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The scalability of quantum networks based on solid-state spin qubits is hampered by the short
range of natural spin-spin interactions. Here, we propose a scheme to entangle distant spin qubits
via the soft modes of an antiferromagnetic domain wall (DW). As spin qubits, we focus on quantum
impurities (QI’s) placed in the vicinity of an insulating antiferromagnetic thin film. The low-energy
modes harbored by the DW are embedded in the antiferromagnetic bulk, whose intrinsic spin-
wave dynamics have a gap that can exceed the THz range. By setting the QI frequency and the
temperature well within the bulk gap, we focus on the dipolar interaction between the QI and two
soft modes localized at the DW. One is a string-like mode associated with transverse displacements
of the DW position, while the dynamics of the other, corresponding to planar rotations of the
Néel order parameter, constitute a spin superfluid. By choosing the geometry in which the QI
does not couple to the string mode, we use an external magnetic field to control the gap of the
spin superfluid and the qubit-qubit coupling it engenders. We suggest that a tunable micron-range
coherent coupling between qubits can be established using common antiferromagnetic materials.

Introduction. The discovery of quantum-impurity (QI)
model systems, such as NV color centers [1] and spin
qubits in silicon [2], which show long coherence times
and can be efficiently initialized and read-out [3, 4], has
stimulated a vast interest within the field of quantum
computing [5–8]. Direct coherent coupling between sin-
gle NV centers has been already observed by several
groups [9–11]. However, due to its dipolar nature, such
spin-spin coupling extends only up to tens of nanome-
ters. This distance requirement for their interaction
limits the implementation of large-scale quantum entan-
glement schemes, where the ability of addressing each
qubit individually must also be preserved. To circum-
vent this drawback, numerous proposals for the coher-
ent coupling of atomistic qubits revolve around hybrid
quantum devices, where distant qubits interact indirectly
via, e.g., mechanical resonators [12, 13], superconducting
flux qubits [14], photons [15], metallic gates [16] or spin
waves [17].

While the interaction between NV centers and spin
waves has recently allowed to probe a range of magnetic
phenomena with high spatiotemporal resolution [18], hy-
brid architectures relying on magnetic insulators as build-
ing blocks remain relatively unexplored. In Ref. [17], spin
waves in microfabricated ferromagnetic waveguides have
been proposed to mediate long-distance coupling between
spin qubits. In this Letter, we instead suggest to employ
low-energy excitations associated with extended spin tex-
tures, such as domain walls, in an otherwise homogeneous
magnetic background.

Specifically, we consider an antiferromagnetic insulat-
ing film with uniaxial anisotropy, which supports an ex-
tended domain wall (DW), as depicted in Fig. 1(a). The
antiferromagnetic DW harbors two types of Goldstone
modes associated with its real- and spin-space dynam-
ics [19]. These are respectively related to the zero modes
associated with the DW displacement Y and the az-
imuthal angle Φ of the Néel order parameter therein.

Two QI spins, placed above the DW, interact dipolarly
with the collective spin modes of the antiferromagnetic
system, whose dispersion relations are shown in Fig. 1(b).
By setting the QI resonance frequency within the bulk
gap, which is of the order of 0.1÷ 1 THz in many of the
common antiferromagnetic materials [20], we can focus
on the excitations endowed by the DW for both qubit de-
coherence and qubit-qubit coupling. The string mode is
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FIG. 1. (a) The proposed hybrid quantum system: An an-
tiferromagnetic film harbors a DW of width λ along the x
axis. This soliton interpolates between the ground states with
lz = ±1 at y → ∓∞, where l is the Néel order parameter. The
x-dependent variables (Y,Φ) identify, respectively, the y po-
sition and the azimuthal angle of the order parameter at the
DW center. Two QI’s, placed at a height d above the DW
and distance L from each other, interact magnetostatically
with the film’s spin density m. The axial-symmetry breaking
magnetic field h is applied along the y direction. (b) Disper-
sions of the collective spin modes in the film. Dark green line:
bulk spin-wave (SW) dispersion with energy gap ∆. Blue line:
dispersion of the spin-superfluid mode in the presence of the
magnetic field h = hy, which opens a gap ∆s ∝ h. Red line:
string sound mode. (c) The QI spin 1/2 is quantized along
the y axis, with the level splitting of ~ω.
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a translational-symmetry restoring Goldstone mode that
cannot be easily gapped (unless we pin the DW position),
which may pose problems for controlling the relative im-
portance of the coherent coupling and the decoherence
[19]. We show, however, that in the appropriate geome-
try, the string mode decouples from the spin qubits, at
the leading order. Therefore, the U(1)-symmetry restor-
ing Goldstone mode, whose dynamics realizes spin su-
perfluidity [21], is left to control both the effective qubit-
qubit coupling and qubit decoherence. These can thus
be tuned via an in-plane magnetic field, which opens a
gap in the spin-superfluid spectrum.

In this work, we address two distinct but related prob-
lems. First, we consider a spin qubit to couple to a sin-
gle quantized spin-superfluid mode of a ∼ micron-long
DW. We show that the associated cooperativity can be
large, suggesting that two distant spin qubits can be in
principle coupled coherently via a single superfluid mode.
Secondly, we look at the interplay between qubit deco-
herence and qubit-qubit interaction provided by the con-
tinuum of modes in an infinite DW. We find that the
spin-superfluid mode can mediate a two-qubit gate with
an operation rate of the order of tens of kHz, when the
qubits are placed at the distance of a micron from each
other. The gate-operational rate is found to be larger (by
a factor ∼ 102) than the QI decoherence rate due to the
spin-superfluid noise.

Main results. We consider two QI’s with spin-1/2 Si
(for i = 1, 2) with resonance frequency ω, placed at a
distance L from each other and at a height d above the
domain wall, as shown in Figs. 1(a) and (c). The QI
spin at a position ~ri couples to the stray field B(~ri) =
γ
∫
d~r D(~r, ~ri)m(~r) generated by the antiferromagnetic

spin density m(~r) via Zeeman interaction. Here, γ (γ̃) is
the gyromagnetic ratio of the magnetic film (QI spin) and
D the tensorial magnetostatic Green’s function [22, 23].
Starting from the Lagrangian of a bipartite antiferromag-
netic film with uniaxial anisotropy along the z axis, one
can derive the Hamiltonian of each DW mode by using
the collective coordinate approach, i.e., focusing on the
dynamics of the DW position Y and of the azimuthal
angle Φ of the Néel order parameter therein [19].

An external magnetic field h = hy sets the QI quan-
tization axis along the y direction and enforces a Bloch
domain wall configuration, i.e., Φ = 0. As discussed in
details later, these choices lead to vanishing coupling be-
tween each QI spin and the DW string mode. Moreover,
the magnetic field opens up a gap ∆s = γh in the spin-
superfluid dispersion, as shown in Fig. 1(b). Here, we
take the spin-superfluid gap to be much smaller than the
spin-wave bulk gap. Thus, at QI resonance frequencies
comparable with the spin-superfluid gap, we can neglect
the QI coupling with bulk spin waves and focus on its
interaction with the spin-superfluid mode.

For a DW of length `, we focus on the coupling be-
tween a QI spin and a single spin-superfluid mode. The

latter can be quantized in terms of the magnon creation
(annihilation) operator a†k (ak) with dispersion ~ωk. The
interaction Hamiltonian becomes

Hint = g σ+ak + H.c., (1)

where σ± = σx̃ ± iσỹ, with σα̃ being the α Pauli ma-
trix in the QI spin reference frame. Note that, in de-
riving Eq. (1), we have assumed g � ω ' ωk . The
cooperativity associated to Eq. (1) can be defined as
C = g2τsT2 [13], where T2 is the intrinsic QI dephas-
ing time and τs the DW-mode relaxation time. We find
the coupling g as

g =
~γγ̃

2

√
λχ~ωk [D2

xz(k, d) +D2
zz(k, d)]

2`
, (2)

where χ is the static uniform transverse spin suscep-
tibility and λ the DW width. Here, Dαβ(k, d) is the
one-dimensional Fourier transform of the magnetostatic
Green’s function Dαβ(~r, ~ri) at the QI position ~ri =
(0, 0, d). This function decreases rapidly as function of
the distance d and it is maximized for k ∼ 1/d.

For a DW of infinite length, we focus on the cou-
pling between the QI spins and the continuum of the
spin-superfluid mode. The strength of the effective
qubit-qubit coupling and the single-qubit decoherence are
parametrized, respectively, by the real (χ′) and imagi-
nary (χ′′) part of the spin-superfluid dynamical trans-
verse spin susceptibility χzz(k, ω). As discussed below,
we find the coupling Hamiltonian as

Hc =

∫
dk

2π
f(k, d)χ′zz(k, ω) cos(kL)σ+

1 σ
−
2 + H.c. , (3)

with f(k, d) =
[
D2
zz(k, d) +D2

xz(k, d)
]

(γγ̃)2/16. In
our geometry, the stray field associated with the spin-
superfluid mode is transverse to the QI quantization axis.
Thus, while there is no QI dephasing due to purely lon-
gitudinal coupling, the spin-superfluid mode gives rise to
QI relaxation processes. The associated QI relaxation
rate reads as

T−11 (ω) = coth (β~ω/2)

∫
dk

π
f(k, d)χ′′zz(k, ω) . (4)

Equation (4) accounts for processes in which the cre-
ation or annihilation of a magnon gives rise to a QI
transition between its spin states and vice versa. For
ω < ∆s (or ω < ∆s − 1/τs, when accounting for mag-
netic damping), the magnon spectral density vanishes
and the relaxation rate (4) is minimized. On the other
hand, the real part of the spin susceptibility decays ex-
ponentially on the lengthscale `s = c/

√
∆2
s − ω2, i.e.,

χ′zz(x) ∝ `se
−x/`s . Thus, to maximize the ratio between

the effective qubit-qubit coupling and the single-qubit de-
coherence, one needs to set the QI frequency just below
the gap, i.e., ω . ∆s (or ω . ∆s − 1/τs).
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Antiferromagnetic system. At temperatures far below
the Néel temperature, we can describe the low-energy
long-wavelength dynamics of a bipartite antiferromag-
net in terms of the directional Néel order parameter field
l(~r, t), with |l| = 1. The Lagrangian of an isotropic cubic
antiferromagnet with exchange stiffness A and uniaxial
anisotropy K can be written as

L
[
l, l̇
]

=
χ

2

∫
d~r
(
l̇ + γl× h× l

)2 −H[l] , with

H[l] = A
(
~∇l
)2

+K|z× l|2 . (5)

Varying Eq. (5) with respect to m leads to the constitu-
tive relation m = χ l × (∂tl− γ l× h) [24]. Dissipation
can be introduced by means of the Rayleigh function
R[l] = αs

∫
d~r (∂tl)

2/2, where α is the Gilbert damp-
ing constant and s the saturated spin density of both
sublattices. The model (5) admits also a solution for a
static domain wall of width λ =

√
A/K. For bound-

ary conditions of the form lz(y → ±∞) = ±1 and using
the parametrization l = (cosφ sin θ, sinφ sin θ, cos θ), the
DW solution is given by

cos θ (~r) = tanh
y − Y
λ

, φ (~r) = Φ. (6)

By plugging the DW solution (6) into Eq. (5) and pro-
moting the azimuthal angle to a dynamical field Φ(x, t),
we obtain the Lagrangian of the spin-superfluid mode as

L
[
Φ, Φ̇

]
= λ

∫
dx
[
χΦ̇2 −A(∂xΦ)2 + χ(∆sΦ)2

]
. (7)

Following the standard canonical quantization of a har-
monic oscillator, Eq. (7) can be quantized in terms

of magnon operator ak (a†k) with dispersion ~ωk =√
(ck)2 + ∆2

s, where c =
√
A/χ. From the La-

grangian (5) and the Rayleigh function, we can derive
the transverse spin susceptibility of the spin-superfluid
mode as

χzz(k, ω) =
2λχω2

ω2
k − ω2 − iαsω/χ + 2λχ . (8)

Noise. The interaction between a QI spin and the anti-
ferromagnetic spin density can be generally recast in the
form

H = σ+ ⊗X + σz̃ ⊗ Z + H.c. , (9)

where X and Z are fluctuating fields coupling, respec-
tively, transversely and longitudinally to the QI quanti-
zation axis. The relaxation, T−11 , and dephasing, T−12 ,
rates of each qubit can be written as [25]

T−11 = ~−2SY (ω) , T−12 =
1

2
T−11 + ~−2SX(0) . (10)

Here, SA(ω) =
∫
dt e−iωt〈{A+(t), A(0)}〉 is the power

spectrum of the operator A and 〈...〉 stands for the

string string

B

xz mirror
reflection

m

B

spin superfluid

B

spin superfluid

B

m

xz mirror
reflection

x

z m

m

FIG. 2. Stray field B produced by a Bloch domain wall. The
yellow contour highlights the stray-field components (red ar-
rows) allowed by symmetry. Upper side: the spin density m
(blue arrow) associated with the string-mode dynamics is in-
variant under mirror reflections through the xz plane. The
associated stray field is allowed to have only a y component.
Lower side: the spin density m (blue arrow) produced by
the spin-superfluid dynamics flips sign under mirror reflec-
tions through the xz plane. Therefore, the allowed stray-field
components are oriented along the x and z axes.

equilibrium (thermal) average. The power spectrum
SX(Y )(ω) can be expressed in terms of the Fourier
transform of the spin-spin correlator Cαβ(~ri, ~rj ; t) =
〈{mα(~ri, t),mβ(~rj , 0)}〉, with α, β = x, y, z, through the
magnetic field that the spin-density fluctuations induce.
Invoking the fluctuation-dissipation theorem [26], we can
write Cαβ(k, ω) = coth(β~ω/2)χ′′αβ(k, ω), where β =
1/kBT , with kB being the Boltzmann constant and T
the temperature.

For the isotropic bulk, the spin-susceptibility tensor is
diagonal, with χxx = χyy [27, 28]. The response χ′′xx
(χ′′zz) stems from spin fluctuations transverse (longitu-
dinal) to the z axis, i.e., to the equilibrium orientation
of the Néel order parameter in the bulk. As discussed
in Ref. [28], transverse fluctuations of the spin density
corresponds to one-magnon processes, i.e., the creation
or annihilation of a magnon. The associated relaxation
rate is proportional to the magnon spectral density at
the QI resonance frequency. The latter is vanishing for
ω . ∆ − 1/τs, with ∆ being the spin-wave bulk gap.
Thus, by tuning the QI frequency, one has T−11 = 0.
Furthermore, the imaginary part of the bulk transverse
spin susceptibility scales as χ′′xx(ω) ∝ ω3 for ω → 0 [29],
leading to a vanishing dephasing rate, i.e., T−12 = 0.

The bulk longitudinal spin fluctuations correspond in-
stead to two-magnon processes. The associated QI deco-
herence rate reflects the likelihood of magnons scattering
with energy gain (loss) equal to the QI frequency; it is
thus maximized at zero frequency, to then decrease with
increasing QI frequency [19]. However, magnons freeze
out as the temperature drops below the spin-wave gap
∆ and, by setting the temperature far below the bulk
spin-wave gap, SX(0) can be neglected.
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For d� λ, we can relate the spin susceptibility of the
magnetic film to the one associated with the DW modes
as χαβ(~ri, ~rj ;ω) = χαβ(|xi−xj |, ω)δ(yi)δ(yj). In a Bloch
DW, the order parameter lies along the x axis. Thus, ac-
cording to the constraint m · l = 0, there is no finite spin
density component along the x direction. A finite out-of-
plane spin density (per unit of length) is engendered by
the spin-superfluid dynamics, while string-mode fluctua-
tions give rise a spin density (per unit of length) along
the y axis. In linear response, the (one-magnon) longi-
tudinal and transverse spin fluctuations do not interfere
and can be considered separately [19]. Hence, the rele-
vant response functions are the yy and zz components
of the imaginary part of the (one-magnon) spin suscep-
tibility. Since χ′′yy(ω), χ′′zz(ω) ∝ ω3 for ω → 0, we can set
SX(0) = 0 [29]. As it can be deduced from the symmetry
argument illustrated in Fig. 2, the stray field generated
by the string mode is parallel to y axis. Thus, when the
QI quantization axis is oriented along the y direction, we
have T−11 = 0, and, consequently, T−12 = 0. Instead, for
the spin-superfluid mode, the associated stray-field com-
ponents are oriented along the x and z axes, as shown
in Fig. 2. The corresponding relaxation rate is given by
Eq. (4). Since the spin-superfluid dynamics give rise to
spin fluctuations transverse to the equilibrium orienta-
tion of the order parameter, the QI relaxation rate can
be minimized by tuning the QI frequency below the spin-
superfluid gap.

Qubit-qubit coupling. Assuming the QI coupling to
the antiferromagnetic spin density to be much smaller
than the QI resonance frequency, we can derive the ef-
fective qubit-qubit interaction by applying the lowest-
order Schrieffer-Wolff transformation [30] to the interac-
tion Hamiltonian

Hint = −~γ̃
2

∑
i=1,2

σi ·B(~ri) . (11)

The resulting single-qubit terms such as Jσ+
1 σ

+
1 van-

ish in the spin-1/2 subspace, while terms of the type
Jσ+

1 σ
−
1 can be reabsorbed in the definition of the QI

frequency [31]. Terms acting in the subspace (|↑↑〉, |↓↓〉),
e.g., Jσ+

1 σ
+
2 , can reduce the gate fidelity; however, as

already discussed in Ref. [16], we can neglect them as
long as J � ω. Focusing on the spin-superfluid mode,
which does not couple longitudinally to the QI’s, no terms
involving the operator σz̃,1(2) appear. These considera-
tions lead to the effective qubit-qubit coupling Hamilto-
nian (3).

A controlled-NOT and arbitrary one-qubit gates suf-
fice for defining a universal set of gates. For a NV cen-
ter, the initialization and read-out of the spin state can
be performed optically, while single-qubit operations can
be carried out by locally applying resonant microwave
fields. A controlled-NOT gate can be decomposed into

two iSWAP gates. By rewriting Eq. (3) as

Hc = J(σ+
1 σ
−
2 + σ+

2 σ
−
1 ) , (12)

an iSWAP gate can be implemented as Uiswap =
exp(−iHctJ/~), with tJ = π/4J [32].

The qubit-qubit interaction mediated by the transverse
and longitudinal bulk spin waves can be neglected when
the temperature and the QI frequency lie much below the
bulk spin-wave gap. For any QI frequency, instead, the
string mode mediates an RKKY-like interaction between
the qubits, which can be found as

Hc =

(
γγ̃

2

)2 ∫
dk

2π
χ′yy(k, 0) cos(kL)σz̃,1σz̃,2 . (13)

In our model, the real part of the static spin suscepti-
bility decays very rapidly, i.e., χ′yy(x) ∝ δ(x). Account-
ing for a finite exchange stiffness As associated with the
spin-density field, which translates into adding a term
∝ As(~∇m)2 to Eq. (5), would introduce a finite decay
length λs =

√
As/K. However, as this lengthscale is

atomistically short, within a Heisenberg model for the
antiferromagnet, it can be taken to be much shorter
than the characteristic lengthscale `s that controls the
strength of the qubit-qubit coupling mediated by the
spin-superfluid (3).
Estimate. As QI prototype we consider a NV center,

i.e., a spin triplet with an intrinsic dephasing time ex-
ceeding T2 ∼ 100 ms at temperatures of few Kelvins [4].
By tuning the magnetic field, we can isolate a sub-
system of the spin triplet and treat a NV center as
an effective two-level system. Writing A = JHS

2 and
χ = ~2/8JHS2a2 [34], with JH being the Heisenberg ex-
change, S the spin and a the lattice constant, we set
S ≈ 1 and a ≈ 5 Ȧ. We take γ = γ̃ ≈ 2µB/~, with
µB being the Bohr magneton, ∆s ≈ 1 GHz, d ≈ 20 nm
and λ ≈ 5 nm. For ` ∼ 1 µm, we obtain, for a magnon
mode with k ∼ 1/d, a coupling strength g ∼ 10 kHz.
We note that the latter, for a given DW width, does
not depend on the exchange stiffness. From the LLG
phenomenology [19], we have τs = 2χ/sα, where α is
the Gilbert damping, which we set to α ∼ 10−4. For
JH ∼ 0.1− 1 THz, we find a cooperativity C ∼ 10÷ 100
[33], much higher than the one associated with, e.g., hy-
brid devices based on NV centers and mechanical res-
onators [13]. When the QI couples to the continuum
spin-superfluid mode, to minimize the one-magnon noise
one needs to set the QI frequency below the magnon con-
tinuum, i.e., ω < ∆s − 1/τs, but not too far from it, in
order to still obtain a sizable coupling. Plugging Eq. (8)
into Eq. (3) and setting, e.g., ∆s − ω ∼ 1 MHz, we find,
for JH ∼ 0.1 THz, an operation rate t−1J ∼ 10 kHz for
L ∼ 1 µm. The QI relaxation rate induced by the spin-
superfluid noise, which can obtained by integrating nu-
merically Eq. (4), is of order of tens of Hz at T = 100
mK, i.e., two orders of magnitude smaller than the oper-
ation rate. Setting JH ∼ 1 THz decreases the operation
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rate to t−1J ∼ 1 kHz, but it leads to a ratio between the
latter and the QI relaxation rate of the order ∼ 104.

Discussion. Recently, strongly-localized quantized
magnetic solitons with nonlinear features have been pro-
posed as carriers of quantum information [35]. Here,
changing the perspective, we focus on the soft bosonic
modes of extended domain walls to mediate coupling be-
tween magnetic qubits that are extrinsic to the antifer-
romagnetic medium. Specifically, we show that the spin-
superfluid mode harbored by an antiferromagnetic DW
can mediate a tunable coherent coupling between spin
qubits separated on a micron scale, i.e., a distance larger
than, e.g., the one required to address NV centers sepa-
rately [36]. We propose a universal set of gates that can
be switched on and off via an external magnetic field.
Our approach relies on a tunable one-dimensional waveg-
uide along naturally-occuring domain walls in easy-axis
antiferromagnets, thus avoiding a need for microfabri-
cated structures [17]. Moreover, our proposal opens up
new prospects for using multiple NV centers to investi-
gate how quantum correlation and entaglement propa-
gate through a magnetic material.

Future works should more systematically address the
role of quenched disorder, the effects of higher-order
magnon processes associated with the DW dynamics, and
the decoherence from other sources. These may include
the phononic background and dynamic spin impurities
in the magnetic medium (which go beyond the Gilbert-
damping phenomenology of collective dissipation).
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