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Abstract
Near a quantum-critical point in a metal a strong fermion-fermion interaction, mediated by a

soft boson, destroys fermionic coherence and also gives rise to an attraction in one or more pairing

channels. The two tendencies compete with each other, and in a class of large N models, where the

tendency to incoherence is parametrically stronger, one would naively expect an incoherent (non-

Fermi liquid) normal state behavior to persist down to T = 0. However, this is not the case for

quantum-critical systems, described by Eliashberg theory. In such systems, the part of the fermionic

self-energy Σ(ωm), relevant for spin-singlet pairing, is large for a generic Matsubara frequency

ωm = πT (2m+1), but vanishes for fermions with ωm = ±πT , while the pairing interaction between

fermions with these two frequencies remains strong. It has been shown [Y. Wang et al PRL 117,

157001 (2016)] that due to this peculiarity, the onset temperature for the pairing, Tp, is finite even

at large N , when the scaling analysis predicts a non-Fermi liquid normal state. We consider the

system behavior below Tp and contrast the conventional case, when ωm = ±πT are not special,

and the case when the pairing is induced by fermions with ωm = ±πT . We obtain the solution of

the non-linear gap equations in Matsubara frequencies and then convert to real frequency axis and

obtain the spectral function A(k, ω) and the density of states N(ω). In a conventional BCS-type

superconductor, A(k, ω) and N(ω) are peaked at the gap value ∆(T ), and the peak position shifts

to a smaller ω as temperature increases towards Tp, i.e. the gap “closes in”. We show that, when

the pairing is induced by fermions with ωm = ±πT , the situation is qualitatively different from the

standard BCS result. Namely, the peak in N(ω) remains at a finite frequency even at T = Tp − 0,

the gap just “fills in” near this T . The spectral function A(k, ω) either shows almost the same “gap

filling” behavior as the density of states, or its peak position shifts to zero frequency already at

a finite ∆ (”emergent Fermi arc” behavior), depending on the position of k on the Fermi surface.

As an example, we compare our results with the data for the cuprates and argue that “gap filling”

behavior holds in the antinodal region, while the “emergent Fermi arc” behavior holds in the nodal

region.
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I. INTRODUCTION.

The pairing near a quantum-critical point (QCP) in a metal is a fascinating subject

due to highly non-trivial interplay between superconductivity and non-Fermi liquid (NFL)

behavior 1–34. In most cases, the dominant interaction between low-energy fermions near a

QCP is mediated by critical fluctuations of the order parameter. In dimensions D ≤ 3, this

interaction gives rise to a singular fermionic self-energy, and a coherent Fermi-liquid behavior

gets destroyed below a certain temperature Tcoh, either on the full Fermi surface13,15,35,36 or in

the hot regions6–8,13,20,37,38. The same interaction, however, also mediates fermion-fermion

interaction in the particle-particle channel. The electron-mediated interaction is positive

(repulsive), but it depends on both momentum and frequency and generally has at least

one attractive component (d−wave for antiferromagnetic QCP, p−wave for a ferromagnetic

QCP, s, p, d-wave for a nematic QCP, Ref.18) If such a system generates pairing below some

finite Tp (i.e., either becomes a true superconductor or develops preformed pairs), the range

of NFL behavior shrinks to Tcoh > T > Tp, and even vanishes when Tp > Tcoh
19. A naked

quantum-critical T = 0 behavior can only be observed either if the pairing interaction is

repulsive in all channels19, or at attractive component exists, but fermionic incoherence

prevents Cooper pairs to develop down to T = 0.

In this paper we analyze the pairing within Eliashberg theory, which does not include

phase fluctuations and, hence, does not distinguish between a true superconductivity and

preformed pairs. We will use the term ”superconducting” to describe the state below the

onset temperature of the pairing, but label this temperature as Tp to distinguish it from

the actual Tc, which can be lower. We analyze superfluid stiffness and the role of phase

fluctuations in Ref.39.

Calculations of the onset temperature for the pairing in all quantum-critical (QC) sys-

tems, studied so far, show that it is finite5,6,19,22,33,34. This can be interpreted as an evidence

that the tendency to pairing is stronger than towards incoherent, NFL behavior. The situa-

tion can potentially be reversed if the interaction in the pairing channel is somehow reduced

compared to that in the particle-hole channel. This can be achieved by either modifying the

momentum dependence of the interaction, mediated by critical fluctuations, to reduce the

magnitude of the attractive pairing component, or by extending the model to an SU(N)

global symmetry21 (the original model corresponds to N = 1). Under this extension, the
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FIG. 1. The T = 0 phase diagram of an itinerant QC model with fermion-fermion interaction

mediated by a critical boson with dynamical propagator χ(Ωm) = (g/|Ωm|)γ , where 0 < γ < 1.

The original model with N = 1 has been extended to N > 1 in such a way that the pairing

interaction is reduced by 1/N , while the interaction in the particle-hole channel (the one which

gives rise to NFL behavior in the normal state) remains intact. The critical Ncr = Ncr(γ) > 1

separates the regions of superconductivity at N < Ncr and NFL normal state behavior at N > Ncr.

pairing interaction is reduced by 1/N , but the self-energy stays intact21. In both cases,

the equation for the (frequency dependent) pairing vertex in the attractive channel retains

its form, but the overall magnitude of the pairing interaction is reduced. The analysis of

a large-N QC model at T = 0 shows21,22 that there exists a critical Ncr, separating a su-

perconducting region at N < Ncr and a region of a T = 0 NFL normal state behavior at

N > Ncr (see Fig. 1). A conventional reasoning in this situation would be that the Tp(N)

terminates at T = 0, N = Ncr, and vanishes for N > Ncr. However, numerical studies of

large-N QC models yield a different result22 – Tp(N) by-passes N = Ncr, and remains finite

at all N (see Fig. 2).

This unusual behavior was argued in Ref. 22 to be the consequence of the special form of

Matsubara fermionic self-energy Σ(ωm) at the two lowest Matsubara frequencies: ωm = πT

and ωm = −πT . Namely, in Eliashberg theory Σ(kF , ωm) is given by the convolution of local

fermionic and bosonic propagators and the formula for Σ(kF , ωm) contains the sum over

internal fermionic Matubara frequencies ωm′ (see Eq. (6) below). For ωm = ±πT , the sum

reduces to the term with m′ = m (the self-action term), all other terms in the sum over ωm′

cancel out. The self-action term in Σ(kF , ωm) comes from scattering with zero frequency

transfer and finite momentum transfer, and mimics the scattering by impurities. The same

thermal scattering also contributes to the pairing vertex Φ(kF , ωm). Both contributions
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FIG. 2. The onset temperature of the pairing, Tp(N), in the γ model, extended to N > 1. We set

γ = 0.9. The line Tp(N) by-passes Ncr (the red dot). At large N , Tp(N) ∝ 1/N1/γ .

diverge at a QCP, either on the whole Fermi surface, or at special hot spots. However,

for spin-singlet pairing, singular contributions to Φ(kF , ωm) and Σ(kFωm) cancel out in

equation for the gap function ∆(kF , ωm) = Φ(kF , ωm)/(1 + Σ(ωm)/ωm), by analogy with the

Anderson’s theorem37,40–42. As the consequence, fermions with ωm = ±πT can be viewed for

the pairing problem as free particles. Meanwhile, the pairing interaction between fermions

with ωm = πT and ωm = −πT remains strong. This strong interaction, not countered

by the self-energy, gives rise to the emergence of a non-zero ∆(kF ,±πT ) below a certain

Tp(N), which remains finite for all values of N . A finite ∆(kF ,±πT ) then induces non-zero

∆(kF , ωm) at other Matsubara frequencies, for which the self-energy is strong even without

the self-action term.

In this communication we extend the analysis of superconductivity, induced by first

fermionic Matsubara frequencies, to T < Tp(N). We argue that, although Tp(N) by-passes

N = Ncr, there is a crossover in the system behavior at Tcross(N). The crossover temperature

is numerically smaller than Tp for the physical case N = 1, and the line Tcross(N) terminates

at T = 0 at N = Ncr. In the temperature range Tcross(N) < T < Tp(N), superconductivity
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FIG. 3. A schematic phase diagram of our QC model, extended to N > 1, for some γ < 1. The solid

line is the onset temperature for superconductivity, Tp(N). The dashed line marks the crossover

from the behavior similar to a BCS superconductor at a lower T to the novel behavior at a higher

T , in which superconducting order does not provide a substantial feedback effect on the fermionic

self-energy, and it largely remains the same as in the normal state. In this region, the spectral

function A(ω) and the DOS N(ω) are functions of ω/T rather than of ω/∆(T ). The critical Ncr

separates superconducting and normal states at T = 0. This phase diagram has been obtained

within the Eliashberg theory, which neglects gap fluctuations. The latter likely destroy long-range

superconducting order in some T range below Tp(N), leading to pseudogap behavior between the

actual Tc and Tp. Our results for N(ω) and A(ω) above Tcross do not rely on the existence of a

long-range superconducting order and should survive in this range.

can be viewed as induced by fermions with ωm = ±πT ; at smaller T < Tcross(N) fermions

with all ωm contribute to superconductivity, and the ones with ωm = ±πT are no longer

special. At N > Ncr, Tcross = 0, and superconductivity induced by fermions with ωm = ±πT

extends down to T = 0. We show the schematic phase diagram in Fig. 3. We emphasize

that the system behavior at Tcross < T < Tp is qualitatively different from that in a weakly

coupled superconductor for any gap symmetry. The conventional superconducting behavior
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develops only at temperatures below Tcross < Tp.

We analyze the evolution of the gap ∆(kF , ωm) below Tp(N) along the Matsubara axis,

and then convert from Matsubara to real frequencies and analyze the behavior of ∆(kF , ω),

the spectral function at the Fermi surface A(kF , ω), and the density of states (DOS) N(ω).

We argue that the frequency dependence of A(kF , ω) and of N(ω) is qualitatively different

for T < Tcross(N) and Tcross(N) < T < Tp(N). The dependence on kF is determined by

Fermi surface topology, the nature of the pairing boson, and the symmetry of the super-

conducting state. As our goal is to analyze the universal, model-independent features of

the frequency dependencies, present for all pairing symmetries, in the bulk of the paper we

will not explicitly specify the dependencies of the pairing vertex, the self-energy, the gap

function, and the spectral function on kF . We will reinstate the dependencies on kF when

we discuss the specific case of magnetically-mediated d−wave superconductor.

A. Summary of the results

Along the Matsubara axis, we find that at large N > Ncr, the pairing vertex Φ(ωm)

is smaller than Σ(ωm) for all temperatures and all Matsubara frequencies, including ±πT .

The self-energy Σ(ωm) with m 6= 0,−1 remains essentially the same as in the normal state

, i.e., the feedback effect from superconductivity on this self-energy is weak. We show that

the pairing gap ∆(ωm) is strongly peaked at ωm = ±πT . Specifically, ∆(±πT ) is larger by

the factor N than ∆(ωm 6= ±πT ). As T decreases below Tp(N), ∆(πT ) first increases, and

then reaches the maximum and eventually vanishes at T = 0. At N < Ncr, ∆(πT ) tends

to a finite value at T = 0, and the magnitude of ∆(0) increases as N gets progressively

smaller.At N < Ncr, the temperature dependence of ∆(πT ) is still non-monotonic, with the

maximum at a finite T . When N gets smaller, the maximum becomes more shallow, and at

N → 1, ∆(πT ) monotonically increases as T decreases below Tp.

We use the results along the Matsubara axis as an input and obtain the behavior of Φ(ω)

and Σ(ω) along real frequency axis. Using these Φ(ω) and Σ(ω), we obtain the DOS

N(ω) = N0 Re
 1√

1− (Φ(ω)/(ω + Σ(ω)))2

 (1)

We show below that the ratio Φ(ω)/(ω + Σ(ω) can be re-expressed exactly as Φ∗(ω)/(ω +

Σ∗(ω)), where Φ∗(ω) and Σ∗(ω) are the solutions of the modified Eliashberg equations, in
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which thermal contributions are explicitly taken out.

At the lowest T < Tcross(N), N(ω) displays a conventional BCS-like behavior: it nearly

vanishes at ω < ∆(0) (more exactly, at ω < ω0, where ω0 is the solution of ∆(ω0) = ω0), and

has a sharp peak at ω = ω0 ∼ ∆(0). As T increases, the position of the maximum in the

DOS initially shifts to a lower frequency (because ∆(0) gets smaller with increasing T ), i.e.,

the gap in the DOS “closes in” with increasing temperature. However, once temperature

exceeds Tcross(N), this behavior changes qualitatively. We show that at Tcross < T < Tp,

N(ω) is finite at all frequencies, including ω = 0, and its dependence on ω is determined by

the universal scaling function of ω/T . As the consequence, the frequency, at which N(ω) has

a maximum, linearly increases with increasing T . As T approaches Tp from below, DOS “fills

in”, i.e., N(ω) approaches N0, but the position of the maximum in N(ω) remains at a finite

frequency. At N > Ncr, Tcross = 0, and the frequency dependence of N(ω) is determined by

the scaling function of ω/T at all T . In this case, N(ω = 0) remains finite even in the limit

T → 0.

We emphasize that these two distinct regimes of the behavior of N(ω) are present even

in the original physical model with N = 1. In this respect, the extension to N > 1 is

just a convenient way to understand the origin of such behavior by extending the width of

the regime, in which superconductivity is generated solely by fermions with ω = ±πT . A

representative of our results for the DOS is shown in Fig.4

The phenomenon in which N(ω = 0) remains finite at T → 0 is known as “gapless super-

conductivity”. It was originally found by Abrikosov and Gorkov in their analysis of an s-wave

BCS superconductor with magnetic impurities43. In their case, gapless superconductivity

exists in a finite parameter range before magnetic impurities destroy superconductivity.

In general, gapless superconductivity emerges when the imaginary part of the fermionic

self-energy at zero frequency remains finite, despite the fact that superconductivity gaps

out low-energy excitations. Several researchers argued44 in early days after BCS that any

phonon-mediated s-wave superconductor is a gapless superconductor at a finite T because

Im Σ(ω = 0) is finite due to scattering on thermally excited phonons. The same holds

for electronically-mediated superconductivity in a clean metal. Still, at the lowest T , Im

Σ(ω = 0) is strongly reduced, compared to its normal state value, due to the reduction of

the phase space for low-energy scattering45–48. Numerical analysis of Eliashberg equations

for several models of magnetically-induced d-wave superconductivity7,16,37 and for strong
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FIG. 4. A representative of our results for the DOS. We set γ = 0.3 and N = 1.5, which is smaller

than Ncr for this γ. At low T < Tcross ∼ 0.1Tp, the DOS has a peak at ω ≈ ∆(T ), and the peak

frequency decreases as temperature increases, i.e. the gap in the DOS closes. At T > Tcross the

DOS flattens up with increasing T (the gap fills in). In this T range the maximum in the DOS is

located at ωp ∼ T , which increases with increasing T .

coupling (small Debye frequency) limit of electron-phonon superconductivity1–4 shows that

Σ′′(0) rapidly increases above some T < Tp, and the maximum in the DOS shifts up from

∆(T ) and remains at a finite frequency at Tp. This is consistent with our theory of two

qualitatively different regimes of system behavior below and above Tcross.

The behavior of the spectral function is more involved because in A(ω) the thermal

contribution does not cancel out. The expression for A(ω) = −(1/π) Im[G(kF , ω)] at ω > 0

is (see Eq.(70) below)

A(ω) = 1
π

Im
[

ω + Σ(ω)
(ω + Σ(ω))2 − Φ(ω)2

]
= 1
π

Im
[

ω + Σ∗(ω)
(ω + Σ∗(ω))2 − Φ∗(ω)2L(ω)

]
(2)

L(ω) =

√
Φ∗(ω)2 − (ω + Σ∗(ω))2

P sgn Im Σ̃∗ +
√

Φ∗(ω)2 − (ω + Σ∗(ω))2
(3)

where, we remind, Φ∗(ω) and Σ∗(ω) are the solutions of the modified Eliashberg equa-

tions without self-action terms. The frequency-independent P = P (T ) describes the

thermal contribution to the self-energy. When P >
√

Φ∗(ω)2 − (ω + Σ∗(ω))2, L(ω) ≈
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FIG. 5. A representative of our results for the spectral function A(ω) for γ = 0.3 and N = 1.5

(N < Ncr). Left panel is for the case when thermal contribution to A(ω) is strong, right panel is

for the case when it is weak (in our notations, the cases P →∞ and P ≈ 0, respectively). In both

panels, A(ω) at low T < Tcross has well pronounced peaks at ω = ±∆(T ). The peak frequency

decreases with increasing T . At T > Tcross, the peaks disappear, and the spectral function shows

a dip, when P is large, and a single peak at ω = 0, when P is small.

√
Φ∗(ω)2 − (ω + Σ∗(ω))2/P . In this case, A(ω) ∝ N(ω), i.e., the spectral function displays

the same crossover from “gap closing” to “gap filling” as the DOS. In the opposite limit

P <
√

Φ∗(ω)2 − (ω + Σ∗(ω))2, L(ω) ≈ 1. In this case, A(ω) at T < Tcross shows two sharp

peaks at ω = ±∆(0). At temperatures above Tcross, the two peaks merge, and A(ω) develops

a maximum at ω = 0, resembling that of the normal state. A representative of our results

for A(ω) is shown in Fig.5.

The transformation from “gap closing” to “gap filling” behavior in the DOS and the

spectral function has been observed in several superconducting materials, most notably the

d−wave cuprates45,49–57 The spectral function in the cuprates shows the same behavior as

the DOS in the antinodal regions, where the fermionic incoherence is the strongest, and the

d−wave gap is the largest. In the regions near the Brillouin zone diagonals, the symmetrized

spectral function has peaks at a finite frequency ±∆(0) at low temperatures, and a single

maximum at ω = 0 at higher temperatures. The angular range in which the system displays a
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FIG. 6. The DOS N(ω) and the spectral function AN (ω) in a dirty BCS superconductor, from Eq.

(4) and Eq. (5).

single peak above a certain T has been termed a Fermi arc45. Our results, applied to d−wave

case, reproduce and explain the observed behavior. We argue that for magnetically-mediated

d−wave superconductor, the thermal piece in the self-energy P = PkF in (3) is large in the

antinodal region, hence A(kF , ω) ∝ N(ω), while in the nodal region PkF is much weaker,

hence A(kF , ω) is given by Eq. (2) with L(ω) ≈ 1.

B. relation to phenomenological models

The crossover from “gap closing” to “gap filling” in the DOS and in A(kF , ω) in the

antinodal regions and the crossover from two peaks to a single peak in A(kF , ω) in the

nodal regions, have been phenomenologically described by assuming that the pairing vertex

Φ(kF , ω) is independent of frequency and has the same form as in a weak coupling supercon-

ductor (not necessary s−wave), while the full self-energy Σ(kF , ω) = iΓkF (T ) sgnω, where

ΓkF (T ) is different in nodal (N) and antinodal (A) regions (Refs.50,58–60) Under this approx-

imation, the DOS becomes (using Φ(kF , T ) = ∆kF (T ) to match the notations in earlier

papers and assuming that ∆kF (T ) ≈ ∆(T ) weakly depends on kF in the antinodal regions,

which gives the largest contribution to the DOS)

N(ω) = N0 Re

 1√
1−

(
∆(T )

ω+iΓA(T )

)2

 (4)
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where ΓA(T ) is the damping in the antinodal region. At ΓA(T ) = 0, the DOS vanishes at ω <

∆ and is singular at ω = ∆+0. A non-zero ΓA(T ) makes N(ω) continuous and non-zero down

to ω = 0. Furthermore, the position of the peak in N(ω) shifts to a higher frequency from

ω = ∆(T ) (see Fig.6) At vanishing ∆(T ) the peak in N(ω) ≈ N0
(
1 + 1

2∆2 Re
[

1
(ω+iΓA)2

])
remains at a finite ω =

√
3ΓA. In other words, the magnitude of the deviation of N(ω) from

N0 is set by ∆2, while its frequency dependence is set by Re 1
(ω+iΓA)2 and does not depend

on ∆. If one additionally sets phenomenologically ΓA(T ) ∝ T , one obtains that the position

of the maximum in the DOS increases linearly with T near T = Tp, when ΓA(T ) > ∆(T ).

A similar phenomenolgical model, with the linear T dependence of the damping rate in the

nodal region, ΓN(T ) ∝ T , was used60 to explain Fermi arcs. Indeed, approximating Φ(kF , ω)

by ∆N(T ), with d-wave angular dependence, approximating Σ(kF , ω) by iΓN(T ) sgnω, and

using the first formula in (2), we obtain

AN(ω) = − 1
π

Im
[

ω + iΓN(T )
(ω + iΓN(T ))2 −∆2

N(T )

]

= 1
π

ω2 + ∆2
N(T ) + Γ2

N(T )
(ω2 −∆2

N(T )− Γ2
N(T ))2 + 4ω2Γ2

N(T )
(5)

This spectral function has two separate peaks at positive and negative ω at ΓN(T ) <
√

3∆N(T ), and a single maximum at ω = 0 at ΓN(T ) >
√

3∆N(T ) (Fig.6)

Phenomenological modeling of the spectral function in the antinodal region requires at

least two parameters, as one has to reproduce the form proportional to the DOS. One

phenomenological parameter is the analog of the thermal contribution P (T ) in Eq. (3),

the other sets the form of Σ∗(ω) = iΓ∗A(T ) sgnω. The form of the spectral function in the

antinodal region is reproduced when P (T )� Γ∗A(T ).

Comparing our microscopic theory with the phenomenological ones, we note that we can

extract from our results the effective damping rates in the nodal and antinodal regions, and

these damping rates are indeed similar to the ones used in phenomenological models. Our

formulas are more complex than just Σ(ω) = iΓ sgnω and Φ(ω) = ∆. Both Σ and Φ in

our case are complex functions, with substantial frequency dependence. However, the key

distinction between our theory and phenomenology is that we point out the specific reason

for the linear in T dependence of the damping rate between Tcross and Tp, namely that the

pairing in this T range is induced by fermions with ωm = ±πT , due to the vanishing of

Σ∗(±πT ).
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The issue, which we do not address here, is the role of pairing fluctuations. We remind

the reader that Eliashberg theory neglects phase and amplitude fluctuations of the pairing

vertex and in this respect Tp, obtained by solving Eliashberg equations, should be treated

as the onset temperature for the pairing, rather than the actual Tc for superconductivity.

It is very likely that in some range below Eliashberg Tp, fluctuations destroy long-range

superconducting order, and the actual Tc < Tp. This is corroborated by the analysis of

the stiffness for phase fluctuations above Tcross (Ref.39). In between Tc and Tp, the system

displays pseudogap behavior of preformed pairs. Our results for the DOS and the spectral

function at T > Tcross should survive at Tc < T < Tp because they are the consequences

of the fact that in this T range the feedback from the pairing on the fermionic self-energy

is weak. Strong fluctuations of the pairing gap reduce this feedback even further. In other

words, our theory describes gap filling and Fermi arcs both at T ≤ Tc and in the pseudogap

region Tc < T < Tp. Still, to fully address the issue of gap fluctuations (both transverse and

longitudinal), one needs to go beyond Eliashberg theory and analyze the full Luttinger-Ward

functional61.

The paper is organized as follows. In Sec. II we present the microscopic model of the

pairing, mediated by a gapless boson with χ(Ωm) = (g/|Ωm|)γ (the γ-model), and extend

the model to N > 1. We present the set of coupled Eliashberg equations along Matsubara

axis for the pairing vertex Φ(ωm) and the fermionic self-energy Σ(ωm) and discuss how one

can eliminate the self-action terms. In Sec. III we briefly review earlier results of the analysis

of the linearized gap equation, the existence of the critical Ncr at T = 0, and the behavior

of the onset temperature for the pairing Tp(N). In Sec. IV we discuss system behavior

at N > Ncr, first in Matsubara frequencies, in Sec. IV A, and then in real frequencies, in

Sec. IV C. We present the analytical solution of the Eliashberg equations at large N and

discuss the behavior of the pairing gap, the Free energy and the specific heat, the DOS,

and the spectral function. In Sec. V we discuss system behavior at N < Ncr, again first in

Matsubara frequencies, in Sec. V A, and then in real frequencies, in Sec.V B. In Sec. VI we

summarize our results and compare them with the experimental data.
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II. THE MODEL.

We consider a model of itinerant fermions at the onset of a long-range order in either

spin or charge channel. At the critical point, a soft boson associated with the fluctuations of

the emerging order parameter, becomes massless and mediates singular interaction between

fermions. We follow earlier works6,7,12–14,16,19,21,22,34,62 and assume that this interaction is

attractive in at least one pairing channel and that bosons can be treated as slow modes

compared to fermions, i.e., the Eliashberg approximation is valid. Within this approximation

one can explicitly integrate over the momentum component perpendicular to the Fermi

surface (for a given pairing symmetry) and reduce the pairing problem to a set of coupled

integral equations for frequency dependent self-energy Σ(ωm) and the pairing vertex Φ(ωm)

for fermions on the Fermi surface. The interaction between fermions is mediated by a critical

boson with χ(Ω) = (g/|Ω|)γ (the γ-model, Refs.6,7,12,22,34). We made χ(Ω) dimensionless

by combining it with fermion-boson coupling constant g. The boson-mediated interaction

simultaneously gives rise to the NFL form of the self-energy in the normal state and to

pairing. Both effects develop at a scale of order g, which is the only parameter with the

dimension of energy. The equations we analyze are

Φ(ωm) = πTgγ
∑
m′

Φ(ωm′)√
Σ̃2(ωm′) + Φ2(ωm′)

1
|ωm − ωm′ |γ

,

Σ̃(ωm) = ωm + gγπT
∑
m′

Σ̃(ωm)√
Σ̃2(ωm′) + Φ2(ωm′)

1
|ωm − ωm′ |γ

(6)

where here and below Σ̃(ωm) = ωm+Σ(ωm). Note that we define Σ(ωm) as a real function of

frequency, i.e., without the overall factor of i. The self-energy along Matsubara axis, related

by Kramers-Krong (KK) formula to Σ′′(ω) along the real frequency axis, does contain i as

the overall factor. The superconducting gap ∆(ωm) is defined as a real variable

∆(ωm) = ωm
Φ(ωm)
Σ̃(ωm)

(7)

The equation for ∆(ω) is readily obtained from (6):

∆(ωm) = πTgγ
∑
m′

∆(ωm′)−∆(ωm)ωm′
ωm√

ω2
m′ + ∆2(ωm′)

1
|ωm − ωm′ |γ

. (8)

This equation contains a single function ∆(ω), but for the price that ∆(ωm) appears on both

sides of the equation, which makes (8) less convenient for the analysis than Eqs. (6).
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Eq. (6) describes color superconductivity9 (γ = 0+, χ(Ωm) ∝ log |ωm|), spin- and charge-

mediated pairing in D = 3 − ε dimension14,19,21 (γ = O(ε) � 1), a 2D pairing 38 with in-

teraction peaked at 2kF (γ = 1/4), pairing at a 2D nematic/Ising-ferromagnetic QCP5,23,63

(γ = 1/3), pairing at a 2D (π, π) SDW QCP6,7,20,64 and an incommensurate CDW QCP65,66

(γ = 1/2), a 2D pairing mediated by an undamped propagating boson (γ = 1), and the

strong coupling limit of phonon-mediated superconductivity1–4 (γ = 2). The pairing models

with parameter-dependent γ have also been considered (Refs. 11 and 12). In this commu-

nication we consider the set of γ-models with γ < 1. The analysis for γ > 1 requires a

separate consideration because of the divergence of the normal state self-energy at T = 0.

The full set of Eliashberg equations for electron-mediated pairing contains also the equa-

tion describing the feedback from the pairing on χ(Ω), e.g., the emergence of a propagating

mode (often called a resonance mode) in the dynamical spin susceptibility for d−wave pair-

ing mediated by antiferromagnetic spin fluctuations 47,48. To avoid additional complications,

we do not include this feedback into our consideration. In general terms, the feedback from

the pairing makes bosons less incoherent and can be modeled by assuming that the exponent

γ moves towards larger value as T moves down from Tp.

The two equations in (6) describe the interplay between two competing tendencies – the

tendency towards superconductivity, specified by Φ, and the tendency towards incoherent

NFL behavior, specified by Σ. The competition between the two tendencies is encoded in

the fact that Σ appears in the denominator of the equation for Φ and Φ appears in the

denominator of the equation for Σ. Accordingly, a large, non-FL self-energy is an obstacle

to Cooper pairing, while once Φ develops, it reduces the strength of the self-energy, i.e.,

moves a system back into a FL regime.

The r.h.s. of the equations for Φ(ωm) and Σ(ωm) contain divergent contributions from the

terms with m′ = m, i.e., from χ(0). The divergence can be regularized by moving slightly

away from a QCP, in which case χ(0) is large but finite. This term mimics the effect of

non-magnetic impurities and by Anderson theorem should not affect Tp. To get rid of this

thermal contribution in the equations for Φ(ω) and Σ(ω), we follow Refs.37,42 and use the

same procedure as in the derivation of the Anderson theorem67. Namely, in each equation

in (6) we pull out the term with m′ = m from the sumand move it to the l.h.s.. We then
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introduce new variables Φ∗(ωm) and Σ∗(ωm) as

Φ∗(ωm) = Φ(ωm) (1−Q(ωm)) ,

Σ̃∗(ωm) = Σ̃(ωm) (1−Q(ωm)) (9)

where

Q(ωm) = πTχ(0)√
Σ̃2(ωm) + Φ2(ωm)

(10)

The ratio Φ(ωm)/Σ̃(ωm) = Φ∗(ωm)/Σ̃∗(ωm), hence ∆(ωm), defined in (7), is invariant under

Φ(ωm)→ Φ∗(ωm) and Σ̃(ωm)→ Σ̃∗(ωm). Using (9), one can easily verify that the equations

on Φ∗(ωm) and Σ̃∗(ωm) are the same as in (6), but without the thermal contribution, i.e.,

the summation over m′ now excludes the divergent term with m′ = m. In the gap equation,

the term with m = m′ vanishes because the vanishing of the numerator in the r.h.s. of (8).

One can also solve (9) backwards and express Φ(ωm) and Σ̃(ωm) via Φ∗(ωm) and Σ̃∗(ωm) as

Φ(ωm) = Φ∗(ωm) (1 +Q∗(ωm)) ,

Σ̃(ωm) = Σ̃∗(ωm) (1 +Q∗(ωm)) (11)

where

Q∗(ωm) πTχ(0)√
(Σ̃∗(ωm))2 + (Φ∗(ωm))2

(12)

Like we said in the Introduction, our goal is to analyze the system behavior at Tcross <

T < Tp, in particularly ω/T scaling in the DOS and the spectral function, which we associate

with the special role of fermions with Matsubara frequencies ωm = ±πT . To understand this

behavior, it is instructive to extend the range where it holds by reducing the value of Tcross.

We argue that this can be achieved by reducing the tendency towards pairing compared to

that for the NFL normal state. To do this, we follow Refs.21,68 and extend the model to

matrix SU(N). Under this extension, the interaction in the particle-hole channel remains

intact, while the interaction in the particle-particle channel acquires an additional factor

1/N . The outcome of the extension to N > 1 depends on whether it is done for the original

Eliashberg equations, or for the modified ones, in which self-action terms are eliminated.

In Refs.21,68, the extension to N > 1 was done in the original Eliashberg equations. As a

result, at N > 1 their gap equation at a QCP contains singular terms, which gave rise to

qualitative changes in the system behavior between N = 1 and N > 1. We first eliminate

the thermal contributions to Φ(ωm) and Σ(ωm) only then extend the modified Eliashberg
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equations for Φ∗(ωm) and Σ∗(ωm) to N 6= 1, In this procedure, gap equation at N > 1 does

not acquire singular terms. As our goal is to understand the system behavior at N = 1, we

believe that our procedure is more adequate as in our case the extension to N > 1 reduces

Tcross and makes it vanish at N > Ncr, but the structure of the gap equation and equations

for the DOS and the spectral function remain the same as at N = 1.

The modified equations for Φ∗(ωm) and Σ̃∗(ωm) become

Φ∗(ωm) = πT

N
gγ

∑
m′ 6=n

Φ∗(ωm′)√
(Σ̃∗(ωm′))2 + (Φ∗(ωm′))2

1
|ωm − ωm′ |γ

,

Σ̃∗(ωm) = ωm + gγπT
∑
m′ 6=m

Σ̃∗(ωm)√
(Σ̃∗(ωm′))2 + (Φ∗(ωm′))2

1
|ωm − ωm′|γ

,

(13)

and the equation for ∆(ωm) becomes

∆(ωm) = πT

N
gγ

∑
m′ 6=m

∆(ωm′)−N∆(ωm)ωm′
ωm√

ω2
m′) + ∆2(ωm′)

1
|ωm − ωm′|γ

. (14)

Below we will also need the expression for the Free energy Fsc of a superconductor,

described by the Eliashberg theory. The formula for Fsc has been obtained in Refs.61,69,70 for

conventional s−wave superconductivity, mediated by an Einstein phonon (the case γ = 2,

finite ωD, and N = 1). Extending the results to γ < 1, QC regime, where the bosonic mass

vanishes, and to N 6= 1, we obtain

Fsc = −N0

2πT
∑
m

ω2
m√

ω2
m + ∆2

m

+ π2T 2gγ
∑
m 6=m′

ωmωm′ + 1
N

∆m∆m′√
ω2
m + ∆2

m

√
ω2
m′ + ∆2

m′

1
|ωm − ωm′|γ


(15)

where ∆m = ∆(ωm). The gap equation (14) is obtained from the condition δFsc/δ∆n = 0

In the normal state the expression for the Free energy reduces to

Fn = −N0

2πT
∑
m

|ωm|+ π2T 2gγ
∑
m 6=m′

sgnωm sgnωm′
|ωm − ωm′ |γ

 (16)

The difference between Fsc and Fn at T = 0 is the condensation energy of a superconductor.

At a finite T ,

δF = Fsc − Fn = −2πTN0
∑
m

|ωm|

 1√
1 +D2

m

− 1


−N0π
2T 2gγ

∑
m 6=m′

sgnωm sgnωm′
|ωm − ωm′ |γ

1 + 1
N
DmDm′ −

√
1 +D2

m

√
1 +D2

m′√
1 +D2

m

√
1 +D2

m′

(17)
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where Dn = D(ωn) = ∆(ωn)/ωn. Near T = Tp, one can expand δF in powers of ∆m:

δF =πTN0
∑
m

|ωm|D2
m −N0π

2T 2gγ
∑
m6=m′

sgnωm sgnωm′
|ωm − ωm′|γ

(
1
N
DmDm′ −

D2
m +D2

m′

2

)

+ 3
4πTN0

∑
m

|ωm|D4
m −N0π

2T 2gγ
∑
m 6=m′

sgnωm sgnωm′
|ωm − ωm′ |γ

×
(1

4D
2
mD

2
m′ +

3
8
(
D4
m +D4

m′

)
− 1

2NDmDm′

(
D2
m +D2

m′

))
(18)

III. THE LINEARIZED GAP EQUATION

To obtain Tp, it is sufficient to consider the linearized gap equation. It is obtained from

(13) by setting Φ∗ to be infinitesimally small. Then Φ∗(ωm′) in the denominators of (13)

can be ignored, and the self energy Σ∗(ωm) can be approximated by its normal state form.

The resulting equations are:

Φ∗(ωm) = gγ

N
πT

∑
m′ 6=m

Φ∗(ωm′)
|ωm′ + Σ∗(ωm′)|

1
|ωm − ωm′|γ

,

Σ∗(ωm) = gγπT
∑
m′ 6=m

sgn(ωm′)
|ωm − ωm′|γ

.

(19)

By power counting, Σ∗(ωm) ∝ gγω1−γ
m . Substituting this into the equation for Φ in (19), we

obtain that the pairing kernel Km,m′ ≡ (gγ/N)/(|ωm′ + Σ∗(ωm′)|)/|ωm − ωm′|γ is marginal

at g � |ωm′ | � |ωm|, where Km,m′ ∝ 1/|ω′m|, and decays as Km,m′ ∝ gγ/|ωm′|1+γ at

|ωm′| � g, ωm. This implies that Tp, if it exists, should be generally of order g. The

marginal form of the kernel is similar to that in the BCS case, and within the perturbation

theory gives rise to the logarithmical growth of the pairing susceptibility. However, in

distinction to BCS, the marginal form of Km,m′ holds only if |ωm′| > |ωm|, i.e., at each order

of perturbation, the logarithm is cut by the running frequency in the next cross-section in

the Cooper ladder. As the consequence, the summation of the logarithms alone does not

lead to the divergence of the pairing susceptibility22. In this situation, it would be natural

to expect that the pairing is a threshold phenomenon, i.e., it occurs if the pairing vertex

exceeds some finite value. The pairing strength in Eq. (19) is controlled by 1/N , hence, by

this logics, there should be a critical Ncr, separating superconducting state at N < Ncr and

non-superconducting NFL state at N > Ncr. The analysis of the pairing problem at T = 0
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FIG. 7. The behavior of Ncr(γ), given by Eq. (20). At T = 0, this critical N separates supercon-

ducting and normal states at N < Ncr(γ) and N > Ncr(γ), respectively.

yields exactly this behavior21,22: there exists

Ncr = (1− γ)Γ(γ/2)
[

Γ(γ/2)
2Γ(γ) + Γ(1− γ)

Γ(1− γ/2)

]
, (20)

separating superconducting and non-superconducting states (Γ(...) is the Gamma function).

We plot Ncr(γ) in Fig.7. We see that Ncr > 1 for all γ ≤ 1, which we consider here. The

value of Ncr rapidly increases at small γ. This increase is just the consequence of the fact

that in the limit γ → 0, the pairing problem reduces to BCS theory without an upper

cutoff for frequency integration. Once this cutoff is introduced, Ncr(γ = 0) remains finite.

We emphasize in this regard that for any finite γ, the pairing kernel at large running ω′

decreases faster than 1/|ωm′| (as Km,m′ ∝ 1/|ωm′|1+γ), hence the gap equation is unltra-

violet convergent even without frequency cutoff.

The existence of Ncr at T = 0 would normally imply that this is the termination point

of the line Tp(N). However, the numerical solution of (19) yields qualitatively different

result: Tp is non-zero at any N , and the line Tp(N) by-passes Ncr and approaches zero

only at N → ∞ (see Fig.8). The reason for this behavior has been named in Ref.22: the

power counting argument that Σ∗(ωm) ∝ ω1−γ
m does not work for the first two Matsubara

frequencies ωm = ±πT . For these frequencies, Eq. (19) yields Σ∗(±πT ) = 0 because
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× 10−9

FIG. 8. The pairing instability temperature Tp(N), obtained by solving the linearized gap equation

(19) as an eigenvalue/eigengunvction problem for M = 4000 Matsubara frequencies, with N playing

the role of an eigenvalue. Upper and lower panels are for γ = 0.3 and γ = 0.9, respectively. At large

N , Tp(N) ≈ (g/2π)1/N1/γ . For comparison, we also show T̃p(N), which we obtained by solving

the linearized gap equation without fermions with Matsubara frequencies ±πT . The temperature

T̃p(N) terminates at T = 0 at the critical N = Ncr.

contributions from positive and negative ωm′ exactly cancel out. To see the consequence

of Σ∗(±πT ) = 0, consider the equation for Φ(ωm) in the limit N � 1 and set external

ωm = πT (2m + 1) to πT (i.e., set m = 0). For m′ = O(1), but m′ 6= −1, the product

πTK0,m′ is independent of T and is of order 1/N . However, for m′ = −1 (ωm′ = −πT ),

πTK0,−1 = (1/N)(g/(2πT ))γ becomes large at small enough T . A simple experimentation

shows22 that in this situation the gap equation reduces to

Φ∗(πT ) ≈ 1
N

(
g

2πT

)γ
Φ∗(−πT )

Φ∗(ωm) = 1
N

(
g

2πT

)γ ( Φ∗(πT )
|12 −

ωm′
2πT |γ

+ Φ∗(−πT )
|12 + ωm′

2πT |γ

)
, m 6= 0,−1 (21)

We will be searching for even-frequency solutions of the gap equation: Φ∗(ωm) = Φ∗(−ωm).

Then the first equation in (21) sets Tp = (g/2π)1/N1/γ, and the second shows that a non-zero

Φ∗(ωm) is induced by Φ∗(±πT ) and is suppressed by N1/γ for T → Tp.

The functional form Tp ∝ 1/N1/γ at large N has been verified numerically in Ref.22 for

a particular choice of γ = 0.1. In Fig.8 we show that the same behavior holds for γ = 0.3
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and 0.9. To see that this behavior is indeed due to the vanishing of Σ∗(±πT ), we exclude

ωm = πT from the set of Matsubara frequencies and then solve again the linearized gap

equation. The result is shown in Fig.8. We clearly see that T̃p, obtained this way, tends

to zero above some critical value of N , which numerically is close to Ncr(γ) in Eq. (20).

This implies that, without the first two Matsubara frequencies, the system would display

a conventional behavior, with T̃p(N) line terminating at N = Ncr. That the actual Tp(N)

by-passes Ncr and vanishes only at N =∞ is then entirely due to the vanishing of the self-

energy for fermions with ωm = ±πT . To check that only fermions with ωm± πT special, we

computed T̃p,1(N) by eliminating fermions with ±πT and ±3πT and obtained that T̃p,1(N)

behaves similar to T̃p(N) and terminates at N ≈ Ncr.

This result indicates that the system behavior may be qualitatively different at low T <

T̃p(N), when all fermions contribute to the pairing, and at T̃p(N) < T < Tp, when the

pairing is induced by fermions with ωm = ±πT . At N > Ncr, T̃p = 0 and fermions with

ωm = ±πT determine the system behavior for all T < Tp. At small γ, Ncr ≈ 4/γ � 1, and

the lines Tp(N) and T̃p(N) remain close down to a very small T ∼ g(γ)1/γ � g. However,

for γ ≤ 1, the two lines are distinct already at T ≤ g. We emphasize that at these γ, the

sizable range T̃p(N) < T < Tp(N) exists even for the physical case of N = 1. The system

properties in in this T range should be, at least qualitatively, the same as that at large N .

Below we study superconductivity, induced by fermions with ωm = ±πT , in some detail

by solving the non-linear gap equation at T < Tp. We first solve the gap equation in

Matsubara frequencies and obtain the gap, the Free energy, and the specific heat, and then

convert to real frequencies and obtain the gap function, the spectral function, and the DOS.

IV. NON-LINEAR GAP EQUATION, N > Ncr

We begin with the case N > Ncr when T̃p = 0, i.e. the pairing would be impossible if the

self-energy did not vanish at ωm = ±πT . The limit N � 1 can be treated analytically and

we consider it in some detail below.
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A. Non-linear gap equation in Matsubara frequencies.

The non-linear equation for the pairing vertex Φ∗(ωm) and the equation for the fermionic

self-energy Σ∗(ωm), which includes the feedback from the pairing, are given in (13). We

recall that at large N , the pairing temperature Tp(N) is obtained by solving the linearized

equation for Φ∗(ωm) for fermions with only two Matsubara frequencies ωm = ±πT ; the

pairing vertex Φ∗(ωm) for other ωm is then expressed via Φ∗(πT ) = Φ∗(−πT ). We assume

and then verify that this holds also for T < Tp, i.e., that the non-linear gap equation

can be approximated by restricting to ωm′ = ±πT in the r.h.s. of Eq. (13). Re-labeling

Φ∗(πT ) = Φ∗(−πT ) = Φ∗0,Σ∗(πT ) = −Σ∗(−πT ) = Σ∗0, and Σ̃∗0 = πT + Σ∗(πT ), to shorten

notations, we obtain from (13) the set of two coupled equations for Φ∗0 and Σ̃∗0:

Φ∗0 = πT
(
Tp
T

)γ Φ∗0√
(Φ∗0)2 + (Σ̃∗0)2

Σ̃∗0 = πT

1 +N
(
Tp
T

)γ 1− Σ̃∗0√
(Φ∗0)2 + (Σ̃∗0)2

 (22)

The solution of (22) to leading order in 1/N is

Φ∗0 = πT
( 2
N

)1/2 (Tp
T

)γ (
1−

(
T

Tp

)γ)1/2

Σ̃∗0 = πT
(
Tp
T

)γ
, or Σ∗0 = πT

((
Tp
T

)γ
− 1

)
(23)

The superconducting gap ∆0 ≡ ∆(±πT ) = Φ∗0πT/Σ̃∗0 is

∆0 = πT
( 2
N

)1/2 (
1−

(
T

Tp

)γ)1/2

(24)

The gap ∆0 vanishes both at T = 0 and at T = Tp. In between, it is finite, but for any T ,

D0 = ∆0/(πT ) is small and at most of order 1/N1/2. In other words, the gap at N � 1

remains smaller than the temperature at all T < Tp.

Solving next the set of Eliashberg equations for other ωm 6= ±πT we obtain at large N

Φ∗(ωm) ≈ Φ∗0
[(

2πT
|ωm − πT |

)γ
+
(

2πT
|ωm + πT |

)γ]

Σ∗(ωm) ≈ 2NΣ̃∗0H
(
|ωm| − πT |

2πT , γ

)
sgn(m+ 1/2)

(25)

where H(a, b) = ∑a
1 n
−b is a Harmonic number. We plot Φ∗(ωm) and Σ∗(ωm) in Fig.9. At
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FIG. 9. The pairing vertex Φ∗(ωm) and the self-energy Σ∗(ωm) from Eq. (25). For definiteness we

set γ = 0.9, N = 10, and T = 0.05Tp.

large m (but still when Σ∗(ωm)� ωm)

Φ∗(ωm) ≈ 2Φ∗0
|m|γ

, Σ̃∗(ωm) ≈ 2N |Σ̃
∗
0|

1− γ |m|
1−γ sgn(m) (26)

Observe that the self-energy behaves as Σ∗(ωm) ∝ T 1−γ, at all ωm = O(T ), including

ωm = ±πT . Still, the self-energy at ±πT is smaller in 1/N than Σ∗(ωm) at other Matsubara

frequencies. As the consequence, the pairing gap ∆(ωm) is parametrically larger at ωm =

±πT than at other frequencies. From (25) we have, at |ωm| 6= πT ,

∆(ωm) = Φ∗(ωm)
Σ̃∗(ωm)

= 1
N

∆0

H(m, γ)

(
1
mγ

+ 1
(m+ 1)γ

)
∝ T

( 2
N

)3/2 (
1−

(
T

Tp

)γ)1/2

. (27)

We also see from see (27) that at any T < Tp, ∆(ωm) at any Matsubara frequency is

parametrically smaller than T . Put it differently, D(ωm) = ∆(ωm)/ωm is small, of order

1/N3/2, at m = O(1), and even smaller at larger m. We plot ∆(ωm) and D(ωm) in Fig.10.

Taking −iD0 as an estimate for small frequency limit of D(ω) ≡ ∆(ω)/ω in real fre-

quencies, we find that D(ω → 0) tends to a finite imaginary value, i.e., at large N we

have gapless superconductivity in the sense that ∆(ω) ∝ iω (See footnote71). Using then

N(ω) = N0 Re[1/
√

1−D2(ω)] for the DOS (N0 is the normal state value), we find that

the DOS at zero frequency N(ω = 0) = N0/
√

1 +D2
0 ≈ N0

(
1− 1

2D
2
0

)
is reduced below Tp,

compared to the normal state value, but remains finite, as in a gapless superconductor.
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FIG. 10. The pairing gap ∆(ωm) = Φ∗(ωm)ωm/Σ̃(ωm) and D(ωm) = ∆(ωm)/ωm for the same

parameters as in Fig. 9. Observe that ∆(πT ) and D(πT ) are much larger than at 3πT , etc.

To verify this result and to get the full form of N(ω) we need to obtain ∆(ω) as a function

of a real frequency ω. This is what we will do in Sec. IV C. Before that, we use the result

for D(ωm) and obtain the Free energy Fsc(T ) and the specific heat C(T ) at N > Ncr.

1. The Free energy and the specific heat

The Free energy Fsc and ∆F = Fsc − Fn are given by Eqs. (15)-(18). At large N we

keep only contributions which contain Dm, Dm′ with m,m′ = 0,−1. Contributions from

Dm with other m are smaller in 1/N . Using that ∑m
sgn m
|πT±ωm|γ = 0, we obtain from (18)

δF ≈ −2π2T 2N0

(
Tp
T

)γ [
D2

0

(
1−

(
T

Tp

)γ)
− ND4

0
4

]
(28)

Varying δF by ∆0, one reproduces Eq. (24). Substituting D0 from (24) into (28), we obtain

δF ≈ − 2
N
π2T 2N0

(
Tp
T

)γ (
1−

(
T

Tp

)γ)2

(29)
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The specific heat variation between the superconducting and the normal state, δCv =

−T∂2δF/∂T 2, is

δCv = 2
N
π2TpN0Cγ

(
T

Tp

)
(30)

where the scaling function Cγ(x) is

Cγ(x) = 2γ2xγ+1 − 2γ(3− γ)x(1− xγ)

+(2− γ)(1− γ)x1−γ(1− xγ)2 (31)

At T → 0, Cγ(0)→ 0, i.e., δCv vanishes. At T = Tp− 0, Cγ = 2γ2. This sets the magnitude

of the specific heat jump at Tp:

δCv = (4γ2/N)π2TpN0. (32)

The specific heat in the normal state is obtained from (16). The first term in (16) gives the

conventional free-fermion contribution to the Free energy Fn,free(T ) = Fn,free(0)−N0π
2T 2/3.

The second term gives

Fn,int(T ) = −N0Nπ
2T 2

(
Tp
T

)γ ∑
m6=m′

sgn(m+ 1/2) sgn(m′ + 1/2)
|m−m′|γ (33)

At T ∼ Tp, this second term is larger by N than the free-fermion contribution. The calcula-

tion of the double sum in (33) requires care as one needs to extract the universal constant on

top of formally ultra-violet divergent contribution to Fn,int(T = 0). To extract the universal

constant, we note that the summation over m−m′ can be done explicitly. The result is

∑
m 6=m′

sgn(m+ 1/2) sgn(m′ + 1/2)
|m−m′|γ

= 4
∞∑
m=0

H(m, γ), (34)

where, we remind, H(m, γ) is the Harmonic number. For the remaining summation we use

the Euler-Maclaurin formula
∞∑
m=0

f(m+ 1/2) =
∫ ∞

0
f(x)dx+Q

Q = −
∫ 1/2

0
f(x)dx+ 1

2f(1/2)−
∞∑
n=2

Bn

n!
dn−1f

dxn−1 | x=1/2
, (35)

where Bn are Bernoulli numbers. The first term in the first line in (35) contributes to

Fn,int(T = 0), the second term determines the universal prefactor in the temperature-

dependent piece in the Free energy. To apply this formula, we re-define the Harmonic
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FIG. 11. The plots of the scaling functions Qγ from Eq. (36).

number as H(m, γ)→ H(m+1/2, γ) = ∑m+1/2−1/2
1 1/pγ and extend it to a function H(x, γ)

of a continuous variable x. Evaluating then the integral and the derivatives in the second

line in (35) numerically, we obtain
∞∑
m=0

H(m, γ) =
∫ ∞

0
H(x, γ) +Qγ. (36)

We plot Qγ in Fig.11.

Substituting this result into (33) and differentiating the Free energy over T , we obtain

Cv,n = N(4π2N0Tp)(2− γ)(1− γ)Qγ

(
T

Tp

)1−γ

(37)

The ratio of the specific heat jump to its value at T = Tp + 0 is then

δCv
Cv,n

= 1
N2

γ2

(2− γ)(1− γ)Qγ

(38)

We see that the relative jump of Cv at Tp is small by 1/N2. In Fig.12 we plot Cv(T ) =

Cv,n(T ) + δCv(T ) in the full temperature range below Tp. At sufficiently small T , both Cv

and Cv,n scale as T 1−γ.

B. Beyond leading order in 1/N

We now go beyond the leading order in 1/N . The goal here is to analyze how fermions

with other ωm affect the magnitudes of Φ∗(πT ) = Φ∗0 and D(πT ) = D0 at a small but finite
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FIG. 12. The specific heat (in units of TpN0) vs T/Tp. The dashed line is the normal state result.

We set γ = 0.5 and N = 5. Observe that the jump of C(T ) at Tp is small, and that at low T

specific heat returns back to its normal state value.

temperature. We recall that at large N , Φ∗0 ≈ (2/N)1/2πT (Tp/T )γ and D0 ≈ (2/N)1/2. We

show that both Φ0 and D0 increase as N get smaller.

For the analysis to next order in 1/N we use the fact that D0 ∝ 1/N1/2, while for other

Matsubara frequencies D(ωm) ∝ 1/N3/2 (see Eqs. (24) and (27)) Because D appears in

even powers in the equation for the self-energy in (13), the inclusion of these D(ωm) with

m 6= 0,−1 would lead to corrections of at least of order 1/N3. To order O(1/N) we then

still have the same equation for Σ̃∗0 as in (22). Expanding in this equation in two orders of

D2
0 ∝ 1/N and setting T � Tp, we obtain

Σ̃∗0 = NπT
(
Tp
T

)γ (D2
0

2 −
3D4

0
8

)
(39)

The expansion to subleading order in 1/N in the equation for Φ∗0 requires more care, as the

leading term (the one kept in the first equation in (22)) is of order 1/N1/2, while other terms

in the r.h.s. of (13) are of order D(ωm) ∝ 1/N3/2, i.e., they contain only one additional
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FIG. 13. The gap at the first Matsubara frequency ∆(πT ) = ∆0 as a function of temperature for

γ = 0.9 and two different N > Ncr. The slope of ∆0(T ) at small T increases as N gets smaller.

power of 1/N . Keeping these terms, we obtain from (13):

Φ∗0 = NπT
(
Tp
T

)γ
D0

(
1− D2

0
2

)

+
∞∑
m=1

D(ωm)
(

1
mγ

+ 1
(m+ 1)γ

)
(40)

Substituting D(ωm) = ∆(ωm)/ωm from Eq. (27), we obtain

Φ∗0
(

1− Wγ

2N

)
= NπT

(
Tp
T

)γ
D0

(
1− D2

0
2

)
(41)

where

Wγ =
∞∑
m=1

1
H(m, γ)

(
1
mγ

+ 1
(m+ 1)γ

)2

(42)

We plot Wγ in the inset of Fig.14.

Solving (39) and (41) to order 1/N we obtain at low T � Tp

Φ∗0 =
( 2
N

)1/2
πT

(
Tp
T

)γ (
1 + 3(Wγ − 1)

4N

)

Σ̃∗0 = πT
(
Tp
T

)γ (
1 + Wγ − 2

2N

)
D0 = ∆0

πT

( 2
N

)1/2 (
1 + Wγ + 1

4N

)
(43)
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FIG. 14. The approximate N∗cr(γ) = 3(Wγ − 1)/2 vs the actual Ncr(γ). The inset shows Wγ given

by Eq. (42).

The analysis at larger T ≤ Tp proceeds in the same way and we refrain from presenting the

full formulas. In Fig. 13 we show ∆0 = ∆(πT ) as a function of T/Tp for γ = 0.9 and two

different values of N > Ncr (Ncr ∼ 1.3 for γ = 0.9). In both cases ∆0 vanishes at T = 0,

but the slope of ∆0(T ) at small T gets larger when N decreases.

The result for Φ∗0 to first order in 1/N can be cast into Φ∗0 ≈ (2/(N − N∗cr))1/2πT
(
Tp
T

)γ
where N∗cr = 3(Wγ − 1)/2 is some γ-dependent constant. Taking this approximate formula

as an indication of the evolution of Φ∗0 with decreasing N , we find Φ∗0 ∝ T 1−γ/(N −N∗cr)1/2.

At N > N∗cr(γ), Φ0 vanishes at T = 0 (we recall that we consider γ < 1), but N = N∗cr(γ)

the slope of Φ∗0(T )/T 1−γ (and of ∆0) diverges. This is consistent with the T = 0 analysis,

which indicates that at N < Ncr, given by Eq. (20), the system has a superconducting order

at T = 0. The N∗cr(γ) = 3(Wγ − 1)/2 is an approximate function and predictably differs

from the actual Ncr(γ), given by Eq. (20). We plot both functions in Fig.14. Interestingly,

N∗cr(γ) and Ncr(γ) show quite similar variation with γ.

We emphasize that the increase of Φ∗0(T → 0) with decreasing N is due to the contribution

from fermions with |ωm| 6= πT . We see that these fermions become progressively more

involved in the pairing, as N get smaller.

We next consider the solutions for the pairing vertex and the self-energy in real frequen-

cies. This will allow up to compute the spectral function A(ω) and the DOS N(ω).
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C. Non-linear gap equation in real frequencies

The transformation of Elishberg equations from Matsubara to real frequencies has been

discussed in several publications1,3,4 for electron-phonon interaction. The computational

procedure uses spectral decomposition method and analytical continuation. We extend this

procedure to our case of electron-mediated pairing with the effective interaction χ(Ωm) =

(g/|Ωm|)γ. The conversion to real frequencies requires special care for two reasons. First,

if one simply replaces ωm by −iω in the bosonic propagator χ(ωm′ − ωm) → χ(ωm′ + iω),

it will have a set of branch cuts in the complex ω plane, along ω = iωm + b, where b is

real. One needs to add additional terms to the r.h.s. of the equations for retarded functions

ΦR(ω) and ΣR(ω) to cancel these singularities and restore analyticity. Second, we again need

to eliminate singular contributions from the terms with zero bosonic Matsubara frequency.

This can be done in the same way as in the calculations along the Matsubara axis. Namely,

we introduce new functions Φ∗,R(ω) and Σ̃∗,R(ω), related to ΦR(ω) and Σ̃R(ω) = ω+ ΣR(ω)

as

Φ∗,R(ω) = ΦR(ω) (1−Q(ω)) , Σ̃∗,R(ω) = Σ̃R(ω) (1−Q(ω)) , (44)

where Q(ω) is singular (see Eq. (48) below), but Φ∗,R(ω) and Σ̃∗,R(ω) are free from singu-

larities. The equations on Φ∗,R(ω) and Σ̃∗,R(ω) are the same as on ΦR(ω) and Σ̃R(ω), but

with additional terms which cancel out divergent contribution from χ(0). The gap function

∆R(ω) = ωΦR(ω)/Σ̃R(ω) is equally expressed in terms of Φ∗,R(ω) and Σ̃∗,R(ω):

∆R(ω) = ω
ΦR(ω)
Σ̃R(ω)

= ω
Φ∗,R(ω)
Σ̃∗,R(ω)

(45)

To simplify the formulas, below we skip the index R. All functions, which we obtain in real

frequencies, are retarded functions.

Taking care of both the branch cuts and the divergent terms, we obtain the equations for

Φ∗(ω) an Σ̃∗(ω) in the form (see Appendix for details)
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Φ∗(ω) = πT

N

∑
m

Φ∗(ωm)√
(Φ∗(ωm))2 + (Σ̃∗(ωm))2

χ(ωm + iω)

+ 1
N

∫
dx
[
SΦ(ω − x)χ′′(x) (nF (x− ω) + nB(x))− SΦ(ω)χ′′(x)T

x

]
,

Σ̃∗(ω) = ω + iπT
∑
m

Σ̃∗(ωm)√
(Φ∗(ωm))2 + (Σ̃∗(ωm))2

χ(ωm + iω)

+
∫
dx
[
SΣ(ω − x)χ′′(x) (nF (x− ω) + nB(x))− SΣ(ω)χ′′(x)T

x

]
,

(46)

where

SΦ(ω) = Φ(ω)√
Φ2(ω)− Σ̃2(ω)

, SΣ(ω) = Σ̃(ω)√
Φ2(ω)− Σ̃2(ω)

(47)

and χ′′(x) = Imχ(x) = sgn(x) gγ

|x|γ sin πγ
2 . In (46), the solution of the Eliashberg equations in

Matsubara frequencies, i.e., Φ∗(ωm) and Σ̃∗(ωm) are considered as inputs. The first term in

each of the two equations is obtained by just replacing ωm by −iω, the second one cancels

out non-analyticities, and last one cancels out the divergent contribution from χ(0). We

re-iterate that we cancel out the divergence at x = 0 before extending the model to large N .

The function Q(ω) in (44), which determines the relations between Φ∗(ω) and Σ̃∗(ω) and

Φ(ω) and Σ̃(ω), is

Q(ω) = P√
Φ2(ω)− Σ̃2(ω)

(48)

where

P =
∫
dxχ

′′(x)T
x

= πTχ(0) (49)

Equivalently, we can express Φ(ω) and Σ̃(ω) via Φ∗(ω) and Σ̃∗(ω) as

Φ(ω) = Φ∗(ω) (1 +Q∗(ω)) , Σ̃(ω) = Σ̃∗(ω) (1 +Q∗(ω)) , (50)

where

Q∗(ω) = P sgn Im Σ̃∗√
(Φ∗)2(ω)− (Σ̃∗)2(ω)

(51)

In Eqs. (47-51) the square root is defined with a branch cut along negative real axis.

We now analyze the Eqs. (46). At ω = 0 we have

Φ∗(0) = πT

N

∑
m

Φ∗(ωm)√
(Φ∗(ωm))2 + (Σ̃∗(ωm))2

χ(ωm) + 1
N

∫
dxχ

′′(x)
(
SΦ(−x)
sinh x/T −

SΦ(0)
x/T

)

Σ̃∗(0) = iπT
∑
m

Σ̃∗(ωm)√
(Φ∗(ωm))2 + (Σ̃∗(ωm))2

χ(ωm) +
∫
dxχ

′′(x)
(
SΣ(−x)
sinh x/T −

SΣ(0)
x/T

)

(52)
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FIG. 15. The scaling function Sγ , defined in (54).

The first term in the formula for Σ̃∗(0) vanishes by symmetry, after summing up the contri-

butions from positive and negative ωm.

We first consider large N . We assume and then verify that in this case Σ̃∗ is parametrically

larger than Φ∗ not only along the Matsubara axis but also along the real axis. To leading

order in 1/N we then have for the self-energy, using Σ̃(ω)/
√
−iΣ̃(ω) = i, valid for a retarded

Σ̃(ω),

Σ̃∗(0) = i
∫
dxχ

′′(x)
(

1
sinh x/T −

T

x

)
= −iπT

(
g

πT

)γ
Sγ, (53)

where

Sγ = 2 sin πγ/2
∫ ∞

0

dx

xγ

( 1
πx
− 1

sinh πx

)
. (54)

We plot Sγ in Fig.15.

For Φ∗(0) we find from Eq. (52)

Φ∗(0) ≈ πT

N

∑
m

Φ∗(ωm)
|Σ̃∗(ωm)|

χ(ωm). (55)

Using the fact that at large N the dominant contribution to the Matsubara sum comes from

m = 0,−1 and substituting the expressions for Φ∗(±πT ) and Σ∗(±πT ), we obtain

Φ∗(0) =
( 2
N

)3/2
πT

(
g

πT

)γ (
1−

(
T

Tp

)γ)1/2

. (56)

Then D0 = Φ∗(0)/Σ̃∗(0) is

D0 = i
( 2
N

)3/2 1
Sγ

(
1−

(
T

Tp

)γ)1/2

, (57)
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and the DOS at zero frequency is

N(0) = N0

1−
( 2
N

)3
(
1−

(
T
Tp

)γ)
2S2

γ

 . (58)

This agrees, up to a prefactor, with the estimate that we obtained in the analysis on the

Matsubara axis, by just assuming that D(ωm = πT ) is comparable to D(ω = 0).

We emphasize that N(0) differs from the normal state value N0 at all T < Tp, including

T = 0, where we expect superconductivity to disappear. We will show below that the limit

ω → 0 and T → 0 has to be taken with care, and at any non-zero ω the DOS indeed

transforms into N0 at T → 0. Still, strictly at ω = 0, N(0) < N0. This is somewhat similar

to the behavior of N(ω) in an ideal BCS superconductor, where N(0) = 0 for all T up to

Tc, while N(ω 6= 0) approaches N0 at T → Tc.

We next move to finite ω. In the Eq. (46) for Φ(ω), the second term ((1/N)
∫
...) is of

order Φ(ω)/N and can be neglected at large N . Evaluating the first term by summing up

the contributions from m = 0,−1, at which Φ∗(ωm)/|Σ̃∗(ωm)| is the largest, we obtain

Φ∗(ω) =
( 2
N

)3/2
πT

(
g

πT

)γ (
1−

(
T

Tp

)γ)1/2

FΦ

(
ω

πT

)
, (59)

where

FΦ(x) = 1
2

(
1

(1 + ix)γ + 1
(1− ix)γ

)
. (60)

Note that FΦ(x) is purely real and even in x, hence Φ∗(ω) is real and even in ω.

Because Φ∗(ω) is small in 1/N3/2, the self-energy at finite ω remains the same as in the

normal state, up to 1/N3 corrections:

Σ∗(ω) = πT
(
g

πT

)γ
FΣ

(
ω

πT

)
, (61)

where

FΣ(x) = i
∞∑
m=0

(
1

(2m+ 1 + ix)γ −
1

(2m+ 1− ix)γ
)

−i sin πγ2

∫ ∞
0

dy

yγ

(
2
πy
− coth πy2 + sinh πy

cosh πy + cosh πx

)
. (62)

The first term in FΣ(x) is real, the second is imaginary. At large x (i.e., at ω � πT ),

FΣ(x) ≈ (x1−γ/(1−γ))eiπγ/2. We plot the scaling functions FΦ(x), Re[FΣ(x)], and Im[FΣ(x)]

in Fig. 16.
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FIG. 16. The scaling functions FΦ( ω
πT ), FΣ( ω

πT ) and ω
πT FD( ω

πT ) = ω
πT FΦ( ω

πT )/FΣ( ω
πT ) for the

pairing vertex, the self-energy and the gap function respectively, see Eqs. (60), (62), and (65).

We recall that FΦ( ω
πT ) and FΣ( ω

πT ) are computed without the thermal contribution. The function

FΦ(x) is real, FΣ(x) and FD(x) are complex, i.e., the gap function ∆(x) is a complex function of

frequency. The results are for γ = 0.3 and γ = 0.9. Observe that ImFΣ(x) changes sign at some

frequency. This sign change is necessary to satisfy KK relation on Σ∗(πT ) = 0 (see Fig. 17).

We see that Im
[
FΣ

(
ω
πT

)]
changes sign as a function of frequency (hence, Im [Σ∗(ω)]

also changes sign). This sign change must happen because Im[Σ∗(ω)] is related by Kramers-

Kronig(KK) formula to Σ∗(πT ) = 0:

2T
∫ ∞

0
dω

Im Σ∗(ω)
ω2 + (πT )2 = Σ∗(πT ) = 0. (63)

The integral in the r.h.s. of (63) vanishes only if Im[Σ∗(ω)] changes sign at least once. We

verified numerically that the KK relation is indeed satisfied, see Fig.17. We remind in this
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FIG. 17. The verification of the KK transformation. Yellow squares – the self-energy obtained

directly along the Matsubara axis: Σ∗(iωn) = 2πT (g/2πT )γH(n, γ), Eq. (25). Blue circles – the

self-energy Σ∗(iωn) = −iπT (g/πT )γFΣ(ωn), where FΣ(iωn) = (2iωn/pi)
∫∞

0 dx ImFΣ(x)/(x2 +ω2
n)

is obtained by KK transformation from ImFΣ(x) along the real axis, see (62). The two expressions

coincide. To better show this we manually split the two expressions for Σ∗(iωn) by multiplying the

yellow curve by 1.01. Observe that FΣ(iπT ) = 0, i.e., the self-energy Σ∗(iωn), extracted from KK

transformation, vanishes at the first Matsubara frequency. We set γ = 0.9 and T = 0.01g.

regard that Σ∗ is the self-energy without the thermal contribution. The imaginary part of

the full self-energy, Im[Σ(ω)], indeed remains positive at all frequencies.

Substituting the results for Φ∗(ω) and Σ̃∗(ω) into ∆(ω) = Φ∗(ω)ω/Σ̃∗(ω) and D(ω) =

∆(ω)/ω, we obtain

∆(ω) =
( 2
N

)3/2 (
1−

(
T

Tp

)γ)1/2

ωFD

(
ω

πT

)
, D(ω) =

( 2
N

)3/2 (
1−

(
T

Tp

)γ)1/2

FD

(
ω

πT

)
.

(64)

At ω ≤ g, when Σ̃∗(ω) ≈ Σ∗(ω),

FD(x) =
FΦ

(
ω
πT

)
FΣ

(
ω
πT

) . (65)
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FIG. 18. (a) The real part of the scaling function F 2
D( ω

πT ), defined in Eq. (65), for γ = 0.3 and

γ = 0.9. The Re[F 2
D( ω

πT )] determines the frequency dependence of the DOS at large N , Eq. (66).

In the normal state FD = 0. Observe that Re[F 2
D( ω

πT )] has a peak at ω ∼ T . (b) and (c) The

magnified plots of Re[F 2
D( ω

πT )] at lager ω/(πT ). For γ = 0.3, Re[F 2
D( ω

πT )] gradually decreases, for

γ = 0.9 it changes sign at ω
πT ∼ 7.

The DOS is

N(ω) = N0 Re
[

1
(1−D2(ω))1/2

]
≈ N0

(
1 + 1

2 Re
[
D2(ω)

])

= N0

(
1 + 1

2

( 2
N

)3 (
1−

(
T

Tp

)γ)
Re

[
F 2
D

(
ω

πT

)])
. (66)

We see that the magnitude of N(ω)/N0−1 ≈ 1
2 ReD2(ω) is determined by the temperature-

dependent factor in (64) and depends on T/Tp. However, the frequency dependence of D(ω)

and of the DOS is determined by FD(ω/(πT )), which for any given γ is a universal function of

ω/T and does not depend on T/Tp. This implies that the characteristic frequency, at which

N(ω) deviates from N0, is determined by the temperature rather than by the magnitude of

the superconducting gap.
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FIG. 19. DOS at large ω ∼ g for γ = 0.9. We set N = 6 and T = 0.4Tp. At some ω ∼ g, N(ω)−N0

changes sign from negative to positive, and at even larger frequencies approaches zero from above.

Because FΦ(x) is real,

ReF 2
D(x) = F 2

Φ(x) (ReFΣ(x))2 − (ImFΣ(x))2

((ReFΣ(x))2 + (ImFΣ(x))2)2 . (67)

At small x = ω/πT , ReFΣ(x) ∝ x2 and ImFΣ(x) is finite. Then ReF 2
D(x) is negative. At

x, where ImFΣ(x) changes sign, ReFΣ(x) is finite, hence for this x ReF 2
D(x) is positive. In

between, ReF 2
D(x) necessary changes sign. This in turn implies that N(ω) < N0 at small x

and N(ω) > N0 at larger x. Then N(ω) has a dip at ω = 0 and a hump at a characteristic

frequency set by temperature, rather than by the gap itself. This frequency increases with

increasing T . This behavior is qualitatively different from that in a BCS superconductor,

where the maximum in the DOS is located at ω = ∆(T ) and shifts to a lower frequency

with increasing T because ∆(T ) gets smaller. We plot ReF 2
D(x) in Fig.18 for two different

values of the exponent γ. In both cases, the hump at ω ∼ T is clearly visible. The position

of the hump shifts to a lower frequency with increasing γ but remains at a finite ω even at

γ = 1.

On a more careful look, we find that there is still a small difference in the behavior of

the DOS at γ < 1/2 and γ > 1/2. Namely, at ω � T , Re Σ∗(x) = cos πγ/2(x1−γ/(1 − γ))

and Im Σ∗(x) = sin πγ/2(x1−γ/(1 − γ)). As a result, ReF 2
D(x) ∝ cosπγ is positive at

γ < 1/2 and negative at γ > 1/2. This implies that for γ > 1/2 N(ω) crosses N0 twice at

ω = O(T ), because (ImFΣ(x))2 is larger than (ReFΣ(x))2 at both large and small x. The
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FIG. 20. ∆(ω) for various T > Tcross. Upper panel: γ = 0.3, N = 6. Lower panel: γ = 0.9, N = 6.

Red lines are for the real part ∆′(ω) and blue lines are for the imaginary part ∆′′(ω). At small

but non zero ω, both the real and imaginary parts are finite, in contrast to the BCS-like behavior

where ∆′′(ω) is zero up to some ω0 ≈ ∆′ at low temperatures.

second crossing at x ∼ 7 is seen in Fig. 16 for γ = 0.9. Digging further into this issue, we

find that for γ > 1/2, N(ω) crosses N0 one more time, now at ω ∼ g � T , when the bare ω

term in Σ̃∗(ω) becomes relevant. To see this, we extend the analysis of the DOS to ω ∼ g.

The calculation is straightforward and we only cite the result: the difference N(ω)/N0 − 1

at ω ∼ g is proportional to cos πγ + (1− γ)2(ω/g)2γ + 2(1− γ)(ω/g)γ cosπγ/2. Solving for

N(ω) = N0, we find for γ > 1/2 the solution at ω = ω1 ∼ g. We show the behavior of

N(ω)/N0 at large ω ∼ g in Fig. 19.

In Figs.20 and 21 we show the results of the full numerical calculation of the temperature

evaluation of the gap ∆(ω) and the DOS N(ω) for two values of γ: γ = 0.3 and γ = 0.9 (one

is larger than 1/2, another is smaller). We set N = 6 in both cases (the numerical analysis

38



p

p

p

p

p

p

p

p

p

FIG. 21. The DOS N(ω) for various T > Tcross. Upper panel: γ = 0.3, N = 6. Lower panel:

γ = 0.9, N = 6. Right panels: The temperature dependence of the characteristic frequency ωp,

defined as the peak position of the N(ω).

for larger N is too involved for γ = 0.3). For γ = 0.9, N = 6 is above Ncr ∼ 1.3. For

γ = 0.3, Ncr ≈ 9.6 > 6. In this situation, the behavior similar to the one at N > Ncr exists

above the crossover temperature Tcross(N) (see Sec. V), and we show the results only in this

T range. The value of Tcross(N = 6) for γ = 0.3 is only 0.01Tp, so the range of T > Tcross is

rather wide.

We see from Fig.20 that the imaginary part of ∆(ω) is finite even at very small ω,
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P → ∞

P → 0

P → ∞

P → 0

FIG. 22. The spectral function A(ω) at a fixed T > Tcross, plotted as a function of ω for various

values of parameter P , which measures the strength of thermal contributions to the self-energy and

the pairing vertex. At large P , A(ω) shows the same behavior as the DOS, with the dip at small

ω. At small P , it shows instead the maximum at ω = 0. The plots are for γ = 0.3 and γ = 0.9.

consistent with Eq. (64). For the DOS, we clearly see from Fig. 21 that there is a dip in N(ω)

at small frequencies and the position of the maximum in N(ω) is set by the temperature.

A remark is in order here. The integrated DOS
∫
dωN(ω), with N(ω) as in Fig.21,

does have some T dependence. This seems problematic, because the integrated DOS is

proportional to the total number of particles, which is the conserved quantity. In fact, there

is no contradiction. The reasoning is that the momentum integration in Eliashberg equations

is performed assuming particle-hole symmetry, i.e., neglecting contributions from energies

of order µ. There are additional contributions to the DOS from energies of order µ, both in

the normal and the superconducting state. They are not equal, because µ changes between

normal and superconducting states72. This additional contribution must be included to

ensure particle conservation.

We next consider the spectral function A(ω) = −(1/π) Im[G(kF , ω)]. In terms of original

Φ(ω) and Σ̃(ω), we have

A(ω) = − 1
π

Im
[

Σ̃(ω)
Σ̃2(ω)− Φ2(ω)

]
. (68)
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Expressing Σ̃(ω) and Φ(ω) via Σ̃∗(ω) and Φ∗(ω) using Eq. (51), we find

A(ω) = − 1
π

Im
[

Σ̃∗(ω)
(Σ̃∗(ω))2 − (Φ∗(ω))2

L(ω)
]
, (69)

where

L(ω) = 1
1 +Q∗(ω) =

√
Φ∗(ω)2 − Σ̃∗(ω)2

P sgn Im Σ̃∗ +
√

Φ∗(ω)2 − Σ̃∗(ω)2
. (70)

To leading order in 1/P , A(ω) ∝ 1
P

Re
 1√

1−(Φ∗(ω)/Σ̃∗(ω))2

 ∝ N(ω)/N0, i.e., the spectral

function has the same dependence on ω as the DOS. Accordingly, at a finite T , A(ω) is

non-zero for any frequency, and the position of the maximum in A(ω) scales with T and

remains at a finite frequency at Tp (see Fig.22). If P is finite, either because the system

is at some distance from a QCP, or we probe A(ω) for fermions connected by momenta

different from the one at which static χ diverges (e.g., near-nodal fermions in the cuprates,

if a pairing boson is an antiferromagnetic spin fluctuation), the behavior of A(ω) depends

on the interplay between P and
√

Φ∗(ω)2 − Σ̃∗(ω)2 at relevant ω. the other term in L(ω) in

(70). If P is smaller, L(ω) ≈ 1, and

A(ω) = − 1
π

Im
[

Σ̃∗(ω)
(Σ̃∗(ω))2 − (Φ∗(ω))2

]
. (71)

Substituting the expressions for Φ∗(ω) and Σ̃∗(ω) we find that in this situation A(ω) is

peaked at zero frequency, as if the system was in the normal state. We show this behavior

in Fig.22.

The analysis beyond the leading order in 1/N proceeds in the same way as for Matsubara

frequencies. As N gets smaller, the maximum in the DOS becomes more pronounced, and,

at the same time, the DOS at zero frequency, N(0) gets smaller. These modifications get

larger as N decreases towards Ncr and eventually, at N < Ncr, the system behavior at the

lowest T changes qualitatively. We discuss this in the next Section.

V. THE CASE N < Ncr

At smaller N < Ncr, the analytical solution is difficult to obtain because there is no

obvious small parameter, so our discussion will be based on the numerical results.
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FIG. 23. The pairing vertex Φ(ωm) and the gap ∆(ωm) as functions of Matsubara frequency for

γ = 0.9, N = 1, and T = 0.18Tp < Tcross. Observe that ∆(ωm) is a smooth function, i.e., ∆(±πT )

is about the same as at ±3πT , etc.

FIG. 24. The gap ∆(πT ) = ∆0 as a function of temperature for γ = 0.9 and three different

N < Ncr ≈ 1.34. The gap now tends to a finite value at T = 0. For N slightly below Ncr, ∆0(T )

is still non-monotonic, but for N = 1, ∆0 monotonically increases with decreasing T .

A. Non-linear gap equation in Matsubara frequencies

In Fig.23 we show the results for Φ∗(ωm) and ∆(ωm) for γ = 0.9 and N = 1 (which is

smaller than Ncr ≈ 1.3) at the lowest temperatures. The results for γ = 0.3 and N = 1

are very similar. We see that now not only Φ∗(ωm), but also ∆(ωm) does not differ much
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between ωm = ±πT and other Matsubara frequencies. This is quite different from ∆(ωm)

at N > Ncr, see Fig.13. The smooth frequency dependence of ∆(ωm) in Fig. 23 implies

that at N < Ncr and low T fermions with Matsubara frequencies ωm 6= ±πT also contribute

to the pairing. This is consistent with our earlier result that at N < Ncr the transition

temperature remains finite even we exclude fermions with ωm = ±πT from the Eliashberg

equations (the corresponding temperature is T̃p(N) in Fig.8).

In Fig.24 we show ∆(πT ) = ∆0 as a function of T . We show the case γ = 0.9, but we

verified that the T dependence of ∆(πT ) is quite similar for other γ. We see that ∆0 now

tends to a finite value at T = 0. For N slightly below Ncr, the temperature dependence of

∆0 is still non-monotonic, i.e., as T is reduced below Tp, ∆0 first increases and then drops

below a certain T , before reaching a finite value at T → 0. At smaller N , the maximum in

∆0(T ) becomes shallow, and at N = 1, ∆0 monotonically increases as T decreases.

Comparing the behavior of ∆0(T ) at N > Ncr and N < Ncr, Figs. 13 and 24, we see

that near Tp, the behavior in the two cases is the same, but at low T , ∆0(T ) at N > Ncr

continue decreasing, while ∆0(T ) at N < Ncr saturates. The temperature, at which the two

curve separate, marks the crossover, at N < Ncr, between the conventional superconducting

behavior at low T and the behavior, similar to that at N > Ncr, at higher T . In the higher

T region, the pairing can still be viewed as induced by fermions with Matsubara frequencies

±πT . We label the crossover temperature as Tcross. It has the same dependence on N as

T̃p(N) in Fig.8 (it also vanishes at N = Ncr), but numerically Tcroos is larger than T̃p(N).

We will see that the DOS and the spectral function undergo a crossover at T ∼ Tcross.

B. Non-linear gap equation in real frequencies

We used the same computational procedure as at large N and obtained Φ∗(ω), Σ̃∗(ω),

and ∆(ω) along the real frequency axis. We present the results in Fig.25. We clearly see

the crossover in the system behavior around Tcross(N). At T < Tcross(N), the behavior

of the gap function is conventional in the sense that Re ∆(ω = 0) is finite and Im ∆(ω)

emerges only above a finite frequency, approximately equal to ∆(0). The self-energy Σ∗(ω)

at ω < ∆0 is strongly reduced compared to its value in the normal state. At T > Tcross(N),

Im ∆(ω) ∝ ω at small frequencies, and Re ∆(ω) ∝ ω2, i.e., the systems displays the same

gapless superconductivity as at N > Ncr. In the same T range the self-energy Σ∗(ω) almost

43



p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

FIG. 25. Real and imaginary parts of the gap ∆(ω) as functions of ω for various T . The results are

for γ = 0.3 and γ = 0.9, in both cases for N < Ncr. Red and blue lines are for ∆′(ω) and ∆′′(ω),

respectively. The data clearly show a crossover at T ∼ Tcross from BCS-like behavior at smaller T

to the behavior similar to that at N > Ncr, at larger T .

recovers the normal state value (see Fig.25).

In Fig.26 we show the behavior of the DOS N(ω). We see a qualitative change of the

behavior between T > Tcross(N) and T < Tcross(N). At smaller T , N(ω) is similar to that

in a BCS superconductor: it has a sharp peak at ω ≈ ∆(0) and nearly vanishes below the

peak frequency. At T increases, but remains smaller than Tcross(N), the position of the
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FIG. 26. DOS N(ω) as a function of frequency for γ = 0.3 and γ = 0.9 and several N < Ncr(γ).

At low T < Tcross, the DOS has a sharp peak at ω = ∆(T ) and nearly vanishes below the peak. At

higher T > Tcross the DOS has qualitatively the same functional form as for large N , and the peak

position shifts to a higher frequency with increasing temperature. The insets: the peak position

ωp as function of T/Tp. The crossover at Tcross is clearly visible.

maximum in N(ω) shifts to a smaller frequency because ∆(0) decreases, i.e., the gap in the

DOS “closes”. However, at higher T > Tcross(N), N(ω) becomes non-zero at all frequencies,

and the position of its maximum shifts to a higher frequency as T increases, and remains

finite at T = Tp− 0, i.e., the gap in the DOS “fills in”. We plot the variation of the position

of the maximum in N(ω) with T in the inserts of the plots of the DOS in Fig.26.

In Fig. 27 we present our results for the spectral function A(ω). It shows a similar

crossover around Tcross. We recall that the form of the spectral function depends on the

strength of the thermal contribution to the self-energy (the P term in Eq. (70)). In the limit

when the thermal contribution is large, A(ω) displays the same behavior as N(ω). In the

opposite limit when P is smaller, L(ω) in Eq. (70) is close to one, and A(ω) at T < Tcross(N)
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FIG. 27. The spectral function A(ω) for γ = 0.3 and γ = 0.9 and several N < Ncr. Left panels:

A(ω) for a set of temperatures at either strong or weak thermal contribution (the limits P = ∞

and P = 0 in Eq. (70)). At small T < Tcross the spectral function has sharp peaks at ω = ±∆(T ),

like in a BCS superconductor. At T > Tcross, A(ω) shows the same behavior as the DOS in Fig.

26, when the thermal contribution is strong, and develops a single peak at ω = 0 when the thermal

contribution is weak. Right panels – A(ω) at a fixed T for different strengths of the thermal

contribution. Upper panels – T < Tcross, lower panels – T > Tcross.

has two sharp peaks at frequencies close to ±∆(0), as expected in a BCS superconductor.

At T > Tcross(N), this behavior changes, and A(ω) has a single peak at ω = 0. We show

the variation of A(ω) between T < Tcross(N) and T > Tcross(N) in the right panels of Fig.

27, for both smaller and larger P . In the left panels, we show the evolution of A(ω) with

increasing P at T < Tcroos(N) and at T > Tcross(N).
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VI. DISCUSSION

In this work, we analyzed the competition between the tendency towards fermionic inco-

herence and NFL and towards pairing near a quantum-critical point in a metal. We used

the γ model of dynamical fermion-fermion interaction, mediated by a critical boson with

susceptibility χ(Ωm) ∝ (g/|Ωm|)γ. To understand the competition, we extended the model

to SU(N) global symmetry and used N as a parameter go gauge the relative strength of the

interaction in the particle-particle and particle-hole channels. At large N , the interaction in

the pairing channel is smaller by 1/N than the one that gives rise to a NFL in the normal

state. Earlier work by some of us and others22 found markedly different variation of system

behavior with N at T = 0 and at a finite T . Namely, the calculations at T = 0 showed that

superconductivity only develops if N is smaller than some γ-dependent Ncr, while at larger

N the system remains in a NFL normal state. Computations of the onset temperature for

the pairing Tp(N), on the other hand, showed that the line Tp(N) by-passes Ncr and Tp(N)

remains finite at any N , no matter how large N is (see Fig.2). The authors of22 argued

that this discrepancy is due to the fact that Eliashberg equations for spin-singlet pairing

contain fermionic self-energy without thermal contribution, and this self-energy is large for

all frequencies, except for ωm = ±πT , at which it vanishes. The pairing interaction between

fermions with πT and −πT is then not countered by the self-energy. This pairing interaction

scales as 1/(NT γ) and opens up the gap ∆(±πT ) at T = Tp ∝ 1/N1/γ. A non-zero ∆(±πT )

then induces the pairing gap for fermions with other Matsubara frequencies.

In this paper we extended the analysis of the pairing problem to T < Tp(N) and solved

the non-linear gap equation. We analyzed the large N limit analytically and solved the gap

equation at smaller N numerically. We first obtained ∆(ωm) along Matsubara axis and used

it to compute the Free energy and the specific heat. We found that the specific heat jumps

at Tp, but at large N the relative magnitude of the jump ∆C(Tp − 0)/Cn(Tp) is reduced by

the factor 1/N2. The behavior of the specific heat below Tp is also rather unconventional,

as C(T ) recovers its normal state form at T → 0.

We then solved the gap equation along the real axis, using ∆(ωm) as input. We obtained

∆(ω) and used it to compute the DOS N(ω) and the spectral function A(ω). In a weak

coupling, BCS-type superconductor A(ω) and N(ω) are peaked at the gap value ∆(T ), and

the peak position shifts to a smaller ω as temperature increases towards Tp (the gap in N(ω)
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and A(ω) “closes” with increasing T ).

We found that at N > Ncr, the behavior of N(ω) and A(ω) is very different. The DOS

remains finite at all frequencies, including ω = 0, and the position of the maximum in

N(ω) increases linearly with T and remains finite at Tp. As T increases towards Tp, N(ω)

at small ω increases and N(ω) at larger ω decreases, as if the gap in N(ω) “fills in” with

increasing temperature. The form of the spectral function A(ω) depends on the strength of

the thermal contribution to the self-energy. When this contribution is strong, A(ω) has the

same frequency dependence as the DOS N(ω). When it is smaller, A(ω) has a a single peak

at ω = 0.

At N < Ncr, which includes the original case of N = 1, this behavior holds above a

certain temperature Tcross(N) (see Fig. 3). At T < Tcross, both N(ω) and A(ω) display a

BCS-like behavior with peaks at ω = ∆(T ).

The issue, which we didn’t discuss in this work, is whether gap fluctuations (transverse or

longitudinal) destroy long-range superconducting order in some T range below Tp(N). It is

very likely that in some range below Tp(N) long-range superconducting order gets destroyed,

and the actual Tc < Tp. We analyze this issue in some detail in Ref.39, where we argue that

Tc is comparable to Tcross, i.e., the range Tcross < T < Tp largely corresponds to pseudogap

region. In the theory, which we presented here, the novel behavior at Tcross(N) < T < Tp is

due to the fact that in this T range the feedback from the pairing on the fermionic self-energy

is weak. This does not critically depend on the existence of long-range superconducting

order. In fact, if fluctuations destroy superconducting phase coherence, the feedback will

be further reduced. In this respect, our results equally describe the system behavior in the

pseudogap phase, more specifically, in the so-called weak pseudogap regime, where long-

range superconducting order is destroyed by phase fluctuations, but the gap magnitude is

still finite.

A. Application to the cuprates

The transformation from “gap closing” behavior at small T to “gap filling” behavior at

T ∼ Tp has been observed in high-Tc cuprates, in the DOS49 and ARPES measurements

of the spectral function in the antinodal region45,49–57. Symmetrized data of MDC ARPES

measurements along a particular direction of k in the near-nodal region showed the trans-
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formation from two peaks at a finite frequency to a single peak at ω = 0 (this is termed as

the appearance of the Fermi arc). These results are consistent with our microscopic analysis

for the DOS and also for the spectral function, if we assume that the thermal contribution

is stronger in the antinodal region than in the near-nodal region. The strength of thermal

contribution scales with the static bosonic susceptibility χ′(0). Static χ′(0) is larger for

antinodal fermions in, e.g., spin-fluctuation models7,16,18, where the interaction is peaked at

momentum at or near (π, π).

To quantitatively apply our results to the cuprates, we need to extend our analysis to

include the d−wave symmetry of the gap function. This is less relevant for the DOS and

A(ω) in the antinodal region, as there the gap can be approximated by the constant, except

for N(ω) at the smallest frequencies at T < Tcross, as the sharp peak in the DOS gets

somewhat broadened after angular integration73. However, the d−wave angular dependence

of the gap must be included into the analysis of the spectral function in the nodal region near

Brillouin zone diagonals. To model the d−wave case, we added cos 2θ factor to Φ∗(ω) and

solved the Eliashberg equations at a given T , and γ. We show the results in Fig. 28, where

we plot the spectral function along the Fermi surface. For simplicity, in this calculation we

set P to be angle-independent. Making P smaller for nodal fermions and larger for antinodal

ones will widen the range of the behavior seen near the nodes.

We see from Fig. 28 that at T < Tcross, A(ω) has two weakly separated peaks in the nodal

region and more strongly separated peaks in the antinodal region. This is the expected result

for a d-wave superconductor at T � Tc. At high T > Tcross, the evolution of the spectral

function is similar to the one in Fig.22. Namely, near the node A(ω) has a single maximum

at ω = 0, while in the antinodal region A(ω) has a dip at ω = 0 and a shallow maximum,

whose frequency scales with T . In between, the frequency dependence of A(ω) gradually

evolves from a single peak at ω = 0 to two maxima at finite ω and a dip at zero frequency.

This behavior reproduces the key features of ARPES data in Refs.50–57. The behavior of

N(ω) is quite similar to that of A(ω) in the antinodal region. This is fully consistent with

STM data49.
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FIG. 28. The spectral function A(ω) along the Fermi surface. At T < Tcross (the middle panel)

A(ω) in the nodal region (Red) has two closely located peaks, which merge at the node. In the

antinodal region (Green) the two peaks are well separated. At T > Tcross (the right panel) A(ω)

has a maximum in the nodal region, which corresponds the Fermi arc, but in the antinodal region

A(ω) shows two separate maxima.
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APPENDIX: ANALYTIC CONTINUATION FROM MATSUBARA AXIS TO

REAL FREQUENCY AXIS

In this Appendix we show the derivation of Eq. (46) for the pairing vertex Φ∗(ω) and the

self-energy Σ∗(ω) along real frequency axis. We follow Ref.3 and use spectral decomposition

approach. Below we explicitly keep the factors i for Matsubara frequencies, e.g., define the

interaction as χ(iΩm) = gγ

|Ωm|γ .
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For a general complex z, we can define the retarded χR(z) as

χR(z) =
(
−g2

z2

)γ/2
(72)

By definition, χR(z) is analytic in the upper half-plane of z and coincides with χ(iΩm) at

positive Ωm.

Immediately above real frequency axis, at z = ω + iδ) we have from (72):

ReχR(ω) = gγ

|ω|γ
cos πγ2

ImχR(ω) = gγ sgn(ω)
|ω|γ

sin πγ2 . (73)

The two functions are expressed via each other by Kramers-Kronig relations: ReχR(ω) =

(2/π)P
∫∞
0 dx ImχR(x)x/(x2 − ω2); ImχR(ω) = −(2/π)ωP

∫∞
0 dx ImχR(x)/(x2 − ω2).

ReχR(ω) is even function of ω, and ImχR(ω) is odd in ω.

According to Cauchy theorem, a retarded χR(z) in the upper half-plane of z can be

expressed via ImχR(x) as

χR(z) = 1
π

∫ ∞
−∞

ImχR(x)dx
x− z

, Im z > 0. (74)

In particular, at Ωm > 0,

χ(iΩm) = 1
π

∫ ∞
−∞

ImχR(x)dx
x− iΩm

= 2
π

∫ ∞
0

ImχR(x)xdx
x2 + Ω2

m

(75)

For negative Ωm we need to introduce the retarded χA(z). It is related to ImχR(x) by the

same formula as (74), but z should be in the lower half-plane:

χA(z) = 1
π

∫ ∞
−∞

ImχR(x)dx
x− z

, Im z > 0 (76)

We will need both χR(z) and χA(z) below for complex z. Along the Matsubara axis, z = iΩm,

we will just use the fact that χ(iΩm) is an even function of Ωm and extend (75) to negative

Ωm. We will use the same trick for the Green’s function G(iωmkF ) – we express it via

ImGR(x,kF ) for ωm > 0 and use the fact that G(iωmkF ) is odd in ωm to extend the relation

between G(iωmkF ) and ImGR(x,kF ) to negative ωm.

Now, the expressions for Φ(ωm) and Σ̃(ωm), Eq. (6), contain the susceptibility χ(iωm −

iωm′), where ωm is an external Matsubara frequency, which we want to convert to real axis.

In distinction from χ(iΩm), this susceptibility cannot be analytically continued from the
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Matsubara axis by just replacing iωm by z, because χ(z − iωm′) = (−g2/(z − iωm′)2)γ/2

has a set of branch cuts in the upper half-plane of z, at z = iωm′ + z0, where z0 is a real

variable (Ref.3). Due to this complication, we have cannot simply replace iωm by real ω in

χ(iωm−iωm′) and have to implement the full spectral decomposition procedure. Namely, we

depart from Eliashberg equations along Matsubara axis and use Cauchy theorem to express

G(iωm,k) and χ(iωm− iωm′) in terms of retarded ImGR(x,k) and ImχR(x) along real axis

as
G(iωm,k) =

∫ ∞
−∞

dx

π

ImGR(x,k)
x− iωm

χ(iωm − iωm′) =
∫ ∞
−∞

dy

π

ImχR(y)
y − i(ωm − ωm′)

(77)

We then explicitly sum over ωm′ and integrate over k and obtain the expressions for Σ̃(iωm)

and Φ(iωm), in which the dependence on ωm is only via 1/(iωm − x− y). This form can be

straightforwardly continued analytically from Matsubara to real frequency by just replacing

iωm by ω + i0+.

For compactness, we do the calculations in Nambu formalism, in which one operates with

the 2 × 2 matrix Green’s function Ĝ(iωm,k), in which Σ(iωm) and Φ(iωm)) as elements of

the 2× 2 matrix self-energy Σ̂(iωm). The Eliashberg equation in Nambu formalism is

Σ̂(iωn) = −T
∑
m

∫ d2k

(2π)2 τ̂3Ĝ(iωm,k)τ̂3χ(iωn − iωm), (78)

where τ̂3 is a Pauli matrix. Σ̂ = Στ̂0−Φτ̂1, and the matrix Ĝ(iωm,k) = −(iωm− Σ̂(iωm))−1.

The diagonal and off-diagonal elements of Ĝ(iωm,k) are normal and anomalous Green’s

functions in conventional notations.

Substituting the spectral representation (77) into (78) and performing the summation

over ωm, using T
∑∞
m=−∞

1
x−iωm

1
y−iωn+iωm = nF (x)+nB(−y)

iωn−x−y , where nF and nB are Fermi and

Bose distribution functions respectively, we obtain

Σ̂(iωn) = −T
∑
m

∫ d2k

(2π)2

∫ dxdy

π2 τ̂3
Im ĜR(x,k)
iωm − x

τ̂3
ImχR(y)

iωn − iωm − y

= −
∫ d2k

(2π)2

∫ dxdy

π2 τ̂3 Im ĜR(x,k)τ̂3 ImχR(y)nF (x) + nB(−y)
iωn − x− y

(79)

Replacing iωn with ω + i0+, we obtain the retarded self-energy in real frequencies

Σ̂R(ω) = −
∫ d2k

(2π)2

∫ dxdy

π2 τ̂3
Im ĜR(x,k)

ω − x− y + i0+ τ̂3 ImχR(y) [nF (x) + nB(−y)] (80)
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Using the fact that for any two functions F and G we have F ImG = Im(GReF ) −

iRe(G ImF ), we express Im ĜR(x,k)/(ω − x− y + i0+) via the full ĜR(x,k) as

2 Im ĜR(x,k)
ω − x− y + i0+ = Im

[
ĜR(x,k)

(
1

ω − x− y + i0+ + 1
ω − x− y − i0+

)]

−iRe
[
ĜR(x,k)

(
1

ω − x− y + i0+ −
1

ω − x− y − i0+

)]

= Im
[
ĜR(x,k)

(
1

ω − x− y + i0+ + 1
ω − x− y − i0+

)]
+ 2πiδ(ω − x− y) Re iĜR(x,k).

We substitute this form into (80) and integrate over x by closing the integration contour

over the upper half-plane of complex x. Because ĜR(x,k) is analytic in the upper half plane,

the poles come from 1/(ω− x− y+ i0+), at x = y−ω+ i0+ with residue 1 and from nF (x),

at x = i(2n+ 1)πT , n ≥ 0, with residues −T . Using the residue theorem, we find

Σ̂R(ω) = −1
2

∫ d2k

(2π)2

∫ dy

π
ImχR(y)

× Im
[∫ dx

π
(nF (x) + nB(−y)) τ̂3Ĝ

R(x,k)τ̂3

(
1

ω − x− y + i0+ + 1
ω − x− y − i0+

)]

− i
∫ d2k

(2π)2

∫ dy

π
ImχR(y) (nF (ω − y) + nB(−y)) Re

[
iτ̂3Ĝ

R(ω − y,k)τ̂3
]

=
∫ d2k

(2π)2

∫ dy

π
ImχR(y)T

∑
ωn>0

Im
[
iτ̂3Ĝ

R(iωn,k)τ̂3
2

ω − iωn − y

]

+
∫ d2k

(2π)2

∫ dy

π
ImχR(y) (nF (ω − y) + nB(−y))×

[
Im(iτ̂3G

R(ω − y,k)τ̂3)− iRe(iτ̂3G
R(ω − y,k)τ̂3)

]
=2T

∑
ωn>0

∫ d2k

(2π)2 Im
[
iτ̂3Ĝ

R(iωn,k)τ̂3

∫ dy

π

ImχR(y)
ω − iωn − y

]

−
∫ d2k

(2π)2

∫ dy

π
τ̂3Ĝ

R(ω − y,k)τ̂3 ImχR(y) (nF (y − ω) + nB(y)) , (81)

where we also used nF (ω − y) + nB(−y) = − [nF (y − ω) + nB(y)].

According to (76), (1/π)
∫
dy Imχ(y)/(ω − iωn − y) = −χA(ω − iωn), because complex

z = ω− iωn is in the lower half-plane of complex z. For practical purposes, however, we just

have

χA(ω − iωn) ≡ χ(ω − iωn) =
(

g2

(ω − iωn)2

)γ/2
(82)

Using this, we finally obtain

Σ̂R(ω) = −2T
∑
ωn>0

∫ d2k

(2π)2 Im[iτ̂3Ĝ
R(iωn,k)τ̂3χ(ω − iωn)]

−
∫ d2k

(2π)2

∫ dy

π
Im[χR(y)]τ̂3Ĝ

R(ω − y,k)τ̂3 (nF (y − ω) + nB(y)) .
(83)
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Let’s now spit this matrix equation into the equations for the pairing vertex ΦR(ω) and

conventional (non-anomalous) self-energy ΣR(ω) by expressing Σ̂R(ω) as

Σ̂R(ω) = ΣR(ω)τ̂0 − ΦR(ω)τ̂1 (84)

and expressing τ̂3G(ω,k)τ̂3 as

τ̂3G
R(ω,k)τ̂3 = −(ω + ΣR(ω))τ̂0 − ξkτ̂3 + ΦR(ω)τ̂1

ξ2
k + ΦR(ω)2 − (ω + ΣR(ω))2 . (85)

where ξk is the fermionic dispersion. This procedure requires some care because, strictly

speaking, the Dyson equation holds for time-ordered Green’s functions, but not for retarded

Green’s functions. Eq. (85) is valid assuming that we can analytically continue the Dyson

equation for time-ordered Green’s functions

τ̂3G(ω,k)τ̂3 = −(ω + Σ(ω))τ̂0 − ξkτ̂3 + Φ(ω)τ̂1

ξ2
k + Φ(ω)2 − (ω + Σ(ω))2

into the upper half-plane. This holds if (z + ΣR(z))2 − ΦR(z)2 does not become real and

positive anywhere in the upper half plane of complex z, so there are no extra poles, induced

by the denominator. In our case, we are safe because already in the normal state the

largest term in ΣR(z) is the imaginary thermal contribution +iπTχ(0) with the same sign

as sgn[Im z].

Expressing next
∫
d2k/(2π)2 = N0

∫
dξk, where N0 is the DOS in the normal state, and

integrating over ξk, we obtain from (85)
∫ d2k

(2π)2 τ̂3G
R(ω,k)τ̂3 = N0

∫ ∞
−∞

dξkτ̂3G
R(ω,k)τ̂3 = πN0

−Σ̃R(ω)τ̂0 + ΦR(ω)τ̂1√
(ΦR(ω))2 − (Σ̃R(ω))2

, (86)

where Σ̃R(ω) = ω + ΣR(ω). Substituting this into the r.h.s. of (83), absorbing the density

of states N0 into χ, splitting Σ̂R(ω) into normal and anomalous components, and using the

fact that −iΣ̃R(iωn) and ΦR(iωn) are real, we obtain

Σ̃R(ω) = ω − πT
∑
ωm>0

−iΣ̃(iωm)√
(Φ(iωm))2 + (−iΣ̃(iωm))2

(χ(ω + iωm)− χ(ω − iωm))

+
∫
dy
[
SΣ(ω − y) ImχR(y) (nF (y − ω) + nB(y))

]
ΦR(ω) = πT

∑
ωm>0

Φ(iωm)√
(Φ(iωm))2 + (−iΣ̃(ωm))2

(χ(ω + iωm) + χ(ω − iωm))

+
∫
dy
[
SΦ(ω − y) ImχR(y) (nF (y − ω) + nB(y))

]
(87)
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where

SΦ(ω) = ΦR(ω)√
(ΦR(ω))2 − (Σ̃R(ω))2

SΣ(ω) = Σ̃R(ω)√
(ΦR(ω))2 − (Σ̃R(ω))2

(88)

At a finite T and small y, nB(y) ≈ T/y. Then ImχR(y)nB(y) scales as T/|y|1+γ, and

the integrals over dy in the expressions for Σ̃(ω) and Φ(ω) in (87) diverge. The divergent

contribution can be eliminated by introducing new Φ∗,R(ω) and Σ̃∗,R(ω), related to ΦR(ω)

and Σ̃R(ω) by

Σ̃∗,R(ω) = Σ̃R(ω)(1−Q(ω)), Φ∗,R(ω) = ΦR(ω)(1−Q(ω)), (89)

where

Q(ω) = P√
(ΦR(ω))2 − (Σ̃R(ω))

, P =
∫ ∞
−∞

dy Imχ(y)T
y

= πTχ(0) (90)

One can easily verify that the equations for Φ∗,R(ω) and Σ̃∗,R(ω) are the same as for ΦR(ω)

and Σ̃R(ω), but without the divergent pieces:

Σ̃∗,R(ω) = ω + iπT
∑
ωm>0

Σ̃(ωm)√
(Φ(ωm))2 + (Σ̃(ωm))2

(χ(ωm + iω)− χ(ωm − iω))

+
∫
dy ImχR(y)

[
SΣ(ω − y) (nF (y − ω) + nB(y))− SΣ(ω)T

y

]

Φ∗,R(ω) = πT
∑
ωm>0

Φ(ωm)√
(Φ(ωm))2 + (Σ̃(ωm))2

(χ(ωm + iω) + χ(ωm − iω))

+
∫
dy ImχR(y)

[
SΦ(ω − y) (nF (y − ω) + nB(y))− SΦ(ω)T

y

]
(91)

The ratio Φ∗,R(ω)/Σ̃∗,R(ω) is the same as ΦR(ω)/Σ̃R(ω), i.e., the gap function ∆R(ω) =

ωΦR(ω)/Σ̃R(ω) can be equally expressed via non-singular Φ∗,R(ω) and Σ̃∗,R(ω). Furthermore,

a little experimentation shows that SΦ(ω) and SΣ(ω), given by (88), can be equally expressed

via Φ∗,R(ω) and Σ̃∗,R(ω), as

SΦ(ω) = Φ∗,R(ω)√
(Φ∗,R(ω))2 − (Σ̃∗,R(ω))2

sgn Im Σ̃∗,R(ω)

SΣ(ω) = Σ̃∗,R(ω)√
(Φ∗,R(ω))2 − (Σ̃∗,R(ω))2

sgn Im Σ̃∗,R(ω). (92)
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Equations (91) are free from divergencies and can be readily extended to N 6= 1, as we did

in the main text. Note that the sign of Im Σ̃∗,R(ω) is not fixed by causality and can change

between different ω, in distinction to Im Σ̃R(ω), which has to be positive.

Note by passing that ΦR(ω) and Σ̃R(ω) can be expressed via Φ∗,R(ω) and Σ̃∗,R(ω) in a

manner similar to Eq. (89):

ΦR(ω) = Φ∗,R(ω) (1 +Q∗(ω)) , Σ̃R(ω) = Σ̃∗,R(ω) (1 +Q∗(ω)) , (93)

where

Q∗(ω) = πTχ(0)sgn Im Σ̃∗,R(ω)√
(Φ∗,R)2(ω)− (Σ̃∗,R)2(ω)

(94)

Eqs. (91) have been solved numerically by iterations. For practical purposes, we found

that in some cases the convergence is faster if we do calculations in two steps: first evaluate

intermediate Φ∗∗,R and Σ̃∗∗,R, related to ΦR and Σ̃R by the same formulas as in (89), but

with P =
∫ δ
−δ dy ImχR(y)T

y
, where δ is some finite number, and then compute Φ∗,R and

Σ∗,R by adding the rest of the integral in P . The best convergence is achieved by adjusting

the value of δ. In the calculations for a finite P , we computed ΦR(ω) and Σ̃R(ω) directly,

without introducing Φ∗,R(ω) and Σ̃∗,R(ω).
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