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The anomalous thermodynamic properties of the paradigmatic frustrated spin-1/2 triangular lattice Heisen-
berg antiferromagnet (TLH) has remained an open topic of research over decades, both experimentally and
theoretically. Here we further the theoretical understanding based on the recently developed, powerful ex-
ponential tensor renormalization group (XTRG) method on cylinders and stripes in a quasi one-dimensional
(1D) setup, as well as a tensor product operator approach directly in 2D. The observed thermal properties of
the TLH are in excellent agreement with two recent experimental measurements on the virtually ideal TLH
material Ba8CoNb6O24. Remarkably, our numerical simulations reveal two crossover temperature scales, at
Tl/J ∼ 0.20 and Th/J ∼ 0.55, with J the Heisenberg exchange coupling, which are also confirmed by
a more careful inspection of the experimental data. We propose that in the intermediate regime between the
low-temperature scale Tl and the higher one Th, the “roton-like” excitations are activated with a strong chiral
component and a large contribution to thermal entropies. Bearing remarkable resemblance to the renowned ro-
ton thermodynamics in liquid Helium, these gapped excitations suppress the incipient 120◦ order that emerges
for temperatures below Tl.

Introduction.— The triangular lattice Heisenberg (TLH)
model is arguably the most simple prototype of a frustrated
quantum spin system. It has attracted wide attention since An-
derson’s famous proposal of a resonating valence bond (RVB)
spin liquid state [1]. The competition between RVB liquid
vs. semi-classical Néel solid states raised great interest. After
decades of research, it is now widely accepted that the TLH
has noncollinear 120◦ order at T = 0, with a spontaneous
magnetization [2], m ' 0.205 [3, 4]. Nevertheless, the TLH
has long been noticed to possess anomalous thermodynamic
properties [5], in the sense that thermal states down to rather
low temperature regimes behave more like a system with no
indication of an ordered ground state [6, 7].

Bipartite-lattice Heisenberg antiferromagnets (AF) such as
the square-lattice Heisenberg (SLH) model, develop a semi-
classical magnetic order at T = 0 which is “melted” at
any finite temperature according to the Mermin-Wagner the-
orem [8]. Nevertheless, the groundstate Néel order strongly
influences low-temperature thermodynamics in the so-called
renormalized classical (RC) regime [9, 10], where the spin-
spin correlation length ξ increases exponentially as T de-
creases [11–14].

In contrast, the thermodynamics of the TLH strikingly dif-
fers in many respects from that of SLH. Based on high-
temperature series expansion (HTSE) results, both models
show cV peaks at similar temperatures, Th ' 0.55 (TLH) and
Ts ' 0.6 (SLH). The SLH enters the RC regime for T . Ts
[11, 12], whereas the TLH shows no signature for incipient
order and possesses anomalously large entropies at tempera-
tures below Th [6].
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FIG. 1. (Color online) Uniform TLH with nearest-neighbor (NN)
coupling J=1 (which thus sets the unit of energy) and lattice spac-
ing a=1, with three schematically depicted distinct regimes, sepa-
rated by two cross-over temperature scales, Tl and Th: an incipient
120◦ ordered regime for T < Tl (left), a paramagnetic regime for
T > Th (right), an intermediate regime (center), which is explored
in detail in this paper. The thick black line indicates the 1D snake or-
der adopted in the MPO-based XTRG. When the system is wrapped
into a cylinder along the tilted left arrow, this is referred to as YC
geometry. The clockwise oriented circles in the center of the system
indicate chiral operators, χ ≡ 23 · Sa · (Sb × Sc), acting on the en-
closing triangle of sites (a, b, c) in the order of the arrows, as used for
the calculation of chiral correlations between the triangle pair A-B.

The classical SLH and TLH models have similar spin stiff-
ness ρs, and thus a similar constant, Cξ∼ρs, in the corre-
lation length, ξ∼ exp (

Cξ
T ), as well as in the static structure

factor at the ordering wave vector, S(K)∼ exp (
2Cξ
T ), with

Cξ=2πρs=1.571 (SLH) [15] and Cξ=4πρs=1.748 (TLH)
[5, 16, 17] in units of spin coupling J . However, the constant
Cξ is significantly renormalized by quantum fluctuations. For
the SLH, the constant is reduced by about 30% to Cξ∼1.13,
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while in the TLH it is reduced by an order of magnitude down
to Cξ∼0.1 [5, 6]. The energy scale ERC ≡ 2Cξ naturally
represents the onset of RC behavior and thus incipient or-
der. Recent sign-blessing bold diagrammatic Monte Carlo
(BDMC) simulations still show that the thermal states down
to the lowest accessible temperatures T = 0.375 “extrapo-
late” to a disordered ground state via a quantum-to-classical
correspondence [7].

Here we exploit two renormalization group (RG) tech-
niques based on thermal tensor network states (TNSs) [18–
20]: the exponential tensor RG (XTRG) which we recently in-
troduced based on 1D matrix product operators (MPOs) [20],
and a tensor product operator (TPO) approach [18]. XTRG is
employed to simulate the TLH down to temperatures T < 0.1
on YCW (×L) geometries (see Fig. 1) up to width W = 6
with defaultL = 2W , and open strips [OSW (×L)] with fully
open boundary conditions (OBCs) and default L = W [21].

TLH thermodynamics.— In Fig. 2 we present our thermo-
dynamical results from XTRG on cylinder (YC) and open ge-
ometries (OS), as defined earlier. In Fig. 2(a), we observe
from YC5, OS6, and YC6 data that, besides a high temper-
ature round peak at Th ∼ 0.55, our YC data exhibit another
peak (shoulder for OS6) at Tl ∼ 0.2. On YCs, the peak po-
sition Tl stays nearly the same when increasing W from 5
to 6, also consistent with the shoulder in OS6 as well as in
the experimental data. At the same time, the low-temperature
peak becomes slightly weakened, yet towards the experimen-
tal data. When compared to the two virtually coinciding ex-
perimental data sets, YC6, TPO, earlier HTSE [5] and latest
Padé [6,6] data [36] all agree well for T & Th and reproduce
the round peak of cV at Th.

The remarkable agreement of finite-size XTRG with exper-
imental measurements can be ascribed to a short correlation
length ξ . 1 lattice spacing for T & 0.4 [21]. Deviations
from experiment only take place below Tl, suggesting signifi-
cant finite-size effects due to larger ξ in that regime. More-
over, we have checked the dependence of Tl on the cylin-
der length L for YC6, and find that the lower peak even gets
slightly enhanced as L increases. In addition to YC and OS
geometries, simulations on X cylinders also lead to the same
scenario [21].

In Fig. 2(b), we present our data on thermal entropy, again
directly juxtaposed with experimental as well as previous the-
oretical results. Whereas the YC5 data deviate at T . 0.3 due
to finite size effects, we observe good agreement between the
two experimental data sets with our TPO results down to Tl,
and withW = 6 data (OS6 and YC6) down to the lowest tem-
peratures in the measurements. Notably, the thermal entropy
per site, S, is about 1/3 of the high-T limit, S∞ = ln 2, at tem-
peratures as low as T ' 0.2 where, for comparison, for SLH
S is almost zero at the same temperature [6]. We emphasize
that Fig. 2(b) is a direct comparison without any fitting, since
the only parameter, J , has also been determined and thus fixed
as 1.66 K in the experiments [36, 37]. Nevertheless, since the
experimental data of S is determined by integrating cV /T ,
starting from the lowest accessible temperature Tx, system-
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FIG. 2. (Color online) Simulated thermodynamics in comparison to
experimental measurement, Cui et al. (2018) [37] and Rawl et al.
(2017) [36], as well as earlier numerical results. The YC and OS
data are obtained via XTRG by retaining up to D∗ = 1000 mul-
tiplets [D ∼ 4000 U(1) states], and by a TPO method [21] on in-
finite lattices, keeping up to 40 bond states. (a) Specific heat, cV ,
results benchmarked against HTSE [5, 36] and experimental curves.
(b) The thermal entropy S vs. T , together with the reconstructed
Schwinger boson mean field (RSBMF) [38], and “roton” contribu-
tions [16]. (c) Uniform magnetic susceptibility Tχ0 vs. T , shown
with BDMC data [7]. Left top inset compares χ0 to Curie-Weiss
(CW) χ0 = C/(T+θ) in a wide temperature range, whereC = 1/4
and θ = 2.06. In the right bottom inset we further compare various
Tχ0 values at T = 0.5. The magnetic moment per Co is assumed
' 2µB , with Landé factor g ' 4.13 [37].

atic vertical shifts for the curves from Refs. [36] and [37] are
necessary to reach the known large-T limits. This results in
residual entropies of S(Tx) = 0.045 and 0.06 at temperatures
Tx = 0.06 K and 0.08 K, for Refs. [36] and [37], respectively.
Note that the large entropy due to quantum frustration at low
T is not properly described in previous theories, e.g., RSBMF
[38, 39] as shown in Fig. 2(b).

Fig. 2(c) presents our results for the average magnetic sus-
ceptibility. Both data sets, YC5 and YC6, agree quantitatively
with the experimental results, as well as HTSE data [5], from
high temperatures down to T . 0.1, well beyond state-of-
the-art BDMC results that reach down to T = 0.375 [7]. In
the left top inset of Fig. 2(c), we also include a Curie-Weiss
(CW) fit for T & 1, resulting in the positive Weiss constant
θ ≈ 2J . In the right bottom inset, we compare the Tχ0 value
at T = 0.5, and find the various numerical and experimental
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results all agree, up to three significant digits.
Two temperature scales.— As schematically depicted in

Fig. 1, we uncover a two-temperature-scale scenario in the
TLH. This confirms that the 120◦ order plus magnon ex-
citations is not sufficient to describe TLH thermodynamics.
Refs. [40, 41] argued that the TLH also has an additional type
of excitations which are gapped, with the minimum of their
quadratic dispersion at finite momentum, and referred to these
as “roton-like excitations” (RLEs), since their dispersions is
reminiscent of that known for vortex-like excitations in He4

[42]. Excitations with this type of dispersion have recently
also been observed in neutron scattering experiments of TLH
materials [43, 44]. RLEs evidently play an important role in
the intermediate-temperature regime in Fig. 1, but their pre-
cise nature has not yet been fully elucidated.

RLEs, although missed in the linear spin wave theory, can
be well captured by including 1/S corrections in calculating
the magnon dispersions [41, 45, 46] and dynamical correla-
tions [47, 48]. Other proposals have also been put forward
to understand RLEs, including the vortex-antivortex excita-
tion [49] with signatures already in the classical TLH phase
diagram vs. finite temperature [50–53], (nearly deconfined)
spinon-antispinon pair [16, 40, 54], and magnon-interaction-
stabilised excitations [47, 55, 56].

Firstly, the RLE quadratic band with a finite gap ∆∼0.55 J
contributes to a very prominent peak in the density of states
around ∆ [16]. This coincides with the high temperature scale
Th ∼ ∆ here. Therefore a possible connection of RLEs to
thermodynamic anomaly in TLH has been suggested earlier
[16, 46]. Secondly, the RLEs themselves only start to sig-
nificantly contribute to the entropy above Tl [‘Roton’ entry
in Fig. 2(b), with data taken from Ref. [16]]. This suggests
that the RLEs are activated in the intermediate temperature
regime, i.e., Tl . T . Th. Consequently, the onset of incip-
ient magnetic order is postponed to a clearly lower tempera-
ture Tl ∼ 0.2, which is remarkably close to previous HTSE
studies, where ERC ∼ 0.2 J sets the energy scale of classical
correlation [5] as discussed earlier.

Spin structure factors.— In order to shed light into the
spin configurations across the intermediate regime, we turn
to the temperature dependent static structure factor, S(q) ≡∑
j e
−iq·r0j 〈S0 · Sj〉T where r0j ≡ rj − r0 with rj the lat-

tice location of site j, and S(q) ∈ R due to lattice inversion
symmetry. There are two further high-symmetry points of in-
terest, q = K andM , as marked in Fig. 3(a). Up to symmetric
reflections, K≡( 2π

3 ,
2π√
3
) relates to 120◦ non-collinear order,

whereas M≡(0, 2π√
3
) relates to nearest-neighbor (stripe) AF

correlations. The latter have also been related to RLE which
feature band minima at the M points [40, 41, 57].

In Figs. 3(a-d) we show the overall landscape of S(q). With
decreasing temperature, S(q) changes from rather featureless
in Fig. 3(a), to showing bright regions in the vicinity of the
six equivalentK points as well as enhanced intensity at theM
points at T ∼ Th in Fig. 3(b). Even at T ∼ Tl in Fig. 3(c), one
can still recognize an enhanced intensity S(M), which fades
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FIG. 3. (Color online) (a-d) Structure factor on YC6×12 lattice, i.e.,
with qy pointing along the direction of the cylinder, at temperatures
T = 5, 0.54, 0.2, 0.1, respectively, [vertical gray lines in (e)]. (e)
S(q) vs. T at momenta q = K and M where the legend holds for
both data sets. (f) SE vs. T , where the tilted dashed lines indicate
the logarithmic scaling SE = a ln(β) + b, where the slopes a seen
for the TLH are similar to that for the SLH (SC6 data). The vertical
dashed line labels the low temperature scale Tl ∼ 0.2 for TLH and
the only temperature scale Ts ∼ 0.6 for SLH. SC6× 12 stands for a
W = 6, L = 12 square cylinder, and SE scaling in the Heisenberg
chain (length L = 200) is also plotted as a comparison.

out eventually when T is decreased below Tl in Fig. 3(d). A
quantitive comparison given in Fig. 3(e).

From Fig. 3(e), we observe that S(K) increases mono-
tonously as T decreases. It is featureless around Th, and even-
tually saturates at the lowest T due to finite system size. For
T > Tl, S(K) increases only slowly with decreasing temper-
ature, and is independent of length L. It therefore shows no
signature of incipient order there. For T < Tl, S(K) rapidly
increases, which eventually saturates with decreasing T in a
L-dependent manner, due to finite-size effects.

Furthermore, we observe from Fig. 3(e) that S(M) devel-
ops a well-pronounced maximum around Th. The maximum
is already stable with system size, hence can be considered a
feature in the thermodynamic limit. This is consistent with a
picture that RLEs are activated near the M points.

MPO entanglement.— The two-energy-scale scenario also
leaves a characteristic trace in the entanglement entropy SE ,
computed at a bond (near the center) of the MPO [20, 58, 59].
Gapless low-energy excitations in 1+1D CFT can give rise to
a logarithmic increase of the entanglement, SE ∝ − c

3 lnT



4

0 0.5 1 1.5 2
T

0

0.1

0.2

0.3

0.4

0.5

0.6
 

i 
j 

D*
YC6 9

YC6 12

800
1000

1000

YC5 10
700
800

900

Tl

Th

FIG. 4. (Color online) Chiral correlations on cylinders, YC5 and
YC6 (for YC4, see [21]). The inset represents the eigenstates Ψ
(and Ψ∗) of the chiral operator χ [Fig. 1] with non-zero eigenvalues
±
√

12. They have total spin S = 1/2, and hence are superpositions
of configurations with two-site singlet dimers (thick lines) whose
signs are fixed in clockwise order (arrow). Having α = exp(2πi/3),
this demonstrates the chiral nature.

with c the conformal central charge [20, 60, 61]. One can
also observe logarithmic SE behavior in the 2D SLH model,
related to the spontaneous SU(2) symmetry breaking (at T =
0) [20], as also added for reference (‘SC6’ data) in Fig. 3(f).

We find similar behavior of the SE profiles of the TLH on
YC5 and YC6 geometries in Fig. 3(f) down to T = 0.04, with
bond dimension D∗ . 1000 multiplets (D ∼ 4D∗ states).
Interestingly, the lower energy scale Tl ∼ 0.2 (vertical dashed
line) signals the onset of logarithmic entanglement scaling vs.
T , which in agreement with Fig. 2(a) already coincides for
W = 5 and 6. For YC5, the window with logarithmic en-
tanglement is rather narrow, below of which SE saturates as
we already approach the ground state. For YC6, the entan-
glement continues to increase down to our lowest tempera-
ture T = 0.03. We associate the logarithmic SE behavior
with the onset of incipient order, which is closely related to
SU(2) symmetry breaking at T = 0 that gives rise, e.g., to a
1/(N = LW ) level spacing in the low-energy tower of states
[2]. Concomitantly, we also observe a qualitative change of
behaviors in the entanglement spectra at Tl [21].

Scalar chiral correlations.— Chiral correlations in the TLH
have raised great interest since the proposal of a Kalmeyer-
Laughlin chiral spin liquid [62]. Intriguingly, recent T = 0
studies on the fermionic triangular lattice Hubbard model pro-
posed a chiral intermediate phase vs. Coulomb repulsion
which thus breaks time reversal symmetry [63]. While de-
bated [64], we take this as a strong motivation to also study
traces of chiral correlations in the TLH at finite T .

In Fig. 4, we present the chiral correlation, 〈χiχj〉, be-
tween two nearest-triangles i, j in the system center, as de-
fined with Fig. 1. This shows that chiral correlations are
weak in both high- and low-temperature limit, while they
become strong [63] in the intermediate temperature regime,
with a peak around Tl. Below Tl, the chiral correlations drop
strongly, giving way to the buildup of coplanar incipient order.

Discussion.— Our study suggests a tight connection be-
tween RLEs and chiral correlations in the intermediate regime
(Tl . T . Th) [cf. Fig. 4]. In this sense, we spec-
ulate that RLEs activated in the intermediate temperature
regime indicate phase-coherent rotating dimers, as schemat-
ically sketched with Fig. 4. Given that the complex phase
of the dimers ‘rotates’ by 2π, this suggest a possible link to
a topological, vortex-like nature of the RLEs. Moreover, it
resembles Feynman’s notion of rotons in terms of quantized
vortices in He4 [42] via an exact mapping of TLH to a system
of hardcore bosons. The latter further underlines the striking
analogy between the anomalous thermodynamics of the TLH
and the renowned roton thermodynamics in He4 [65, 66].

The low-energy scale Tl can be tuned by deforming the
Hamiltonian, e.g., by altering the level of frustration by adding
a next-nearest J2 coupling to the TLH. We see that increasing
J2 reduces Tl, as well as the height of the corresponding peak
in the specific heat, suggesting that the RLE gap is decreasing
and the influence can thus spread down to even lower tem-
perature/energy scales, in consistency with dynamical studies
of the J1-J2 TLH [67, 68]. In addition, TLH can be contin-
uously deformed into the SLH, where Tl increases and even-
tually merges with Th once sufficiently close to the SLH. We
refer more details to Supplementary Materials [21].

Outlook.— A detailed study of the microscopic nature of
RLEs, e.g., via dynamical correlations at finite temperature,
is beyond the scope of the present paper, and is thus left for
future research. Further stimulating insights and possible su-
perfluid analogies are also expected from an analysis of the
interplay of external magnetic fields and thermal fluctuations
in TLH [69, 70] with clear experimental relevance [37].
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