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Realization of non-reciprocal devices, such as isolators and circulators, is of fundamental im-
portance in microwave and photonic communication systems. This can be achieved by breaking
time-reversal symmetry in the system or exploiting nonlinearity and topological effects. However,
exploration of non-reciprocal devices remains scarce in acoustic systems. In this work, sound prop-
agation in a space-time modulated medium is theoretically studied. Finite-difference time-domain
(FDTD) simulations are carried out to verify the results. Functionalities such as mode conversion,
parametric amplification and phase conjugation are demonstrated.

I. INTRODUCTION

Reciprocity is a fundamental principle for most wave systems in which the relationship between a source at one point
and the measured response at another point is symmetric when the source and measurement points are interchanged.
For a long time, non-reciprocal devices that break this symmetry have been pursued since there are many practical
situations where breaking reciprocity can be advantageous. In electric circuits, non-reciprocity can be easily achieved
through nonlinear semiconductor devices, and diodes and transistors are widely used in almost all electronic systems.
For optics and electromagnetics, non-reciprocity has been demonstrated using magnetic field biasing1, nonlinearity2,3,
systems with angular momentum bias4 and topological insulators5–7. Despite the growing interest for non-reciprocity
in optics and electromagnetics in recent years, non-reciprocal phenomena and devices for acoustic waves are less
explored8.

For acoustic systems, non-reciprocity has been primarily achieved through nonlinear effects that partially convert
the energy in fundamental modes into higher harmonics, and then applying spatial or temporal frequency filters9–12.
However, nonlinear effects are weak for most materials, and the amplitude needs to be impractically high to induce
significant nonlinear effects. Also, it is difficult to have full control over the spectrum through nonlinear effects
because of the generation of many harmonics in these systems. Another approach is to introduce directional bias
by constant air flow13. However, this approach requires mechanical motion that is associated with high energy
consumption, which can create challenges for device-based implementations. In recent years, topological insulators
that break reciprocity with external bias, such as constant flow or directional modulation, have also attracted much
attention14–17. However, such systems require sophisticated control of flow field or multiple coupled resonances who
are sensitive to losses, making them hard to implement in experiments.

Breaking time-reversal symmetry using space-time modulation has been studied in time-varying transmission lines
for many decades18–26. Recently, non-reciprocity through space-time modulation has returned to the spotlight and the
idea has been applied to modern optical and electromagnetic systems and metasurfaces27–35. For mechanical waves,
space-time modulated elastic beams have been proposed to create a directional band gap36. Space-time modulated
waves in mass-spring systems have also been proposed to create directional wave manipulation for elastic waves37,38.
For acoustics, time modulated circulators have been studied using coupled mode theory39,40.

In this paper, acoustic wave propagation in a general space-time modulated medium is studied by directly solving
the time-varying wave equations instead of using time Floquet theory41 to analyze its bandgaps. This is because the
Floquet theory is not applied to our scenario due to the particular material modulation, which will be further explained
in the following section. We follow an approach originally applied to time-varying transmission line system19. For
such a system, two otherwise orthogonal waveguide modes can be coupled efficiently under certain conditions, giving
rise to inter band and intra band phonon transition. Instead of using time Floquet theory, we directly solve the
equations to provide full and detailed information on how propagating waves change gradually in such a system.
By applying different types of modulation, different non-reciprocal functionalities can be achieved including one-way
frequency conversion, parametric amplification, and phase conjugation. Modulation conditions under which each
of these behaviors emerge are derived, and finite-difference time-domain (FDTD) simulations of the full dynamical
system show good agreement with the theoretical predictions. The proposed approach for breaking time-reversal
symmetry can find applications in numerous areas that leverage the resulting unprecedented wave control capability.
For example, mode conversion enables directional band gap for acoustic waves36, rectifiers9, advanced spectrum control
for communication and energy transmission42; parametric amplification provides a possible implementation for the
gain media in parity-time (P-T) symmetric systems43 and powerful speaker designs; and phase conjugation can be
useful for an all-angle retro-reflector, acoustic lasing44,45, imaging46, data processing and acoustic communications45.
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FIG. 1: Spatial-temporally modulated medium under study. The effective density or effective compressibility is dependent on
time, space and frequency.

II. NON-RECIPROCAL SOUND PROPAGATION THROUGH SPACE-TIME MODULATED MEDIA

In this section, we will start from solving the space-time varying wave equation and investigate the acoustic wave
propagation in a medium whose density is varying with both space and time. Similar coupled wave solution can be
found in18 where two transmission lines are coupled with varying inductors, while in our paper we focus on acoustic
wave propagation in one waveguide. We will show that by applying specific types of modulation, two otherwise
orthogonal waves will be coupled and phenomena like frequency conversion and parametric amplification will arise.
Then we will show that these phenomena will also arise when the bulk modulus is modulated the same way. Here we
assume the wave amplitude is small so that nonlinear effects are negligible.

A. Sound propagation in media with space-time modulated density

We begin by considering a one-dimensional waveguide in which the effective density ρ of the medium is modulated
in both space and time while bulk modulus remains constant. Generally ρ is dispersive, i.e. ρ = ρ(x, t, ω). According
to Newton’s second law and Hooke’s law,

−∂p
∂x

= ρ
∂v

∂t

−∂p
∂t

= κ
∂v

∂x

(1)

Taking partial derivative with respect to t and x respectively, we get
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∂ρ
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Combining the two equations to eliminate p we can get the wave equation in velocity, namely

∂2v

∂x2
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1

κ
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+
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κ
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∂t2
(3)

Let us assume the solution is composed of two waves with different frequencies in the waveguide with the form

v1 = A1(x)ej(ω1t−k1x)

v2 = A2(x)ej(ω2t−k2x)
(4)

where k1 = ω1

c1
, k2 = ω2

c2
, and c1 =

√
κ
ρ1

, c2 =
√

κ
ρ2

. The total wave velocity is given by v = v1 + v2.
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Let us further assume that the density modulation is sufficiently weak that A1 and A2 are slowly varying and
∂2A1,2

∂x2

are negligible. We assume the density variation is described by

ρ = ρ1[1 +m1 cos(Ωt− βx)] (5)

for the wave with frequency ω1, and

ρ = ρ2[1 +m2 cos(Ωt− βx)] (6)

for the wave with frequency ω2.
Typically, density and bulk modulus are just fundamental properties of a material and are not function of frequency.

Therefore, the amplitude of variation remains constant for different frequencies, and hence m1 = m2. However, for
metamaterials, the effective density is controlled by the parameters of the metamaterial structure, such as the mass
and in-plane tension for membranes, and the effective density is usually dispersive. Therefore, the modulation depth
for different frequencies can be different. The quantities m1 and m2 represent the amplitude of effective density change
for the corresponding frequencies when the controlling parameter changes and it follows m1 = m2 in a nondispersive
medium.

B. Unidirectional frequency conversion

The general space-time modulation described above admits a number of different types of solution. We focus first
on unidirectional frequency conversion. Here we define

Ω = ω1 − ω2

β = k1 − k2.
(7)

Putting these into Equation (3), we find that the two frequencies are coupled through the time-varying density
ρ(x, t, ω). It can be easily shown that

B1e
j(ω1t+k1x);B2e

j(ω2t+k2x)

A∗1e
−j(ω1t−k1x);A∗2e

−j(ω2t−k2x)

B∗1e
−j(ω1t+k1x);B∗2e

−j(ω2t+k2x)

(8)

are also coupled solutions. A1e
j(ω1t−k1x) is a forward traveling wave andB1e

j(ω1t+k1x) is a backward traveling wave, and
A∗1e

−j(ω1t−k1x) and B∗1e
−j(ω1t+k1x) are their complex conjugates. The complete solution of Equation (3) is composed

of four mixed pairs. Without loss of generality, here for illustration we just analyze the first coupled pair. We put the

form of assumed waves and prescribed modulation into Equation (3), neglect the
∂2A1,2

∂x2 terms and equate the terms
with the same frequency. The result is the following two equations

∂A1

∂x
= −j

ρ2m2

4κ

ω1ω2

k1
A2

∂A2

∂x
= −j

ρ1m1

4κ

ω1ω2

k2
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(9)

By taking partial derivative and eliminating A2, we get a partial differential equation for A1:

∂2A1

∂x2
= −m1m2k1k2

16
A1. (10)

Solving this equation yields

A1 = a1e
jαx + b1e

−jαx (11)

where α =
√
m1m2k1k2

4 and a1 and b1 are constants decided by the boundary conditions. Putting the form of A1 into
Eqn.(9) to solve A2, we get

A2 = −

√
m1k1ρ1

m2k2ρ2
(a1e

jαx − b1e−jαx) (12)
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Therefore, we finally have the solution

v1 = (a1e
jαx + b1e

−jαx)ej(ω1t−k1x)

v2 = −

√
m1k1ρ1

m2k2ρ2
(a1e

jαx − b1e−jαx)ej(ω2t−k2x)
(13)

Similar results can be found with other coupled pairs. If at x = 0,

v1(0, t) = aej(ω1t+θ)

v2(0, t) = 0
(14)

the complete solution to equation(3) is

v1 = a cos(αx)ej(ω1t−k1x+θ)

v2 = −

√
m1k1ρ1

m2k2ρ2
a sin(αx)ej(ω2t−k2x+θ+π

2 )
(15)

Therefore, the intensities of these two waves are

I1 =
1

2
ρ1c1|v1|2 =

1

2
Z1a

2 cos2(αx)

I2 =
1

2
ρ2c2|v2|2 =

1

2
Z2
m1k1ρ1

m2k2ρ2
a2 sin2(αx)

(16)

where Z1 = ρ1c1 and Z2 = ρ2c2 are characteristic impedances of the two waves. The transfer factor is defined as the
pressure amplitude of both modes over that of the incident mode

η1 =
|v1(x)|
|v1(0)|

= | cos(αx)|

η2 =
|v2(x)|
|v1(0)|

=

√
m1k1ρ1

m2k2ρ2
| sin(αx)|.

(17)

From the plotted transfer factor in Fig.2(a) we can see how the modes are transferred back and forth along propagation.
Eqn.(17) show that if we apply a signal of frequency ω1 at the input end of the waveguide, the power at that frequency
is completely converted to that of ω2 in a distance of αx = π

2 . In the next segment of length αx = π
2 , power of

frequency ω2 reverts to that of ω1, and then converts back and forth. At αx = 0, π, 2π, ..., |I1| is at maximum, and at
αx = π/2, 3π/2, 5π/2, ..., |I2| is at maximum. On the other hand, the backward propagating wave will not be affected
since the generated mode is not supported in such a system.

C. Unidirectional parametric amplification and phase conjugation

Another class of solution enabled by space-time modulation is parametric amplification, where the incident wave is
amplified exponentially while propagating in such media. We begin by defining

Ω = ω1 + ω2

β = k1 + k2
(18)

then the two coupled waves become

v1 = A1(x)ej(ω1t−k1x)

v2 = A2(x)e−j(ω2t−k2x)
(19)

Inserting these into Equation (3) and going through the similar process, we can find the governing equation for A1

becomes
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∂2A1

∂x2
=
m1m2k1k2

16
A1 (20)

and the solution for A1 and A2 yields

A1 = a1e
αx + b1e

−αx

A2 = −j

√
m1k1ρ1

m2k2ρ2
(a1e

αx − b1e−αx)
(21)

where α =
√
m1m2k1k2

4 . Applying the same boundary conditions as equation (14), we get the complete solution of
equation(3) as

v1 = a
eαx + e−αx

2
ej(ω1t−k1x+θ)

v2 =

√
m1k1ρ1

m2k2ρ2
a
eαx − e−αx

2
e−j(ω2t−k2x−θ+π

2 ).

(22)

The transfer factors are

η1 =
|v1(x)|
|v1(0)|

=
eαx + e−αx

2

η2 =
|v2(x)|
|v1(0)|

=

√
m1k1ρ1

m2k2ρ2

eαx − e−αx

2

(23)

Now, instead of periodically varying, the amplitudes of both waves are growing exponentially, as is shown in Fig.2(b).
This way we can get a piece of ”gain” material for both frequencies. A special case is that when ω1 = ω2, both waves
are of the same frequency. In this case, there will be two waves at the output end: one is the amplified original wave,
and the other one is the generated wave with the same frequency but with conjugated phase plus a certain phase
delay.

Here we showed two possibilities enabled by space-time modulation as described in Eqns. (7) and (18), namely
unidirectional frequency conversion and parametric amplification, which cannot be easily realized in reciprocal systems.
However, we would like to emphasize that these are just two classes of solutions of a space-time modulated system,
and there are much more possibilities depending on the modulation strategy.

D. Sound propagation in media with space-time modulated bulk modulus

Similar to the case with modulated density, a waveguide with space-time modulated bulk modulus can also produce
non-reciprocal one-way wave behaviors such as frequency conversion, amplification and phase conjugation. We will
show that the solutions will have similar structure but different scaling constants.. The wave equation in such a
medium is written as

−∂p
∂x

= ρ
∂v

∂t

−∂(Bp)

∂t
=
∂v

∂x

(24)

where B = 1
κ is the compressibility (or effective compressibility) of the medium under study. With these two equations,

the wave equation can be obtained in the form of

∂2p

∂x2
= ρ

∂2B

∂t2
p+ 2ρ

∂B

∂t

∂p

∂t
+ ρB

∂2p

∂t2
(25)
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FIG. 2: Transfer factor between the two modes as the sound propagates in the space-time modulated waveguide. (a) The
energy converts back and forth between the two modes. (b) In the case of parametric amplification, the two coupled modes
both grow exponentially.

Suppose the compressibility of the medium in the waveguide is varying with the form

B = B1[1 +m1 cos(Ωt− βx)] (26)

for the wave with frequency ω1, and

B = B2[1 +m2 cos(Ωt− βx)] (27)

for the wave with frequency ω2, and the solution has the form of p = p1 + p2, where

p1 = A1(x)ej(ω1t−k1x)

p2 = A2(x)ej(ω2t−k2x).
(28)

For frequency conversion we can apply the modulation in the form the same as equation (10-11). Putting it in
equation (25) and equate the terms with the same frequency and wave number, we can get the same differential
equation for A1 as equation (10). Solving the A1 and A2 we get

A1 = a1e
jαx + b1e

−jαx

A2 = −B1

B2

√
m1k2

m2k1
(a1e

jαx − b1e−jαx)
(29)

where α =
√
m1m2k1k2

4 . Applying the boundary condition at x = 0:

p1(0, t) = aej(ω1t+θ)

p2(0, t) = 0
(30)
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FIG. 3: One proposed realization of a space-time modulated acoustic wave system. The moving back wall allows the cavity
volume to be modulated. The inset shows the dimensions of a single Helmholtz resonator.

the following complete solution can be found:

p1 = a cos(αx)ej(ω1t−k1x+θ)

p2 = −B1

B2

√
m1k2

m2k1
a sin(αx)ej(ω2t−k2x+θ+π

2 )
(31)

The transfer factors become

η1 =
|p1(x)|
|p1(0)|

= | cos(αx)|

η2 =
|p2(x)|
|p1(0)|

=
B1

B2

√
m1k2

m2k1
| sin(αx)|

(32)

Similarly, if the applied modulation is the same as equation (18), parametric amplification and phase conjugation
can be achieved. The transfer factors for mode conversion and parametric amplification have the same form as in
Fig.2 with different amplitudes. From Eq. (31) we can see that Manley-Rowe relations47 does not apply due to the
dispersion of the metamaterial. However, if we reduce the model to a non-dispersive material by enforcing B1 = B2,
c1 = c2 and m1 = m2, the Manley-Rowe relations will be satisfied.

III. METAMATERIAL REALIZATION OF SPACE-TIME MODULATED ACOUSTIC MEDIA

In some cases, for elastic waves in solids, material properties can be tuned by an external field. For example,
one can change the elastic modulus by applying a voltage to a piece of piezoelectric material. However, directly
changing the properties of a fluid is challenging since modulating density or bulk modulus usually means modulating
the temperature in a fast and controlled manor. In recent years, the development of the concept of metamaterials
has enabled theoretically arbitrary values of effective density or modulus by carefully designing the subwavelength
structures of the material48,49.

By introducing active elements into the metamaterials, the achieved values can further be controlled. It opens
up the possibility to manipulate the effective parameters spatiotemporally without too much cost to achieve enough
modulation depth at the desired rate. Piezoelectric membranes, for example, have been proposed for tuning the
effective density to change the working frequency50,51. However, such membranes can only achieve limited tunability
at the cost of extremely high voltages, and it is hard to modulate dynamically. Here we propose the dynamic change
of a system with an array of side-loaded Helmholtz resonators, in which the effective bulk modulus can be modulated
through small motion of the back walls, as shown in Fig. 3.

The effective compressibility for a metamaterial system composed of static resonators can be written as52,53:

Beff (ω) = B0[1 +
Fω2

0

ω2
0 − ω2 + jωγ

] (33)
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where F = nAcd/At is the geometrical factor, n is the number of cells per meter, Ac is the area of the cavity back

wall, d is the height of the cavity, and At is the cross sectional area of the waveguide. The parameter ω2
0 =

c20An
Acdl

is
the resonant angular frequency, where An is the cross sectional area of the neck, and l is the corrected length of the
neck. The factor γ = R

ρ0Anl
where R is associated with the thermal viscous loss in the neck region. In general, γ is

affected by the frequency, air viscosity, shape of the neck, and the roughness of the surface of the fabricated structure.
In practice, γ is usually estimated by measuring the effective material properties and fitting the experimental data to
the theoretical model52.

We now consider a metamaterial in which the back wall of the cavity is moving sinusoidally so that d is changing
with time as d = d+ δdcos(Ωt− βx). We can rewrite the effective compressibility as

Beff (ω, d) = B0 +

nAn
Atlρ0

c20An
Acld

− ω2 + jωγ
(34)

Assuming weak modulation, the modulation depth m at a given frequency can be estimated with

m(ω) =
|Re[Beff(ω,d + δd)]− Re[Beff(ω,d− δd)]|

2Re[Beff(ω,d)]
. (35)

The wavenumber for the system can be calculated with k(ω) = ω
√
Beff (ω)ρ0. Hence, for a given system and the

targeted frequencies ω1 and ω2, the wave numbers k1 and k2 can be calculated, and the corresponding modulation depth
at both frequencies can be estimated with Eq. (35). Then the rate of mode conversion and parametric amplification
can be estimated by calculating α in Eqns.(11,12), Eqn. (21) and Eqn. (29). The length of space-time modulated
metamaterial can then be determined according to the target applications.

IV. NUMERICAL SIMULATIONS

The analytical model is verified here with 1D FDTD effective medium simulation. The background media is lossless
air with density ρ0 = 1.2kg/m3 and speed of sound c0 = 343m/s. The time step is 2×10−6s and the grid is 1×10−3m.
In the simulation, we study the wave propagation in an effective medium approximation of the metamaterial structure
with modulated cavity height, as described in Section III. The number of resonators is n = 25m−1. The round necks
have a radius of 5 mm and corrected length l = 6mm, and the cavity is a cylinder with radius of radius of 14 mm
and height d = 4mm so that the resonant frequency is 3980 Hz. The modulation depth is δd = 0.4 mm. The
wave propagates in a non-modulated medium before (upstream) and after (downstream) the modulated section. A
sinusoidal wave is incident from the upstream direction. To show that the wave interacts differently with the space-
time modulation in different directions, we simulate the wave incident from both directions. The backward incident
wave was simulated by switching the sign of modulation wave number to −β.

We first simulate the wave propagation in a modulated medium where the modulation satisfies Eqn. (7), so that
the device acts as a frequency converter. The target input and output frequencies are f1 = 3000Hz and f2 = 2500Hz,
respectively. The modulated length is 10 m, with upstream length 0.3 m and downstream length 30 m so that the
reflection from the boundary can be easily time-gated. To study the steady state wave behavior, the data of first 80
ms is excluded from processing. The simulated pressure field in the modulated region is recorded for 100 ms after
the signals reach the steady state. Fig. 4 shows the amplitude of the two frequency components along the modulated
medium. From the figure it is clearly seen that the wave energy gradually shifts from f1 to f2 and then transfer back
to f1, as predicted in the theory. The distance for f2 to get to its first peak is 0.81 m in the simulation, while the
corresponding theoretical calculation is 0.78 m, in good agreement. The small discrepancy originates from the finite
resolution in the simulation. We can see small oscillations in the curve for 3000 Hz, which gradually fade out with
distance. This is because in simulation, the wave is incident from a stationary medium into a space-time varying
medium. As reflections from the boundary, especially the higher order waves, will perturb the fundamental model,
there are small oscillations near the interface. These perturbations will gradually disappear as they propagate away
from the edge, and the wave behavior meets the expectation from the theory, as can be seen in Fig. 4.

An advantage of the proposed metamaterial implementation of an acoustic space-time modulated medium lies in
that all the different functionalities can be achieved without changing the structure of the system, and the behavior
depends only on how the resonators are modulated. For the functionalities described in Section II, the corresponding
simulation results are summarized in Fig. 5. For frequency converter, the target input and output frequencies are
f1 = 3000Hz and f2 = 2500Hz, respectively. The signal on the incident side and transmission side of the modulated
medium was recorded for analysis. Fig. 5(a) and Fig. 5(b) show the spectrum of the incident wave and transmitted
wave when the wave incidents from positive direction and negative direction, respectively. From the figures we can
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FIG. 5: Simulated spectrum of the incident and transmitted waves when the device is modulated as a frequency converter or
parametric amplifier for both directions. (a) Frequency converter, the wave is converted from f1 to f2 while propagating in
the positive direction. (b) when it’s propagating in the negative direction, it doesn’t interact with the modulation so that the
transmitted is almost the same as incident wave. (c) Parametric amplifier, f1 got amplified in the positive direction, generating
f2 in the mean time. (d) The wave is not affected while propagating in the negative direction.

see that for the wave incident from the positive direction, the main frequency component is effectively converted from
3000 Hz to 2500 Hz. The wave incident from the negative direction is not significantly affected by the modulation.

For non-reciprocal one-way wave transmission at 3000 Hz, the isolation level measures the efficiency of one-way
isolation of the acoustic waves, defined as the contrast between the transmission coefficient amplitudes for each
frequency when the wave is incident from opposite directions. Although the isolation level can theoretically reach
infinity, in the simulation, it reaches 13 dB. This is due to the incomplete conversion between two waves, and conversion
to other frequency components. If we look at 2500 Hz, then the isolation level reaches 26 dB in simulation. To study
the effect of the modulation depth on the observed non-reciprocity, we sweep the modulation depth m from 1% to 20%



10

0 5 10 15 20
Modulation depth m (%)

0

20

40

60

Is
ol

at
io

n 
le

ve
l (

dB
) 3000Hz

2500Hz
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higher isolation level is achieved with smaller modulation depth.

in the simulation at a step of 0.2%, and the change of isolation level is shown in Fig. 6. Note here that as modulation
changes, the distance required for total conversion also changes, as can be seen from Eq. (17) Counterintuitively, the
isolation level can be increased with smaller modulation depth, which is because of better approximation to the weak
modulation assumption in our derivation. For example, when modulation depth m = 1% is applied (δd = 0.04 mm),
the isolation level for 3000 Hz and 2500 Hz reaches 48 dB and 44 dB, respectively. However, as a trade-off, lower
modulation depth would result in a longer system. We can see some oscillations in isolation level as the modulation
depth changes. But they don’t affect the main conclusions in this paper. The physical origin for these oscillations, on
the other hand, would be an interesting topic for further investigation.

To study the system’s robustness against losses in the resonators, we have also simulated the system with embedded
loss by assigning γ in Eqn. (33) different values ranging from 0 to 0.02ω1, and the isolation level for remain essentially
unchanged. The isolation level is 10dB to 13dB for 3000Hz and remains 26dB for 2500Hz within the range. Note here
that by assigning different values of loss from 0 to 0.02ω1, the ω− k diagram of the waveguide is changed accordingly,
therefore the length of modulated section is also adjusted. This feature makes the whole system robust against
losses in real implementations. However, as the loss increases, the insertion loss will increase, which will decrease the
transmission amplitude for both frequencies.

If the device is modulated according to the space-time profile of Eqn. (18), it acts as a parametric amplifier. Both f1

(3000 Hz) and f2 (2500Hz) are growing exponentially. The simulated spectrum on the incident side and transmission
side is shown in Fig. 5(c). In the simulation, the modulated length is 0.5 m to prevent the signals from growing too
large. Upstream length is 5 m while downstream length is 20 m to prevent reflection. The modulation depth remains
unchanged. From Fig. 5(c) it is seen that as the incident wave propagates in the space-time modulated media, the
waves get amplified while generating the other frequency component. The growth rate α can be calculated by taking
the amplitude ratio between the incident f1 and the generated f2, and then solve Eqn. (22). The calculated growth
rate from simulated result and theoretical calculation are α = 1.9917 and α = 2.0082, respectively, which again
shows excellent agreement between the theory and simulation. Fig. (d) shows the wave propagating in the negative
direction. We can see that the wave is not affected by the modulation. Therefore, the device facilitates one-way
parametric amplification.

To understand the physical mechanism of the proposed system, the corresponding one-way phenomena can be viewed
as mode conversion on the ω − k diagram, which corresponds to the inter-band and intra-band photon transition in
optical systems, as shown in Fig. 7. It is shown that the two otherwise orthogonal modes are coupled through the
modulation. However, the wave will not interact with the modulation if the modulation does not lead to any mode
that is allowed in the system. Therefore, the prescribed modulation only works for the forward propagating wave, as
is shown in Fig. 5. For each type of modulation, the green and blue arrows denote the modulation when the wave
travels in the forward direction, while the red and magenta arrows denote the modulation when the wave travels in
the backward direction. In the diagram it is seen that only the designed mode is coupled through modulation. This
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FIG. 7: Modulation facilitates mode hopping on the ω − k diagram. Only supported modes of the system can be coupled
through modulation. This feature allows one-way manipulation of waves.

is analogous to the mechanism of modulated phononic crystals in the mass-spring systems36–38.
Since the modulation relies on shifting of the ω − k diagram, it is important to avoid coupling to unwanted modes

for efficient spectral manipulation. For example, if the material has a purely linear ω − k diagram, the modes with
ω = ω1 ± nΩ will all be coupled, and all of these coupling terms needs to be taken into consideration in the theory.
Due to the dispersive nature of metamaterials, coupling between higher order modes will not be matched with the
modulation strategy. Therefore, space-time modulation of the metamaterials provides an advantage over conventional
modulated transmission lines, where waves of all frequencies share the same velocity. By carefully designing a system
with specific ω − k relationships and optimizing the modulation strategy to avoid unwanted coupling, better control
over the spectrum can be achieved. Also, since the theory in this paper describes space time modulation of a discretized
effective medium, finer discretization can better mimic a continuous medium and thus the theoretical calculation of
the ω− k diagram would be more accurate. However, we would also like to note that the modulation strategy here is
determined by the frequencies and wavenumbers of the targeting modes that can be read off from the ω− k diagram.
Changing the spacing between resonators will also change the resulting dispersion relation, and the modulation
strategy can be adjusted to accommodate these changes as long as the homogenization of the metamaterial is valid.

V. SUMMARY AND CONCLUSIONS

Here we have developed a theory to characterize the waves propagating in an acoustic space-time modulated medium.
Specifically, when the medium is modulated such that different modes can be coupled through that modulation, non-
reciprocal functionalities such as one-way frequency conversion and parametric amplification can be achieved, which
is beyond the reach of linear time-invariant systems. We show how such a medium could be implemented using small
structural modulation of Helmholtz resonators, and a numerical FDTD simulation based on such a design is developed
to show that the theory is valid and that the predicted behavior can be delivered in practice. The simulation results
showed excellent agreement with theoretical calculations.

Our work outlines a robust and efficient means of versatile manipulation of an incident wave compared with
non-linear devices which can only generate harmonics of the fundamental mode and there is little control over the
ratio between fundamental mode and its harmonics. Compared with conventional time varying transmission lines,
introducing dispersion into space-time modulated media decouples the higher order modes with modulation, which
helps prevent generation of higher order modes. Also, since the device does not require operation near resonant
frequencies, it is less sensitive to losses and fabrication errors, which provides a significant advantage in realization
compared with non-reciprocal devices based on coupled resonances. Furthermore, the loss in the resonators can be
compensated by the modulation strategy, so that the non-reciprocal wave transport is immune to the inherent losses
in the resonators. It is also noted that the modulation is determined by the ω − k relationship, regardless of the
structures that we use for realization. Therefore, it can also be realized with other types of metamaterial structures.

The mode conversion process mediated by the frequency and momentum of the modulation, is an ‘indirect phononic
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transition’, in analogy with indirect electronic transitions in semiconductors, where interaction with optical signals
and phonons changes the energy and momentum of electrons. Here we offered a new perspective on solving space-time
equations directly instead of analyzing band structures with Floquet theory. It provides more detailed information
about how do waves change gradually in such systems. These non-reciprocal phenomena open many possibilities
for unprecedented wave control capability. For example, mode conversion enables advanced spectrum control for
one-way and encoded communications, directional energy transmission control, and directional band gap for acoustic
rectifiers and topological insulators; parametric amplification provides a possible way for designing the gain media
in parity-time (P-T) symmetric systems and powerful acoustic radiator designs; phase conjugation enables all-angle
retroreflectors, acoustic lasing, mathematical operation for data processing, and may find applications in acoustic
communication systems.
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