFeAs™ and it has been ex-
plained in terms of vortex overlap. The different shape of
the vortex cores and strong differences in the band struc-
ture in these two compounds make it rather difficult to



give the comparison of FeSe and LiFeAs. Further exper-
imental work is necessary to compare the scenario of the
vortex lattice transformations in these systems and clar-
ify the relevance of the multigap order parameter struc-
ture for the case of LiFeAs. We have carefully analyzed
our data and we can safely exclude this as a possible
origin of the vortex lattice transformation in FeSe. We
do not observe any vortex overlap in our STM data at
fields below 3T, which is a field higher than the field re-
gion in which the vortex lattice smoothly changes from
nearly hexagonal to rhombic. However the issue of vor-
tex core overlapping deserves a more detailed comment if
we keep in mind that in our model there are two compo-
nents of the order parameter. The dominant component
is highly anisotropic and provides the square-like lattice
at the high field. Its coherence length is definitely smaller
than the distance between vortices because we work far
from the upper critical field H.o of the superconductor.
The subdominant component of the order parameter is
assumed to be isotropic and the upper critical field H, c(g)
for this component is less than H.o. The size of the vor-
tex core is different for different order parameter com-
ponents. Thus, for our range of magnetic fields below

the field H, C(g) the cores overlap if we consider the sub-
dominant order parameter pattern and do not overlap
for the dominant order parameter component. It is the
overlapping of the subdominant order parameter cores
which is responsible for the transformation of the vortex
lattice to the hexagonal one at low magnetic field. The
STM measurements appear to be sensitive mainly to the
dominant order parameter component which we associate
with ' pocket and thus our experiments do not show the
overlap of the vortex cores in the field range where the
rhombic distortion of the vortex lattice are observed.

IV. IV. CONCLUSIONS

In summary we have studied vortex core and vortex
lattice in FeSe single crystals. We observed an elliptical
vortex core with an anisotropy that increases in applied
magnetic field. Tunneling spectra in the vortex core re-
veal the presence of low-energy excitation states that are
particle-hole asymmetric along the long direction of the
vortex core and the local density of states shows spatial
oscillatory behavior. Such features are characteristic of
vortex core in the quantum limit. Furthermore, the evo-
lution of the vortex lattice as a function of magnetic field
shows strong deformations from an almost hexagonal to
nearly square lattice above the field ~ 1.5 T applied per-
pendicular to the a-b plane of the sample. Several fea-
tures of the vortex core and vortex lattice appear unex-
pected and they can be explained only if one considers
a compensation effect due to the multiband nature of
this material. First, the anisotropy of the vortex core is
quantitatively different from the gap anisotropy and the
anisotropy of the I' pocket. One needs to consider possi-
ble contributions from the electron pocket to explain the

observed anisotropy. Second, the nearly hexagonal vor-
tex lattice at low field is unexpected in a material with
orthorhombic crystal structure and it is in contradiction
with the elliptical vortex core. Therefore, the anisotropy
of the penetration depth and that of the coherence length
appear to be different at low field. However, at high field
this anisotropy is the same ((Fig. 5(b))). Finally, the
observed rhombic distortions of the vortex lattice appear
to happen in a field region where a kink is observed in the
magnetic field dependence of the specific heat ((Fig. 4(a)
and (b))). This kink of the specific heat suggests that one
of the order parameter components is suppressed at high
fields. This assumption along with choice of different
anisotropies of the effective masses in different bands al-
low to reproduce qualitatively the transformation of the
vortex lattice. While we cannot exclude contributions
from other sources to the vortex lattice transformation,
it seems that the multiband nature is playing an impor-
tant role to reconcile some of the apparent contradic-
tions. Other possible contributions to the vortex lattice
transformation are nonlocal effects and magneto-elastic
interaction.
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VI. APPENDIX A

In order to describe the field-dependent distortion of
the vortex lattice above the critical filed H* we follow the
Ref.” and introduce the Ginzburg-Landau free energy
per the unit vortex length modified taking account of the
higher-order gradient terms responsible for the nonlocal
response of the superconducting condensate:

H? 1
F=Ea [Loup+ Sl + e+

4
§4|/LMD92H/) =+ Hny§1/}|2+
&z, [(D2)* (D) + (Do Dyth) (Do Dyth) +

+ (D Dy))* (DyDytb) + c.c.] } dx dy , (6)

where D = —iV — i—’;A, A is the vector potential of the
magnetic field, H,,, 1s the thermodynamic critical field.
Due to the large value of the Ginzburg-Landau parame-
ter > = \/€ we can neglect the contribution to the mag-
netic field arising from the supercurrents in the sample
and assume the magnetic field to be homogeneous. The
usual effective mass term determines the properties of the
vortex lattice at low fields while the fourth-order terms
originating from the non-local effects affect the properties
of the vortex lattice and the vortex core shape at higher
fields. Our experimental data provide evidence for the
almost hexagonal vortex lattice at low fields and, thus,
we assume the effective mass term to be isotropic. The
Dy, symmetry of the vortex lattice allows to reduce the
number of the components in the tensor of fourth-order
gradient terms only to three coefficients. The terms with
Mzz and py, have the Dgj symmetry while the last term
proportional to uiy has the Dy, symmetry. All these
terms are responsible for the distortions of the vortex
cores and the vortex lattice.

For the sake of simplicity we follow the original ap-
proach introduced by Abrikosov'® in order to obtain the
geometry of the vortex lattice at high fields close to the
upper critical field. We start from the linear theory and
find the form of the superconducting nuclei:

2
D21/) + 52 [/meDg + ,Unyi] P+
§2Niy [DgDi + (DwDy)2 +
DyD2Dy + DyD; D+
h
(DyDy)? + DyDZ] % = e (7)
The h is the lowest eigenvalue of the operator in the left
hand side of the above equation. The equation h(H) = 1
gives the value of the upper critical field. If no high
gradient terms are taken into account, i.e. gy = flyy =
fyy = 0 then we get standard expressions h = 2w&? H/®
and HCQ = (1)0/(271'52)
We choose the vector potential as follows A,, = Ha'

11

where

x=1a"cosa—y sina (8)
y=a'sina + 1y cosa (9)
The angle « stands for the mutual orientation of the vor-
tex lattice and the anisotropy axis of the fourth order

gradient terms in the GL free energy. In general the
eigenfunction has the form:

Ly k
V(2 ) = etk Uy (:17' — E) , (10)

where function ¥y obeys the following equation:

R
T a2

+ H%2?Wy+ Ly (%,x’,a) Uy = 5%‘1’0 , (11)
where Ly is the fourth order polynomial operator of d/dz’
and 2’ which comes from the high gradient terms after
rotation by angle a. This equation coincides with the
Schrodinger equation for the harmonic oscillator with
the polynomial perturbation. This equation is too com-
plicated to solve exactly but one can use the perturba-
tion theory if the coefficients pigz, gy and fi,, are small
enough. Then we consider the function ¥y(z') to be

expanded as Wo(z') = \Iléo) (') + \Ilél)(x’) + ...
\IJE)O)(II ) is the wavefunction of the ground state of the

where

harmonic oscillator and \If((Jl) («') is the first order pertur-
bation with respect to the operator Ly. The correction to
h also can be obtained within the perturbation approach.

As a next step we look for the solution in the following
form:

(' y') = Z Cre™™ (w’ - k—;) . (12

One can see that this function is periodic ¥(2',y") =
Y(a',y' + 27 /k). The angle o and the number k deter-
mine one of the lattice basis vectors with respect to the
anisotropy axes. If we put C, = exp(—impn?) we find
out that |¢(z/,y)| = [v(2’ + k/H,y + 27p/k)|. Taking
o = k?/(2H) we have a standard (p, o) parametrization
of the vortex lattice®®. Finally we have that the lattice
is determined by three real parameters «, p and k.

We should minimize the GL free energy in order to find
the proper parameters. If we substitute the solution to
the free energy functional then we find:

2 1 4
F[|o-ve s gt wa. a3

One can show that the minimization of this functional is
equivalent to minimization of the parameter

(l¥[*)
Ba= 1505 (14)

(l[?)?
where the average is taken over the lattice primitive cell.
The minimization of 84 as a function of «, p and k has



been performed numerically. The results of this mini-
mization procedure shown in Figs. 7 and 8 appear to
be in a good qualitative agreement with the experimen-
tal data. We observe the transformation of the lattice
and increase of the vortex core anisotropy with the in-
crease of the field. All the transformations are smooth

12

and both vortex sizes depend on the field. In the low field
limit (but still above H*) the nonlinear term in the GL
equations becomes significant and should be taken into
account more accurately, i.e. beyond the approximation
of a single Landau level adopted above.
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FIG. 1. (Color online) (a) A topographic STM atomic resolution image of size 31.9 nm x 31.9nm. Crystallographic axes a and
b are presented at 45° from the topmost Se layer, representing the underlying Fe-Fe directions. The topography was acquired
with V. = 10mV, I = 100pA. The inset shows a zoom-in of the topmost Se lattice of size 10nm x 10nm. The scale bar in
the inset is 2nm. (b) Differential conductance map at E=Er and at H = 1.5T acquired simultaneously with the topography
image in (a). The size of the image is 31.9 nm?, and shows a single vortex. (c-d) Intensity plot obtained from a sequence of
160 spectra acquired along the long axis of the vortex core from the bottom left corner to the top right corner of the image in
(b) (direction a ).(d) Intensity plot obtained from a sequence of 160 spectra acquired along the short axis of the vortex core
from the left to the right of the image in (b) (direction b ). The spacing between the curves is 0.174 nm and the stabilization
point for each curve is V=5 mV, I= 60 pA for all curves in (c) and (d). (e) Characteristic tunneling spectra acquired along
the direction a at the center of the vortex (blue) and at distances 3.3nm (red) and 18nm (black) from the vortex center.(f)

Characteristic tunneling spectra acquired along the direction b at 2nm (blue), 5nm (red) and 11 nm (black) from the center of
the vortex.

FIG. 2. (Color online) (a) &rong and Esnort plotted as a function of applied magnetic field, dashed lines are guided for eyes. (b)
Plot of &rong/Eshort versus applied magnetic field, demonstrating an increase of the in-place anisotropy with increasing field.
(c-d) The spatial dependence of zero-bias conductance away from a vortex core in two perpendicular directions. Its exponential
decay fitted by G(r) = G(0) + Ae~"/¢ defines Eshort and Erong, respectively.
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FIG. 3. (Color online)(a)-(d) Two-dimensional (2D) maps of the zero-bias conductance (ZBC), normalized to normal-state
conductance at —10 mV, for the external magnetic field 1 T (a), 3 T (b), 4 T (c) and 6 T (d). These scanning tunneling
spectroscopic measurements were carried out at 1.5 K over the area 156.2x156.2 nm? (the scale bar is 50 nm), during scanning
process the height of the tip was controlled by a feedback loop and it corresponds to the current I = 100 pA at the bias
V = —20 mV. (e)-(h) Two-dimensional (2D) Delaunay triangulation for the vortex patterns shown in the panels (a)-(d) for
the same scanning areas, the filled red dots depict the positions of the vortex cores and red dash lines indicates the shortest
distances between two neighbor vortices. (i)-(1) k-space (or 2D frequency domain) for the vortex lattices shown in the panels
(e)-(h), respectively, obtained by a Fourier transformation (the scale bar is 0.04A~!. The vortex lattice at H = 1 T (a) is close
to perfect hexagonal lattice; the vortex lattice at H = 3 T (b) can be described as a superposition of distorted hexagonal and
square local lattices; the vortex lattice at H =4 T (c) is close to perfect square lattice, while the vortex lattice at H =6 T (d)
becomes more blurred and it loses long-range-order.
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FIG. 4. (Color online) (a) Evolution of the inner angles between every three neighboring vortices, determined using with the
Delaunay triangulation, as a function of the external magnetic field H. The error bars indicate the standard deviation; the
dashed lines are guides to the eyes. The H range where the vortex lattice is close to hexagonal and all angles are close to
60° is shown in yellow; the H range corresponding to the transition from the hexagonal lattice to square lattice is shown in
grey. (b) Dependence of the specific heat (H) of the FeSe crystals on the external magnetic field H. The H range, where
the transformation of the vortex lattice takes place (see panel (a)), correlates with the crossover from the linear dependence
v(H) x H for low H-values to the linear dependence with different slope and offset for high H-values. (c)-(e) Typical probability
distribution functions for the inner angles of the Delaunay triangles for H =1 T (¢), 3 T (d) and 4 T (e) and their Gaussian
decomposition (red dash lines). There is a clear transition from the unimodal distribution with the single maximum near 60°
(c), inherent for hexagonal lattice, to bimodal distribution with two local maxima near 45° and 80° (e), inherent for distorted
square lattice. The probability distribution function with three maxima at 45°, 60° and 80° (d), observed in the transition
region, point out to the co-existence of hexagonal and square lattices in the same scanning area. The peaks in probability
distribution which corresponds to the hexagonal lattice are marked with red squares in (a).



15

(a) Perfect square lattice Perfect hex-lattice
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FIG. 5. (Color online) (a) We apply rescaling with the factor x along the diagonals. For x = 1.71 this rescaling transforms a
square lattice into a hexagonal lattice. (b) Field dependence of the scaling ratio k. The transformed lattice becomes hexagonal
at 1T < H < 7T after applied transformation.
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FIG. 6. (Color online) (a) Transformation from the hexagonal vortex lattice to the square one. The angles of the unit cell are
denoted as a and 3. (b) The angles of the unit cell of the vortex lattice vs. the magnetic field. The parameters are taken as

follows: A /¢ =34, X /¢® =35 ¢@ /e =3 Y /mY =35 and m{? =m{?.



2n&2H/dy = 0.80

Bl & & & W W W
oooopoP
Ooo0ooP0oP0DO
CoovoPoP0
ocoooo0op0
coooop
ocoopoop0

yIg

373
yIg

=
o
o
o
(<]
o
o
yal

%3
yIg

2n&2H/dy = 0.70

17

FIG. 7. (Color online) The order parameter profiles calculated for vortex lattices energetically favorable at different magnetic
fields. The color indicates the absolute value of the order parameter 1) normalized onto its maximal value. The parameters of
the non-local terms are fizz = 0.3, ftyy = 0.6 and ey = 0.6. The vortex lattice smoothly transforms from the tetragonal one
at high fields to the hexagonal at low fields.
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FIG. 8. (Color online) The core dimensions and their ratio vs the magnetic field.
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