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The normal-state behavior of the temperature-dependent Hall coefficient in cuprate superconductors is in-
vestigated using linear response theory. The Hall conductivity is of paramount importance in that its sign and
magnitude directly reflect the sign of the charge carriers and the size of particle-hole asymmetry effects. Here we
apply a strong-pairing fluctuation theory that incorporates pseudogap effects known to be important in cuprate
transport. As a result, in the vicinity of the transition temperature our theoretical approach goes beyond the
conventional superconducting fluctuation formalism. In this regime, pseudogap effects are evident in both the
transverse and longitudinal conductivities and the bosonic response is explicitly gauge invariant. The presence of
a gap in the excitation spectrum is also apparent at higher temperatures, where the gapped fermionic quasiparti-
cles are the dominant contribution to the Hall coefficient. The observed non-monotonic temperature dependence
of the Hall coefficient therefore results from a delicate interplay between the fermionic quasiparticles and the
bosonic fluctuations. An important feature of our work is that the sign of the Hall conductivity from the Cooper
pair fluctuations is the same as that of their fermionic constituents. Thus, we find no sign change in the Hall
coefficient above the transition temperature. This prediction is corroborated by experiments, away from special
charge ordering stoichiometries. The theoretical results presented in this paper provide crucial signatures that
can be experimentally verified, enabling validation of the present theory.

I. INTRODUCTION

The behavior of the normal-state Hall coefficient in the cop-
per oxide superconductors continues to be one of the most
fundamental characteristics of these materials. However, like
many other normal-state properties, its interpretation is sub-
ject to ongoing theoretical debates. Nevertheless, there is
a growing consensus that understanding the Hall coefficient,
RH, may help elucidate the origin and nature of the anomalous
normal state and the related pseudogap. Recent attention has
focused on ultra-high-field measurements [1, 2] where obser-
vations of quantum oscillations [3] have suggested that pair-
ing effects may be irrelevant and that fermionic quasiparti-
cles [4, 5] are primarily responsible for the behavior ofRH. In
contrast to this picture is the extensively discussed [6–10] su-
perconducting fluctuation interpretation [11–18] of RH above
the transition temperature, Tc, where the transport is domi-
nated by bosonic Cooper-pair fluctuations. The dichotomy
between these two approaches is exacerbated by the fact that
the conventional fluctuation approach is not directly able to
address pseudogap effects which RH is thought to reflect [2].

The goal of this paper therefore is to incorporate pseudo-
gap effects into a superconducting fluctuation approach toRH.
Even above the transition temperature, RH is a complicated,
non-monotonic function [15]. The challenge is to understand
both the high-temperature regime in which the Hall coeffi-
cient steadily increases with decreasing T , as well as the re-
gion close to Tc, where it rapidly decreases with decreasing
T . The theoretical framework implemented in this paper is
a strong-pairing fluctuation theory, in contrast to the conven-
tional [10] weak-pairing fluctuation formalism built upon the
Ginzburg-Landau (GL) theory of the BCS regime. Our the-
oretical approach provides a qualitative understanding of the
temperature and hole-concentration dependence of the low-

field cuprate data.

We also address several important aspects involved in the
interpretation of cuprate Hall data. These include debates [7,
19] about the sign of the fluctuation contribution to RH, clari-
fying the significance of the widely observed [14, 20, 21] scal-
ing of RH with the pseudogap onset temperature T ∗, and also
identifying future Hall measurements which may elucidate
whether the pseudogap persists [22] in high magnetic fields.
Indeed, the pseudogap appears to be inextricably connected
to Hall experiments. There has been particular emphasis at-
tached to the highest hole concentration (called p∗) at which
the pseudogap is non-vanishing [2]. In addition, there are spe-
cific hole concentrations at which some form of ordering may
take place [2, 23], leading to a possible reconstruction of the
Fermi surface and to signatures in RH.

While the literature has generally focused on approaches
to RH that derive from considering only fermionic quasi-
particles [2, 4, 5, 24–26] or only bosonic fluctuations [12–
17], in the present strong-fluctuation framework both bosonic
and fermionic degrees of freedom contribute to the Hall co-
efficient. Importantly, here the “bosons” are composed of
gapped fermions, rather than “free” fermions as in conven-
tional fluctuation theory. The fermionic excitation gap, ∆(T ),
which reflects the energy needed to break apart the pairs, van-
ishes at the pseudogap onset temperature T ∗. In Fig. 1 we
present a schematic illustration of RH, showing how its ob-
served [11, 12, 15] non-monotonic temperature dependence is
driven by an interplay between bosonic and fermionic trans-
port. The initial rise with decreasing temperature occurs near
T ∗ and is due to a reduction in the number of fermionic charge
carriers as ∆ increases and fermions convert into bosonic
pairs. The lower temperature region near the superconducting
transition Tc is dominated by bosonic transport, reflecting the
dramatically increasing conductivity due to fluctuating pairs.
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FIG. 1. Schematic illustration of the non-monotonic temperature de-
pendence ofRH. Near the pseudogap onset temperature, T ∗, the rise
of RH with decreasing T is due to a reduction in the number of un-
paired fermions. Close to Tc, the rapid decrease in RH is driven by
the current carried by coherent bosonic fluctuations.

The paper is organized as follows. In Sec. II, we begin
with a summary of the theoretical literature and then outline
the strong-pairing fluctuation approach along with a summary
of our transport expressions. Importantly, here we empha-
size the similarities and differences compared to the standard
weak-fluctuation approach. In Secs. III-IV, we present de-
tailed derivations of the bosonic and fermionic electrical con-
ductivities. Our numerical results are then presented in Sec. V.
Finally, in Sec. VI we present our conclusions. A number of
important results are included in three appendices. The first
appendix provides a review of the foundations of the present
theory for a strong-pairing pseudogap and discusses the cen-
tral equations for computing Tc and T ∗. The latter two appen-
dices include formal proofs involving important gauge invari-
ance considerations.

II. THEORETICAL ANALYSIS

A. Previous theoretical treatments

A theoretical analysis of the Hall conductivity within the
context of time-dependent GL theory was first performed by
Abrahams et. al [27]. Important to this work was the ob-
servation that the transverse electrical conductivity is non-
vanishing only when the time-derivative term in the GL equa-
tion has an imaginary component. This GL approach contains
only a subset of the contributions which appear in the micro-
scopic superconducting fluctuation formalism [10]; namely, it
includes only the Aslamazov-Larkin (AL) diagram.

Among the earliest attempts to address the Hall conductiv-
ity within the microscopic fluctuation formalism were calcula-
tions by Fukuyama et. al in Refs. [6, 28]. The simple physics
behind this diagrammatic analysis is that it contains two con-
tributions to the Hall conductivity: (i) Maki-Thompson (MT)
and Density of States (DOS) terms comprising fermionic

scattering mechanisms and (ii) the AL term representing the
bosonic Cooper-pair fluctuations. In Ref. [6], these authors
considered the AL and MT diagrams and showed that the AL
contribution is only non-zero provided that one accounts for
the energy derivative of the density of states. Moreover, they
also demonstrated that, in contrast to the longitudinal electri-
cal conductivity, where the anomalous MT contribution is of
the same order as that of the AL [10], the AL contribution to
σxy is always more singular than that of the MT.

Subsequent work by Ullah and Dorsey [29, 30] extended
the GL treatment of Hall conductivity by considering the
Lawrence-Doniach model of layered superconductors. The
importance of an imaginary time-derivative term in the equa-
tions of motion was reiterated in these works and more gen-
erally it was recognized that such a term breaks particle-hole
symmetry. In the context of GL theory, general symmetry
considerations along with the Onsager relations confirm that
a non-vanishing (bosonic) Hall conductivity is obtained only
when particle-hole symmetry is broken [30, 31]. Dorsey and
Fisher [31] emphasized that the sign of the particle-hole sym-
metry breaking term is material specific and that the Hall ef-
fect thus provides an important probe of the underlying mi-
croscopic details of a given superconductor.

After this focus on particle-hole symmetry breaking, a new
line of inquiry emerged on the origin and sign of this particle-
hole asymmetry term. This was addressed in more detail in
Refs. [7, 8]; in the latter reference Aronov et. al suggested
that from the gauge-invariance of GL theory this term must
be proportional to ∂ lnTc/∂ lnµ. Aronov and Rapoport [7]
made the argument that under reasonable assumptions the AL
Hall conductivity has the same sign as in the normal state.
Moreover, these authors argued that, in general, the AL con-
tribution to Hall conductivity cannot explain the sign change
observed near Tc.

That the sign of the AL Hall conductivity is generally to
be associated with the sign of the fermionic Hall conductiv-
ity (determined by the Fermi-surface topology) is an impor-
tant constraint we emphasize in this paper. We argue that it
derives from the fact that the most natural bosonic degrees
of freedom are associated with fermion pairs. An alternative
proposal, however, was developed by Geshkenbein et. al [19],
which arrived at a sign difference between the normal-state
fermionic and bosonic Hall conductivities. In this Bose-Fermi
model the particle-hole asymmetry term is not based solely on
the energy derivative of the density of states but rather is of
fixed magnitude, and the normal state consists of holes while
the bosons are assumed to be formed from electron pairs.

This line of theoretical inquiry has led to little consensus
about the sign of the AL contribution to the Hall coefficient
in the hole-doped cuprates. Experimental results [15] have
established that generically the Hall coefficient exhibits a pri-
marily positive and non-monotonic behavior with a possible
sign change very close to Tc. When this sign change occurs it
has been consistently attributed to non-linear field effects [32].
Interestingly, these same effects are observed in non-cuprate
superconductors [33]. In general, experiments seem to imply
that the sign change may appear either above [2, 23] or be-
low [15] Tc and that the former situation is likely associated
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with special hole concentrations where there is some degree of
charge ordering. As emphasized in Ref. [2], the appearance of
a pseudogap is a separate phenomenon from charge ordering
and thus a charge-density-wave scenario is not expected to ac-
commodate all the features of the cuprate Hall coefficient.

The definition of Tc is of paramount importance in regard
to the possible sign change of RH. With a magnetic field
present, the resistive transition is broad and so the critical tem-
perature cannot be unambiguously established, in the absence
of Meissner data. Although there are alternative choices,
it is frequently taken to correspond to the midpoint of the
rapidly decreasing longitudinal resistivity (with decreasing T )
curve [34].

The majority of experiments [11, 12, 15] have focused on
fitting data to the standard expressions [6] for the MT and AL
diagrams derived within the conventional fluctuation formal-
ism. In contrast to the present paper, different signs for these
two contributions are generally assumed. It has been surmised
that there is a positive fermionic contribution over the range of
temperatures above Tc due to the MT term, while the bosonic
contribution from the AL term is presumed to give a large neg-
ative contribution just above Tc. This latter term, it is argued,
would accommodate the possible sign change in the Hall con-
ductivity were it to occur above Tc.

In addition to interest in the cuprate Hall conductivity,
there have also been recent experimental and theoretical stud-
ies [9, 35, 36] of the Hall conductivity in disordered thin films.
In Ref. [9] it was found that, in addition to the usual ten fluctu-
ation diagrams [10], in the presence of a magnetic field there
are two additional diagrams. Another crucial finding in this
work, which may bear on the interpretation of cuprate exper-
iments, was that some of the fluctuation diagrams cancel one
another, leaving only the AL, anomalous MT, part of the DOS,
and the two new diagrams found, as the remaining contribu-
tions to the Hall conductivity. In the cuprates, the experimen-
tal analyses have generally claimed [11] that for temperatures
far greater than Tc it is the MT contribution that is significant.
Nonetheless, it is important to ensure that whatever experi-
mental fitting procedure is adopted, it must be reconciled with
this more recent theoretical work [9].

The AL and DOS class of diagrams represent the bosonic
and fermionic contributions, respectively, and they provide the
basis for the Hall conductivity calculations performed in the
present paper. Our formalism is based on a strong-pairing
fluctuation theory [37] that goes beyond the weak-pairing for-
malism [10], which omits the important normal-state gap. As
will be discussed in the next section, this strong-pairing theory
naturally incorporates a particle-hole asymmetric term with a
sign determined by the sign of the fermionic (hole-like) charge
carriers. The approach we use is not limited to a small temper-
ature scale ∼ Tc/EF as in the conventional framework [10].
Since we address a larger range of temperatures this means the
effects from the fermionic quasiparticle excitation gap must
necessarily be included. It is also important to emphasize that
in this strong-pairing fluctuation approach the Cooper pairs
are more stable than in weak-fluctuation theory. This is a con-
sequence of the excitation (pseudo)gap which the fermions
experience; it is this gap which impedes their decomposition

from composite Cooper pairs into individual fermions.
The next section gives an overview of our theoretical frame-

work and a summary of our electrical conductivity results.

B. Overview of the strong-pairing fluctuation theory

It is useful to now present a more detailed summary of
the strong-pairing fluctuation theory on which this paper is
based. The present approach differs from phenomenolog-
ical boson-fermion models [38, 39] where the bosonic de-
grees of freedom are viewed as representing another degree
of freedom, distinct from the fermions. Our approach pre-
sumes that a stronger-than-BCS attraction is present and be-
longs to a class of BCS–Bose Einstein condensation (BEC)
crossover theories where the bosons are comprised of paired
fermions. What distinguishes it from others in this class [40]
is that it is founded upon an equation of motion approach with
a systematic Green’s function decoupling scheme [41], which
was shown to be consistent with the underlying structure of
BCS theory. The extension to the case where the interac-
tion strength is arbitrary [42] relates to the BCS-Leggett [43]
ground state, and within this generalization of BCS theory we
are able to address finite temperature effects [42]. Further de-
tails are presented in Appendix A. In the theoretical analysis
we use natural units: c = ~ = kB = 1; these units are restored
when appropriate.

In terms of the small four-vector qµ = (Ω,q), the inverse
(retarded) pair-propagator can be generically written as

t−1(q) ≈ Z[κΩ− q2/ (2Mpair)− |µpair|+ iΓΩ]. (2.1)

The coefficients κ and Γ are real and dimensionless. The
real part of t−1(q) contains contributions which depend on
an effective pair mass, Mpair, and a pair chemical potential
µpair = t−1(0)/Z. Except in the particle-hole symmetric
case (where κ = 0 and an Ω2 term would be included) in
general we have |κ| = 1. The sign of κ indicates whether the
pairs consist of pairs of electrons (+1) or pairs of holes (−1),
as explained below. Additionally, the imaginary part, ∝ ΓΩ,
represents the diffusive contribution to the inverse pair propa-
gator. In the actual numerical calculations an anisotropic pair
dispersion is used: Ωq = q2

‖/(2M‖) + q2
⊥/(2M⊥), reflect-

ing the layered structure of the cuprates, where “‖” and “⊥”
denote in-plane and out-of-plane hopping, respectively.

As expected in a strong-fluctuation theory, the pseudogap,
∆, must appear in the pair propagator. This is in contrast to
the weak-fluctuation theory where the propagator consists of
only bare fermions. The incorporation of the pseudogap arises
through the dressing of a single Green’s function via:

t−1(q) ≡ g−1 +
∑

k

G(k)G0(−k + q)ϕ2
k−q/2. (2.2)

Here, qµ = (iΩm,q), kµ = (iωn,k) (before analytic contin-
uation) where Ωm and ωn are bosonic and fermionic Matsub-
ara frequencies, respectively. The attractive coupling constant
g < 0 and the d-wave form factor is ϕk. The summation
is defined as

∑
k ≡ T

∑
iωn

∫
ddk/(2π)d. The dressed and
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bare electron Green’s functions are G and G0, respectively.
The appearance of only one dressed Green’s function in the
pair propagator has been extensively discussed in the litera-
ture [37, 42, 44] and is understood to be a direct consequence
of an equation of motion approach to generalizing BCS the-
ory [41]. Further details are discussed in Appendix A.

We emphasize that the pair propagator can assume either
an electron-like or hole-like character depending on the con-
stituent fermions (through the Fermi surface curvature deter-
mined by the band parameters) and this is associated with a
sign change in κ = ±1. As a corollary, hole-like quasipar-
ticles (with positive RH) lead to hole-like Cooper pairs and
electron-like quasiparticles (with negative RH) are associated
with electron-like pairs. In the hole-like case, the normal-state
σxy is positive, while κ is negative and as a result the Cooper-
pair σxy is also positive [see Eq. (3.11)].

The Hall coefficient, RH, is defined by

RH =
Ey

JxBz
, (2.3)

where Ey, Jx, and Bz are the corresponding components of
the electric field, current, and magnetic field, respectively.
The linear constitutive relations between E and J are E = ρ↔J
and, equivalently, J = σ↔E, with ρ↔ and σ↔ the resistivity
and conductivity tensors, respectively. In the absence of a y-
component to the current Jy = 0 and the first constitutive
relation gives Ey = ρyxJ

x, and thus ρyx = BRH. In terms
of the conductivity tensor elements this becomes

RH =
1

B

σxy
σ2
xx + σ2

xy

. (2.4)

Here we have used the fact that σxx = σyy and σxy = −σyx.
Throughout the paper, the fermionic (f ) and bosonic (b) con-
tributions are added together, and when computing RH their
sum enters directly in the conductivities via: σij = σfij + σbij .

To make contact with the conventional fluctuation liter-
ature, note that the coherence length which generally ap-
pears [10] is now replaced by

ξ(T ) ≡ ξ0/
√
ε→ ξ0/

√
|µpair|/(kBTc). (2.5)

In the conventional fluctuation literature ε ≡ ln(T/Tc) ≈
(T − Tc)/Tc is the reduced temperature and corresponds to
the dimensionless parameter characterizing the transport sin-
gularities near Tc; in the strong-pairing theory this is re-
placed by the rescaled bosonic pair chemical potential ε →
|µpair|/(kBTc). Similarly the (zero-temperature) coherence
length now becomes [45]

ξ0 = ~

√
1/(2Mpair)

kBTc
. (2.6)

For the bosonic contribution we may anticipate the answers
for RH (obtained from detailed microscopic analysis) by us-
ing the above correspondences along with previous [6, 10, 36]
fluctuation calculations. In the conventional fluctuation theory

the bosonic Hall conductivity is proportional to the particle-
hole asymmetry term in the GL propagator [10], which is de-
pendent on Fermi-surface topology [46], and in the strong-
fluctuation theory this corresponds to κ, whose sign is deter-
mined by the nature of the Fermi-surface. The non-singular
fermionic contribution can be similarly anticipated from the
usual quasiparticle approximation [5] to the Hall effect. It ap-
pears primarily as a density of states term which now includes
the pseudogap in the fermionic dispersion.

A microscopic analysis of the bosonic transport coefficients
is presented in Sec. III. Here we summarize the results for the
bosonic contributions to the two-dimensional (2D) electrical
conductivity tensor:

σbxx =
(e∗)

2

~
(κ2 + Γ2)

Γ

kBT

8π|µpair|
, (2.7)

σbxy
B

= − (e∗)
2

~
~e∗

Mpairc

κ(κ2 + Γ2)

Γ2

kBT

48π|µpair|2
. (2.8)

The charge of the bosonic fluctuations is e∗ = 2e; in this
paper we adopt the convention e > 0 so that the charge of
the electron is qe = −e. The constants ~, c, and kB have
been restored here. The Gaussian units of 2D conductivity
(actually a conductance) are those of e2/~, and this is explicit
in the above expressions.

The combination ~e∗B/(Mpairc) is equivalent to the en-
ergy ~ω∗c , which depends on the bosonic cyclotron frequency
ω∗c = e∗B/(Mpairc). The general structure of a linear re-
sponse treatment of fluctuation theory in the presence of a
magnetic field requires that B appears in bosonic transport
coefficients in a perturbative fashion in powers of a small di-
mensionless parameter:

∣∣∣∣
~ω∗c
µpair

∣∣∣∣� 1. (2.9)

The fermionic conductivity tensor is derived in Sec. IV.
Presuming positive charge carriers, this is given by

σfxx = 2e2τ
∑

k

v2
x

(
ξk
Ek

)2(
−∂f(Ek)

∂Ek

)
, (2.10)

σfxy
B

=
e3τ2

2c

∑

k

(
v2
xvyy − vxvyvxy

)(
1 +

3ξ2
k

E2
k

)

×
(
−∂f(Ek)

∂Ek

)
. (2.11)

The phenomenological parameter τ represents the transport
lifetime. The quasiparticle dispersion Ek obeys E2

k = ξ2
k +

|∆ϕk|2, where ξk is the bandstructure, and the velocities are
vi = ∂ξk/∂k

i, vij = ∂2ξk/∂k
i∂kj . The Fermi-Dirac distri-

bution function is f(x) = (exp(βx) + 1)
−1, where β = T−1.

The focus of this paper is the weak magnetic field regime
where the y-x component of the resistivity is linear in the
magnetic field: ρyx = BRH and RH is field independent.
This is consistent with magnetic fields up to a few Tesla [47].
From Eq. (2.4), this implies that RH can be approximated as

RH ≈
1

B

σxy
σ2
xx

. (2.12)
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Thus, σ2
xy in the denominator of Eq. (2.4) can be dropped,

which implies that |σxy| � |σxx|. Indeed, experimentally it is
found [15] that, even in moderately large magnetic fields and
for general temperatures, |ρyx/ρxx| ≈ 10−2, or equivalently,
|σxy/σxx| ≈ 10−2. The criterion in Eq. (2.12) then defines
precisely what is meant by the weak magnetic field regime.
Using Eqs. (2.7-2.8), the ratio of the 2D Hall conductivity to
the 2D longitudinal conductivity is

σxy/σxx = − κ

6Γ

~ω∗c
|µpair|

. (2.13)

Thus, from an experimental perspective, we again arrive at the
constraint in Eq. (2.9). Note also, by limiting our focus in this
paper to the weak magnetic field regime, we do not consider
a possible near-Tc sign change [15] in RH, which has been
shown [32, 33] to be associated with non-linear field effects
and may be relevant only below the zero-field transition tem-
perature Tc0 [18, 48].

After inserting the 2D conductivity expressions from
Eqs. (2.7-2.8) into Eq. (2.12), the more strongly temperature
dependent feature associated with µpair cancels out from the
ratio and RH is predicted to asymptote to a more weakly tem-
perature dependent functional form, as T is decreased. This
result appears at odds with experiments, where the Hall coef-
ficient rapidly decreases as the superconducting transition is
approached [15]; this is evident even away from the immedi-
ate vicinity of Tc. (This cancellation of µpair is also found for
the conventional fluctuation theory, with µpair replaced by ε.)
The data provides an important clue [15, 23]: the plummeting
of ρyx must be associated with the temperature dependence
of the denominator in Eq. (2.12) as there is relatively less T
variation in σxy .

A reconciliation of the experimentally-measured Hall coef-
ficient within conventional fluctuation theory was presented in
Ref. [35] in a systematic study of disordered thin films of the
superconductor TaN. These authors noted that as the transition
was approached the AL expression for σxx no longer fit the
data and that the divergence in the longitudinal conductivity
was stronger than expected. To address this issue the authors
appealed to inhomogeneity effects [49], where the predicted
dependence in the 2D longitudinal conductivity changes from
σbxx ∝ 1

ε to

σbxx ∝
1

ε1+α
, (2.14)

where α ≈ 1/3 [49]. At the same time they suggested that
σxy is unaffected by inhomogeneity effects [35]. With this
modification it was demonstrated that superconducting fluc-
tuation theory (albeit in a conventional superconductor) can
successfully address Hall data.

This provides the motivation for a (single) additional as-
sumption in the current paper. Indeed, while the cuprates are
thought to be clean in the sense of having negligible contami-
nation from impurities, they have been shown to have intrinsic
disorder [50]. Along with bulk disorder signatures [51, 52],
(surface) scanning tunneling microscopy has led investiga-
tors [53] to characterize the cuprates as “electronic glasses".

For this reason, we incorporate this phenomenological as-
sumption and adopt Eq. (2.14). With this inclusion the other-
wise microscopic equations (as written above) provide a rather
complete qualitative picture of the behavior of the Hall coef-
ficient in the cuprates, which is summarized in Fig. 1. In the
numerical section (V) of the paper we will discuss specific
features and quantitative plots of Hall response after first pre-
senting the theoretical formalism.

III. BOSONIC ELECTROMAGNETIC RESPONSE

A. Bosonic longitudinal conductivity

We begin with the longitudinal fluctuation conductivity in
zero external magnetic field, noting that for the strong-pairing
fluctuation theory studied in this paper the exact EM response
has previously been determined [37]. For small wavevectors,
the pair propagator corresponds to a quadratically dispersing
boson with charge e∗ = 2e, renormalized mass Mpair, and
chemical potential µpair. The exact AL diagram can then be
viewed as the response of an effectively free boson, but im-
portantly with vertices constructed from the propagator in a
self-consistent manner; see Ref. [37] for details.

The longitudinal component of the electrical conductivity
is computed using the standard Kubo formula [54]:

σxx = − lim
Ω,q→0

1

Ω
Im
[
P xx(Ω,q)|iΩm→Ω+i0+

]
. (3.1)

The bosonic two-particle correlation function is

P xxAL(q) = − (e∗)
2
∑

p

t(p+)Λx(p+, p−)t(p−)Λx(p−, p+).

(3.2)
The bosonic four-vector pµ = (i$m,p), where $m is a
bosonic Matsubara frequency, and pµ± ≡ pµ±qµ/2. The four-
vector summation is defined by

∑
p = T

∑
i$m

∫
ddp/(2π)d.

The EM vertices are bosonic vertices constructed such that
qµΛµ(p+, p−) = t−1(p+) − t−1(p−). A bosonic equivalent
of the Ward identity [55] between the vertex and the prop-
agator can be obtained by taking the limit q → 0, which
results in Λµ(p, p) = ∂t−1(p)/∂pµ. This important con-
straint between the fluctuation propagator and the bosonic ver-
tex shows that they must be treated on an equal footing. In
the strong-pairing fluctuation theory these vertices have been
determined exactly [37]. For the special case where the pair-
propagator takes the form given in Eq. (2.1), the more com-
plicated triangular vertices of the AL diagram reduce simply
to Λµ(p+, p−) = Z(κ + iΓ,p/Mpair). The diagram for the
bosonic two-particle response is shown in Fig. 2.

The next step is to calculate the Matsubara frequency sum-
mation [10] in Eq. (3.2), then perform analytic continuation to
real frequencies: iΩm → Ω + i0+, and finally take the limit
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FIG. 2. Feynman diagram for the bosonic two-particle function.

q→ 0. This procedure results in

P xxAL(Ω, 0) = − (e∗)
2
∑

p

(
Zpx

Mpair

)2 ∫ ∞

−∞

d$

2π
coth

(
β$

2

)

× Im tR($,p) [tR($ + Ω,p) + tA($ − Ω,p)] .
(3.3)

Here, tR is the retarded pair propagator, as appears in
Eq. (2.1), and tA, the advanced pair-propagator, corresponds
to the complex conjugate of tR. After taking the limit Ω→ 0
in Eq. (3.3) and then integrating by parts, the AL contribution
to the longitudinal electrical conductivity is

σbxx =
(e∗)

2

2T

∑

p

(
Zpx

Mpair

)2 ∫ ∞

−∞

d$

2π

[Im tR($,p)]
2

sinh2 (β$/2)
.

(3.4)
In the small |µpair| limit (|µpair|/Tc � 1) the dominant con-
tribution to the integral occurs when β$ � 1, which allows
the sinh function to be expanded as sinh(β$/2) ≈ $/(2T ).
After inserting the pair-propagator from Eq. (2.1), then com-
puting the frequency integration, followed by the momentum
integration, we obtain Eq. (2.7) for d = 2 and for d = 3 the
result is

σbxx =
(κ2 + Γ2)

Γ

kBT (e∗)
2

8π~2

√
Mpair

2|µpair|
. (3.5)

The constants ~ and kB have been restored; the Gaussian units
of (3D) conductivity are s−1, which are those of the above ex-
pression. Note that σbxx is independent of the signs of both
e and κ. The longitudinal electrical conductivity is thus the

same for electrons and holes, and furthermore it is indepen-
dent of the sign of the particle-hole asymmetry term κ.

B. Bosonic transverse conductivity

To determine the fluctuation contribution to the trans-
verse, magnetic-field-dependent conductivity σxy , a three-
particle EM response must be computed. While in the weak-
pairing fluctuation theory electromagnetic transport is often
derived [10] from a fluctuation free energy, this is not possible
in the strong-pairing formalism since it is not phi-derivable.
In principle, one could perform all EM vertex insertions in
the two-particle EM response, however, such an approach is
intractable. To make progress, we build upon the analysis
of the previous section and consider the response of quasi-
independent bosons described by the propagator in Eq. (2.1).

The physical situation under consideration consists of mea-
suring the current in the x̂-direction in response to applied
electric and magnetic fields in the ŷ and ẑ-directions, re-
spectively. The magnetic vector potential is thus A =
c/(iΩ)Ee−iΩt + B/(iQ)x̂e−iQŷ·r. For completeness, in the
analysis below the generic three-particle EM response func-
tion Kµνα(iΩm,q) is studied. An important point not widely
appreciated in the fluctuation literature is the need to incor-
porate two classes of correlation functions, namely, current-
current-current (KJJJ) and current-density (KJρ). This ne-
cessity is required in order to obtain a gauge invariant three-
particle EM response. Indeed, Fukuyama et. al [56, 57]
proved that both KJJJ and KJρ correlation functions must
be included in the full three-particle EM response to render it
gauge-invariant. A detailed discussion of gauge invariance for
the bosonic response is deferred to Appendix B.

FIG. 3. Feynman diagrams for the bosonic three-particle function.

The current-current-current and current-density correlation
functions are given by [56, 58]:

Kµνα
JJJ(q) = (Ze∗)

3
∑

p

[
pν+
Mpair

(
pµ

Mpair

pα

Mpair

)
t(i$m + iΩm,p+)t(i$m,p−)t(i$m,p+)

+
pν−
Mpair

(
pµ

Mpair

pα

Mpair

)
t(i$m − iΩm,p−)t(i$m,p+)t(i$m,p−)

]
, (3.6)

Kµνα
Jρ (q) =

(Ze∗)
3

Mpair
δνα

∑

p

(
pµ

Mpair

)
t(i$m + iΩm,p+)t(i$m,p−). (3.7)
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The current vertex indices are denoted by µ, ν, α ∈ {x, y}
and p± = p ± q/2, where for the case of physical interest
q = Qŷ. The diagram for the general three-particle bosonic
response is shown in Fig. 3. The details of the Matsubara

frequency summation are presented in Appendix C and here
we just quote the final result. After taking the limit q → 0,
followed by Ω → 0, the real part of the three-particle EM
response reduces to

ReKµνα (q) = (qνδµα − qµδνα)
Ω (Ze∗)

3

dMpair

∑

p

(
p

Mpair

)2 ∫ ∞

−∞

d$

2π
coth

(
β$

2

)[
Re(∂$tR)Im(t2R)− Re(∂$t

2
R)Im(tR)

]
.

(3.8)

The spatial dimensionality is d and tR ≡ tR($,p). The
first term arises from the JJJ correlation function, whereas
the second term arises from the Jρ contribution. Due to the
prefactor (qνδµα − qµδνα) appearing here, this expression is
manifestly gauge-invariant [56, 57]: qαReKµνα (q) = 0. It
is important to reiterate that satisfying gauge invariance re-
quires the current-density correlation function to be included,
as shown for arbitrary momentum in Appendix B.

Finally, the transverse conductivity can be computed using
the Kubo formula [56, 58]:

σbxy
B

= lim
Ω,Q→0

1

ΩQc
Re
[
Kxyx(q)|iΩm→Ω+i0+

]
. (3.9)

Applying this definition to the correlation function in Eq. (3.8)
we find that only the KJJJ term contributes, while the KJρ

term vanishes. An equivalent definition for σyx can be given
using the above formula but with Kyxx used instead. In this
case the KJJJ term vanishes and it is KJρ that contributes.
However, since σyx = −σxy and Kyxx = −Kxyx, both ex-
pressions above give exactly the same Hall conductivity. This
proves that previous (non-gauge-invariant) calculations of the
AL contribution to σxy , based solely on the KJJJ term, are
unaltered by the inclusion of the KJρ correlation function.
This is an explicit consequence of the gauge-invariance of the
three-particle EM response. Note, however, for an arbitrary
anisotropic dispersion both three-particle response functions
contribute; see Refs. [5, 26, 58]

Inserting the response function from Eq. (3.8) into
Eq. (3.9), and then integrating by parts, results in

σbxy
B

=
β (Ze∗)

3

3Mpairc

∑

p

(
px

Mpair

)2 ∫ ∞

−∞

d$

2π

[Im tR($,p)]
3

sinh2 (β$/2)
.

(3.10)
For a particle-hole symmetric fluctuation propagator, where
Im [tR (−Ω,p)] = −Im [tR (Ω,p)] and Re [tR (−Ω,p)] =
Re [tR (Ω,p)], then as discussed in Sec. II A, the AL con-
tribution to the Hall conductivity vanishes [10]. Note that
this is an exact statement, regardless of the specific form
the fluctuation propagator takes; in all fluctuation theories,
particle-hole asymmetry is required to obtain a non-vanishing
AL Hall conductivity. Finally, we remark that an alternative
approach [59] investigated including particle-hole asymme-
try not in the propagator itself but rather in the vertices. As
shown in Sec. III A, the Ward identity relates the propagator
and the vertices self-consistently. Thus it is problematic if cer-

tain physics is retained in the vertex but not the propagator and
vice-versa.

As in Sec. III A, we now consider the small µpair limit and
approximate sinh(β$/2) ≈ $/(2T ). This allows the fre-
quency and momentum integrations in Eq. (3.10) to be per-
formed analytically, which for d = 2 yields Eq. (2.8) and for
d = 3 the result is

σbxy
B

= −κ(κ2 + Γ2)

Γ2

kBT (e∗)
3

96π~c
1√

2Mpair|µpair|3
. (3.11)

The constants c, ~, and kB have been restored to ensure
Eq. (3.11) has units of s−1. The bosonic contribution to the
Hall conductivity is proportional to the signs of charge (e∗)
and particle-hole asymmetry (κ).

IV. FERMIONIC ELECTROMAGNETIC RESPONSE

A. Fermionic longitudinal conductivity

The fermionic contribution to the two-particle EM response
is quite generally associated with DOS- and MT-type dia-
grams [37], which in the presence of pseudogap effects are
non-divergent. For the conventional fluctuation theory the
electrical conductivity of these diagrams has been well stud-
ied in the ultraclean [60, 61], clean [61, 62], and dirty [10, 62]
cases. However, in the strong-pairing fluctuation theory,
where the t-matrix is given by Eq. (2.2), the presence of the
normal-state pseudogap makes the explicit calculations pro-
hibitively difficult and so suitable approximations must be
made for theoretical tractability. We thus proceed on the ba-
sis of the well-studied fermionic quasiparticle picture [5] and
note that the self energy Σ(k) =

∑
q t(q)G0(−k + q)ϕ2

k−q/2
can be reasonably approximated [44, 63] to be of the form:
Σ(k) ≈ − |∆ϕk|2G0(−k), where |∆|2 = −∑p t(p). Fur-
ther details are presented in Appendix A.

In this form the strong-pairing fluctuation theory has a
physical interpretation associated with fermionic quasiparti-
cles having a normal-state gap ∆, while the bosonic fluctua-
tions have been disregarded. We have verified that the vertex
correction due to the form-factor contribution that arises for
a d-wave pairing gap [64] can be neglected in which case the
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fermionic two-particle correlation function is given by [65]:

P xxf (q) = 2e2
∑

k

γx(k+, k−)[G(k+)G(k−)

− F ∗(k+)F (k−)]γx(k−, k+). (4.1)

The bare EM vertex is γx(k+, k−) = ∂ξk/∂k
x = vx, where

ξk is the single-particle bandstructure. The diagram for the
fermionic two-particle response is shown in Fig. 4.

FIG. 4. Feynman diagrams for the fermionic two-particle function.

The function F is given by F (k) = −∆ϕkG0(−k)G(k).
While this is similar in appearance to an anomalous Green’s
function, it arises here due to a vertex correction associated
with the pseudogap ∆. The first term in Eq. (4.2) reflects a
DOS-like interaction term and the second term is an MT-like
diagram, now with the inclusion of the normal-state pseudo-
gap.

The Matsubara frequency summation in Eq. (4.1) is per-
formed in the standard manner [54], and after analytic contin-
uation to real frequencies and then taking the limit q→ 0, the
result obtained is:

P xxf (Ω, 0) = 2e2
∑

k

v2
x

∫ ∞

−∞

dω

2π
tanh

(
βω

2

){
Im GR(ω,k) [GR(ω + Ω,k) +GA(ω − Ω,k)]

− Im FR(ω,k) [FR(ω + Ω,k) + FA(ω − Ω,k)]

}
. (4.2)

After taking the limit Ω→ 0 in Eq. (4.2) and then integrating
by parts, the fermionic contribution to the longitudinal electri-
cal conductivity is

σfxx = 2e2
∑

k

v2
x

∫ ∞

−∞

dω

π

(
−∂f(ω)

∂ω

)

×
{

[Im GR(ω,k)]
2 − [Im FR(ω,k)]

2
}
. (4.3)

The retarded propagators for the fermionic quasiparticles are

GR(ω,k) =
u2
k

ω − Ek + iγ
+

v2
k

ω + Ek + iγ
, (4.4)

FR(ω,k) = − ukvk
ω − Ek + iγ

+
ukvk

ω + Ek + iγ
. (4.5)

The parameter γ is related to the lifetime τ by γ ≡ 1/(2τ).
The coherence factors are u2

k = 1
2 (1 + ξk/Ek) = 1 − v2

k.
Inserting these propagators into Eq. (4.7), and taking the limit
where ~τ−1 � EF to regularize the results [58], we obtain
[as in Eq. (2.10)]:

σfxx = 2e2τ
∑

k

v2
x

(
ξk
Ek

)2(
−∂f(Ek)

∂Ek

)
. (4.6)

For the free-particle case, where ∆ = 0 and Ek = |ξk| =
|k2/(2m)− µ|, the electrical conductivity then reduces to the
standard Drude expression σfxx = ne2τ/m, as required.

B. Fermionic transverse conductivity

The fermionic transverse conductivity is more complicated
than that of the bosonic case due to the presence of a gen-
eral bandstructure in contrast to an anisotropic but quadratic
dispersion. The general formalism for an arbitrary dispersion
can be found in Ref. [58] and we follow their methodology.
An additional complication is the incorporation of vertex cor-
rections. For the conventional fluctuation theory the Hall con-
ductivity of the MT diagram has been studied in Ref. [6]. In
the strong-pairing fluctuation theory, however, the presence of
the normal-state gap prevents an exact approach from being
implemented. A general investigation of incorporating vertex
corrections was initiated in Ref. [66]. To make progress we
follow Ref. [5] and focus solely on the fermionic three-point
function with three dressed Green’s functions. This response
quite generally includes DOS-like effects, albeit without the
incorporation of vertex corrections, and it incorporates the
dominant effects from the gapped quasiparticles. The Kubo-
formula for the fermionic Hall conductivity is then [5, 58]:

σfxy
B

= −4e3

3c

∑

p

∫ ∞

−∞

dω

π

(
v2
xvyy − vxvyvxy

)

× [Im GR(ω,p)]
3

(
−∂f(ω)

∂ω

)
. (4.7)
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FIG. 5. The phase diagram for the strong-pairing fluctuation the-
ory. The pairing-onset temperature is denoted T ∗ whereas Tc is the
transition temperature, and here they are measured in terms of the
hopping parameter t. The hole concentration is labelled by x. The
lines are a guide to the eye.

Here we have assumed symmetry in the x-y plane. To regular-
ize the product of three Green’s functions appearing above, in
the limit ~τ−1 � EF , we again use the method of Ref. [58];
see the text below their Eq. (1.26). After inserting the retarded
propagator from Eq. (4.4) into Eq. (4.7) we obtain Eq. (2.11):

σfxy
B

=
e3τ2

2c

∑

k

(
v2
xvyy − vxvyvxy

)(
1 +

3ξ2
k

E2
k

)

×
(
−∂f(Ek)

∂Ek

)
. (4.8)

For the free-particle case the transverse electrical conduc-
tivity reduces to the standard Drude expression σfxy/B =

ne3τ2/(m2c), as required.

V. NUMERICAL RESULTS

A. Phase diagram

In this section we present the numerical analysis underly-
ing the schematic illustration shown in Fig. 1. Central to
these results are the four equations given in Eqs. (2.7-2.11),
which depend on the fermionic dispersion and excitation gap
∆ and on the bosonic parameters appearing in the pair prop-
agator in Eq. (2.2). Once these parameters are determined
from the microscopic theory, a phase diagram can be com-
puted for the temperature scales T ∗ and Tc at a few illus-
trative hole concentrations. Further details are presented in
Appendix A. Throughout this section we use natural units:
e = ~ = kB = 1. The lattice constant a and the hopping
parameter t are also set to 1. When making comparisons with

experimental numbers, one should appropriately restore the
units, i.e., a ≈ 3Å and t ≈ 300meV.

We do not have a microscopic theory to address the temper-
ature dependence of the fermionic scattering time τ , although
its high-temperature limit is generally [67] taken as τ−1 = T
for temperatures above T ∗; see also Ref. [68]. For the purely-
fermionic contribution to RH, however, this parameter can-
cels out. The calculations in this section should thus rather be
viewed as qualitative. The central goal is to arrive at a gen-
eral understanding of the Hall coefficient over a broad range
of temperatures, beyond that addressed in either the bosonic
fluctuation literature or from the purely-fermionic perspective.

In support of our assertion that the high temperature up-
turn (with decreasing temperature) in RH is associated with
the fermionic contributions in Eqs. (2.10-2.11) are widely
observed [14, 20, 21] scaling observations which show how
RH varies with the pseudogap onset temperature T ∗. Addi-
tional experimental support for our results is provided from
Ref. [23], which presented a rather detailed set of plots for
σxy showing that it is positive and slightly increasing (with
decreasing T ) over a wide range of temperatures. Related data
for σxy over a narrower temperature range were also presented
in Ref. [15]. These experimental observations give credence
to the claim that the bosonic contribution to Hall conductivity
from the AL diagram has the same sign as the fermionic Hall
response. Moreover, away from the charge ordering regime,
they give no indication for a divergence in σxy (of either sign).

The Hamiltonian for the microscopic model is

H =
∑

k,σ

ξkc
†
kσckσ + g

∑

k,k′

ϕkϕk′c†k↑c
†
−k↓ck′↓c−k′↑, (5.1)

where g < 0 is an attractive interaction constant and ϕk =
cos kx − cos ky is the d-wave form factor. The bare band dis-
persion is parameterized to be:

ξk = 2t (2− cos kx − cos ky)− 2t′ (1− cos kx cos ky)

+ 2tz (1− cos kz)− µ, (5.2)

with parameters t = 1 and t′ = 0.7 consistent with a tight-
binding fit to angle-resolved-photoemission (ARPES) mea-
surements of YBCO [5]. The chemical potential is chosen
such that the number of electrons per unit cell is 1− x, where
x is the hole doping concentration.

The first numerical calculation we present is a phase
diagram in Fig. 5, obtained using our strong-pairing ap-
proach [42]. As discussed in Appendix A, the pseudo-
gap temperature T ∗ is the pairing-onset temperature and this
crossover temperature can be estimated from the mean-field
BCS gap equation with zero superconducting gap: 0 = g−1 +∑

k
ϕ2

k

Ek
tanh(βEk/2), where Ek =

√
ξ2
k + |∆k|2 is the

quasiparticle dispersion, with ∆k = ∆ϕk. The superconduct-
ing transition temperature, Tc, is obtained by a self-consistent
solution [42] associated with the condition µpair(Tc) ≡ 0.

The interaction strength g(x) is chosen to capture the gen-
eral features of the phase diagram; we fit it by taking T ∗(x) =
0.432t (0.28− x). In strictly two spatial dimensions we find
Tc = 0, as is consistent with the Mermin-Wagner theorem.
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FIG. 6. Electrical transport properties σxx, σxy , ρxx, and ρyx, cal-
culated for doping x = 0.15. The red curves combine both the
fermionic and bosonic contributions to electrical transport, while the
black dashed curves show only the fermionic contribution. The 2D
conductivities are measured in units of e2/~.

The introduction of a small hopping constant along the z-
axis, tz � t, leads to finite, but low transition temperatures.
It is reasonable that they become lower with underdoping as
the c-axis coupling is expected to be weaker. These parame-
ter choices are then sufficient to deduce the parameters rele-
vant for transport calculations, i.e., µpair,Mpair,∆, Tc, and T ∗.
All of these are self-consistently calculated using the strong-
fluctuation theory. For further details see Ref. [42].

B. Transport summary for optimal hole concentration

In Fig. 6 we present the temperature dependence of trans-
port quantities calculated for optimal hole doping x = 0.15.
Panels (a)-(d) in Fig. 6 plot the longitudinal and transverse
electrical conductivities, and the longitudinal and transverse
resistivities, respectively, as functions of temperature. The
two transverse response plots in Fig. 6 are of the greatest in-
terest. For the longitudinal response the figure illustrates the
difficulty of obtaining a strictly linear resistivity, as the effect
of a pseudogap is to reduce the effective number of carriers
and thereby to suppress σxx (with decreasing T ). As our fo-
cus is on the transverse behavior, where there is little or no
sensitivity to lifetime effects, we proceed more phenomeno-
logically for the less relevant longitudinal channel.

In order to arrive at a form for ρxx which is a monotonically
decreasing function of decreasing temperature we introduce a
temperature-dependent transport lifetime τ . The specific form
used is given by τ−1(T ) = 1

4T exp(−∆(T )/T ∗) [69], as de-
picted in the inset to Fig. 6. Again, the precise functional form

for this lifetime is not important here, nor is the fact that the
longitudinal resistivity is not the strictly linear form seen in
some experiments. This lifetime cancels out when the purely-
fermionic contribution to RH dominates. It is possible that
the presence of Fermi arcs [70]–not captured in our analysis,
would require a less dramatic temperature dependence in the
lifetime.

The dashed lines in Fig. 6 indicate the fermionic contribu-
tions [71]. The two transverse response plots in Fig. 6 are rea-
sonably compatible with the behavior observed in Ref. [23].
While there has been some uncertainty about the sign of the
bosonic (AL) contribution, Ref. [23] presented a rather de-
tailed set of plots for σxy showing that it is positive and in-
creasing (with decreasing T ) over a wide range of tempera-
tures. This is consistent with the present theory and with the
constraint we have emphasized that the sign of the bosonic
contribution should be the same as that for the fermions; in
this case it is positive.

Another observation from Fig. 6 is that the fermionic and
bosonic contributions to electrical transport are dominant in
different temperature regions. The upturn in ρyx with de-
creasing T reflects a pseudogap effect; as the excitation gap
becomes larger, the number of carriers decreases and the Hall
coefficient necessarily increases. Despite stronger-than-BCS
fluctuations, coherent bosonic transport is still only dominant
near Tc, as in the conventional fluctuation approach. This
bosonic contribution is responsible for the downturn in ρyx.
In the linear response regime ρyx is given by [Eq. (2.12)]
ρyx = σxy/σ

2
xx, and the large longitudinal electrical con-

ductivity, in comparison to the transverse, is what causes
this suppression in ρyx. Notably, if we extend these expres-
sions beyond the physical range of Eq. (2.9), both tend to di-
verge leading to a delicate competition which is regularized by
Eq. (2.14). This is consistent with experiment, which shows
that the bosonic contribution to pairing fluctuations appears
only in the vicinity of the condensation temperature and is not
correlated with T ∗.

C. Doping and magnetic-field effects on the Hall coefficient

In Fig. 7(a) the temperature-dependent Hall coefficient is
presented for three representative doping levels. All three
curves share some common features. As temperature is de-
creased RH has an initial rise starting at the onset of the pseu-
dogap at temperature T ∗, followed by a rapid downturn in the
vicinity of Tc. The peak height increases with underdoping as
the pseudogap is larger there and hence there are fewer carri-
ers. The small kink in the x = 0.2 curve (which is negligibly
small at other concentrations) signals the onset of the contri-
bution from σbxy which reflects a mismatch with the fermionic
background. In Fig. 7(b) it is shown how the fermionic (high-
T ) regime can be scaled onto a single “backbone” plot. This
scaling has received widespread interest [14, 20, 21] in the
experimental community and serves to validate our finding
here that the behavior at the highest temperatures is associ-
ated with the fermionic degrees of freedom in the presence of
an excitation gap with onset at T ∗. As might be expected, this
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FIG. 8. Expected behavior of RH in the presence of strong magnetic
fields, modeled by a field-dependent Tc and pair chemical potential
µpair, but with a pseudogap temperature T ∗ that remains unaffected.

scaling ceases at T ∗, and above, when the Hall coefficients
approach their different normal-state values. As pointed out
in Ref. [20], these low field scaling curves can provide evi-
dence for the critical concentration (p∗) at which the pseudo-
gap ends. Similarly, it is claimed in Ref. [2] that at high fields
and zero temperature there appears to be a crossover in the
Hall number (related to the inverse Hall coefficient) from a p
to 1+p dependence. While we do not find as dramatic a hole-
concentration dependence in the scaling curves of our theory,
some preliminary evidence suggests that it may arise when
Fermi arcs are included in the form discussed in Appendix A.

A schematic plot predicting the behavior ofRH at fixed sto-
ichiometry as Tc is increasingly depressed, while T ∗ is rel-
atively unaffected, is presented in Fig. 8. This situation is
expected to pertain when the magnitude of an applied mag-
netic field is increased. (We emphasize here that this plot is
schematic since the present calculations are valid only in the
linear response regime). Nevertheless, the pairing onset tem-
perature T ∗ is relatively robust to variable magnetic fields, be-
cause this energy scale is large compared to typical magnetic
field energies, even for fields as high as 50T. By contrast the

coherence temperature Tc is relatively more sensitive [22, 72].
Thus the fermionic “backbone", which depends on the pseu-
dogap ∆, might well be present even at the high fields re-
cently investigated in Ref. [2]. In Fig. 8 it is observed that
the fermionic contribution is barely affected, while the down-
turn is suppressed to progressively lower temperatures with
increasing field strength.

VI. CONCLUSIONS

In this paper we have studied the cuprate Hall coefficient.
Its non-monotonic behavior with temperature, the fact that it
characterizes the sign of the charge carriers, and because it
establishes the degree of particle-hole asymmetry, make it an
important quantity to study and one which allows microscopic
properties of the cuprates to be addressed. Transport proper-
ties such as longitudinal conductivity and diamagnetic suscep-
tibility do not possess these features. Thus, understanding the
Hall coefficient provides deep insight into the cuprates and
their mysterious pseudogap.

The literature has emphasized that there are two alterna-
tive approaches to addressing the cuprate Hall conductivity;
one based on the fermionic quasiparticle perspective [2, 5, 14,
20, 21, 26] and another focusing on bosonic Cooper-pair fluc-
tuations [11–18]. In this paper it has been argued that the
non-monotonicity in RH can be understood only by includ-
ing both fermionic and bosonic contributions. Each type of
excitation dominates in a different temperature regime and in
the presence of a pseudogap these two are intimately related.
In particular, the pair propagator, which is at the heart of the
bosonic fluctuation transport, must necessarily incorporate the
non-vanishing excitation gap of the fermionic constituents.

We have also emphasized that there is no consensus in
the literature on the relative sign between the bosonic fluc-
tuation and fermionic quasiparticle contributions to RH. A
compelling argument adopted here is that the sign of the
bosonic fluctuations is necessarily associated with that of the
fermionic constituents and this sign is positive for the hole-
doped cuprates with a hole-like Fermi surface. As a result,
there is no sign change in the normal-state Hall coefficient. In
this framework the experimentally observed decrease inRH as
Tc is approached is interpreted as arising from gapless bosonic
fluctuations with a longitudinal conductivity that is larger than
the transverse conductivity. In the weak magnetic field, linear
response regime the Hall coefficient is BRH ≈ σxy/σ2

xx. Ex-
perimental plots [15, 23] of σxy and RH indicate that it is the
divergence in σxx in the denominator which tends to dominate
the behavior of the Hall coefficient (and its rapid plummet) in
the fluctuation regime. Moreover, the sign (determined by that
of σxy) near the transition and, also, well above, is consistent
with hole-like quasiparticles, as we suggest here.

In summary, our paper has tackled the important problem of
how to incorporate pseudogap effects into a fluctuation theory
of Hall transport near Tc. Furthermore, we have shown how to
smoothly combine this with transport properties deriving from
(pseudo)gapped fermionic quasi-particles which necessarily
dominate at higher temperatures. Future work through simul-
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taneous Meissner and transport experiments in establishing Tc
and determining where exactly the sign change in RH occurs
relative to Tc is needed; this will aid in clarifying whether, as
we have argued, the bosonic fluctuations have the same charge
character as the fermionic constituents.

ACKNOWLEDGMENTS

The authors wish to sincerely thank Christos Panagopoulos
for sharing valuable insights into the experimental literature.
In addition we render our thanks to Alexey Galda, Suchitra
Sebastian, Andrey Varlamov, and Tao Xiang for beneficial
discussions. XW and KL were supported by the University
of Chicago Materials Research Science and Engineering Cen-
ter, which is funded by the National Science Foundation under
award number DMR-1420709. RB was supported by the The-
oretical Physics Institute at the University of Alberta. QC was
supported by NSF of China (Grant No. 11774309), and NSF
of Zhejiang Province of China (Grant No. LZ13A040001).

Appendix A: Review of present pseudogap theory

1. Equations for T ∗ and Tc

There is substantial literature on so-called “boson-fermion”
models of high-temperature superconductivity [38, 39, 73]. In
this scenario the bosonic excitations are viewed as intrinsic
degrees of freedom that are distinct from the fermions. Such
models also appear in the context of two-channel descriptions
of ultracold fermionic atoms [42]. In the present pseudogap
theory, however, the bosonic degrees of freedom are not in-
dependent of the fermions; they consist of pairs of gapped
fermions. As articulated in Refs. [37, 41], they enter as higher
order fermionic correlation functions.

The composite bosons, or pairs of fermions, form the ba-
sis of the present pseudogap theory. They have non-zero net
momentum and are to be distinguished from condensed or
Cooper pairs which have zero momentum. Both pairs co-
exist in the superconducting phase, but as the temperature is
lowered the non-condensed pairs gradually convert into their
condensed counterparts. The underlying T-matrix theory used
in the present work is intimately related to BCS theory, but
it represents a natural extension in the presence of a stronger-
than-BCS attractive interaction. For example, it will be shown
below that for all T ≤ Tc the BCS gap equation is associated
with a BEC condition which requires that the pair chemical
potential µpair vanish in the superfluid phase.

The particular form for the (inverse) propagator for non-
condensed pairs is given by

t−1
pg (q) = g−1 + χ(q), (A.1)

where g < 0 is the attractive coupling constant in the Hamil-
tonian [Eq. (5.1)] of the main text and χ(q) is the pair sus-
ceptibility. The above equation is Eq. (2.2) of the main text.
The pair susceptibility is of paramount importance in T-matrix

approaches and here it is given by

χ(q) =
∑

k

G(k)G0(−k + q)ϕ2
k−q/2, (A.2)

where G0(k) = (iωn − ξk)
−1 and G(k) are the bare and full

Green’s functions respectively. The bare dispersion relation
ξk is given in Eq. (5.2).

The (inverse) single-particle Green’s function is

G−1(k) = iωn − ξk − Σ(k), (A.3)

where the self energy is

Σ(k) =
∑

q

t(q)G0(−k + q)ϕ2
k, (A.4)

In terms of Green’s functions the number equation becomes
n = 2

∑
kG(k).

It will be proved that, to a good approximation, at tempera-
tures equal to and below Tc the self-energy is of the BCS-like
form:

Σ(k) = −∆2G0(−k) =
∆2

k

iωn + ξk
. (A.5)

Here ∆k = ∆ϕk as in the main text and it has been assumed
that ∆k is real. The inverse Green’s function becomes

G−1(k) = iωn − ξk −
∆2

k

iωn + ξk
. (A.6)

Using the Green’s function it is then possible to calculate the
pair susceptibility at general q using Eq. (A.2). After per-
forming the Matsubara frequency summation and analytically
continuing to real frequencies: iΩm → Ω + i0, we obtain

χ(q) =
∑

k

[ 1− f(Ek)− f(ξk−q)

Ek + ξk−q − Ω− i0+
u2
k

− f(Ek)− f(ξk−q)

Ek − ξk−q + Ω + i0+
v2
k

]
ϕ2
k−q/2. (A.7)

Here u2
k, v

2
k = 1

2 (1 ± ξk/Ek) are the coherence factors and
f(x) = (exp(βx) + 1)

−1 is the Fermi distribution function.
The dispersion relation Ek =

√
ξ2
k + ∆2

k contains the total
excitation gap ∆k instead of the order parameter ∆sc,k.

It follows that χ(0) is given by

χ(0) =
∑

k

1− 2f(Ek)

2Ek
ϕ2
k. (A.8)

The vanishing of the pair chemical potential µpair (or gener-
alized Thouless criterion) then implies that

t−1
pg (0) = g−1 + χ(0) = 0, T ≤ Tc. (A.9)

After substituting χ(0) into the above BEC condition the fa-
miliar BCS gap equation is then obtained:

0 =
1

g
+
∑

k

1− 2f(Ek)

2Ek
ϕ2
k, (A.10)
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which is valid for T ≤ Tc. The next task with this extended
form of BCS theory is to compute the transition temperature.
The approach here follows the essence of a BEC theory in
which we compare the total number of pairs, represented by
∆2 [as obtained from Eq. (A.10)], with the number of non-
condensed pairs, represented by ∆2

pg.
The self energy in particular consists of two contributions

from the noncondensed pairs or pseudogap (pg) and from the
condensate (sc). Analogously there are two contributions to
the full T -matrix: t = tpg + tsc, where

tpg(q) =
g

1 + gχ(q)
, q 6= 0, (A.11)

tsc(q) = −∆2
sc

T
δ(q). (A.12)

The fermion self energy is similarly decomposed as

Σ(k) = Σpg(k) + Σsc(k),

=
∑

q

t(q)G0(−k + q)ϕ2
k−q/2. (A.13)

Using Eqs. (A.12,A.13), the superconducting self energy con-
tribution is thus

Σsc(k) = −∆2
sc,kG0(−k), (A.14)

where ∆sc,k = ∆scϕk. A vanishing pair chemical potential
means that tpg(q) diverges for q = 0 at T ≤ Tc. The pseudo-
gap self energy then has the following approximate form

Σpg(k) ≈
∑

q

tpg(q)G0(−k)ϕ2
k = −∆2

pg,kG0(−k).

(A.15)
Combining Eqs. (A.14,A.15) then produces

Σ(k) ≈ −∆2
kG0(−k), (A.16)

where the total gap is

∆2
k(T ) ≡ ∆2

sc,k(T ) + ∆2
pg,k(T ). (A.17)

Importantly, we identify the quantity ∆pg via

∆2
pg ≡ −

∑

q 6=0

tpg(q). (A.18)

Note that in the normal state, where µpair < 0, Eq. (A.16) is
no longer a good approximation.

The propagator for noncondensed pairs can now be quanti-
fied using the self-consistently determined pair susceptibility.
Expanding the inverse of tpg at small four-vector q, and then
performing analytical continuation to real frequencies, gives

t−1
pg (q) ≈ a1Ω2 + Z

[
Ω− q2/(2Mpair) + µpair + iΓq

]
,

(A.19)
where µpair = 0 for T ≤ Tc and Γq is the imaginary part.
Since we are interested in the moderate- and strong-coupling
cases, where the contribution of the a1Ω2 term is small, we
drop it from Eq. (A.19) so that

tpg(q) =
Z−1

Ω− Ωq + µpair + iΓq
, (A.20)

where Ωq = q2/ (2Mpair), with Mpair the effective pair
mass. At low frequencies the imaginary part can be approxi-
mated by Γq = ΓΩ; this leads to Eq. (2.1) for the inverse pair
propagator with κ = 1. The coefficient Z and the inverse-
pair-mass tensor can be calculated via a small q expansion of
χ(q):

Z =
∂χ

∂Ω

∣∣∣∣
Ω=0,q=0

, (A.21)

(
1

2Mpair

)

‖
= − 1

4Z

∂2χ

∂q2
‖

∣∣∣∣∣
Ω=0,q=0

, (A.22)

(
1

2Mpair

)

⊥
= − 1

2Z

∂2χ

∂q2
⊥

∣∣∣∣
Ω=0,q=0

. (A.23)

Now insert Eq. (A.20) into Eq. (A.18), then for T ≤ Tc the
pseudogap is given by

∆2
pg(T ) = Z−1

∑

q

b(Ωq), (A.24)

where b(x) = (exp(βx)− 1)
−1 is the Bose distribution func-

tion.
Finally, the superfluid transition temperature, Tc, is defined

as the temperature at which noncondensed pairs exhaust the
total weight of ∆2, so that ∆2

pg = ∆2 at T = Tc. Here ∆2

is obtained from Eq. (A.10) and ∆2
pg from Eq. (A.24). In cal-

culating both Tc and T ∗, the number equation also has to be
taken into account self-consistently. If we extend Eq. (A.10)
to temperatures in the normal state, then this “mean-field
transition temperature" provides a reasonable estimate for the
pairing-onset temperature T ∗. This temperature, however, is
distinct from Tc, below which a stable superfluid phase exists,
thus T ∗ represents a smooth crossover rather than a thermo-
dynamic phase transition.

2. Implications for the spectral function: Fermi arc physics

The previous section outlined how to derive the character-
istic pairing-onset and condensation temperatures. For these
purposes the distinction between the formal expressions for
the pseudogap and condensate self energies was ignored. In
reality the non-condensed pairs are not as long lived as the
condensate pairs, and thus a broadening effect needs to be in-
troduced in their self energy through a non-zero parameter η:

Σ(ω,k) =

(
∆2

pg,k

ω + ξk + iη
− iΣ0

)
+

∆2
sc,k

ω + ξk
. (A.25)

The resulting spectral function, A(ω,k) = −2ImG(ω,k), is

A(ω,k) =
2∆2

pg,kη(ω + ξk)2

(ω + ξk)2(ω2 − E2
k)2 + η2(ω2 − ξ2

k −∆2
sc,k)2

.

(A.26)
For convenience, here we have omitted the Σ0 term.

Above Tc, Eq. (A.26) is used with ∆sc = 0. Below Tc,
for all k the spectral function contains a zero at ω = −ξk,
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FIG. A.1. Contrasting nodal and anti-nodal temperature dependences in the d-wave case. The figure on the left is the ARPES gap as a function
of the angle φ at T/Tc = 1.1, 0.99, 0.1 (labeled on the figure). This figure should be compared with the experimental plots on the right, taken
from Figure 4b in Ref. [74]. This figure is reprinted from Ref. [75].
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FIG. A.2. The Fermi arc length as a function of T/T ∗
ex, where T ∗

ex is
the experimentally-measured value for T ∗, for doping concentations
ranging from optimally doped to underdoped in a cuprate supercon-
ductor. The Fermi arc length is typically finite above Tc and drops to
zero upon the onset of phase coherence. The normal-state portions
of the curves are close to universal, in agreement with Ref. [76]. The
comparison in the inset between the theory with a slightly (15%)
enlarged T ∗

ex and experimental data (symbols) [76, 77] shows semi-
quantitative agreement. This figure is taken from Ref. [78].

whereas above Tc it has no finite frequency zeros. This means
that a clear signature of phase coherence is present when one
passes from above to below Tc, as long as η 6= 0. As a result,
the non-condensed and condensed pairs can be distinguished
from one another.

There has recently been an emphasis on experiments which
contrast the behavior around the gap nodes with that around
the gap maxima (or anti-nodes). The right panel of Fig. A.1 in-
dicates the size of the ARPES or spectral gap as deduced from
one-half of the peak-to-peak separation in the symmetrized
spectral function. This data [74] address a moderately under-
doped sample. The three different curves correspond to three
different temperatures with the legend the same as that in the

left panel (representing the results of the present theory.) Im-
portantly, there is a pronounced temperature dependence in
the behavior of the ARPES spectral gap for the nodal region
(near 45◦), as compared with the anti-nodal region (near 0
and 90◦), where there is virtually no T dependence. The the-
oretical (left) and experimental curves (right) are in reason-
able agreement and the contrasting temperature response as-
sociated with the different k points on the Fermi surface can
be understood as follows. The nodal regions reflect extended
gapless states or Fermi arcs above Tc. It is natural to expect
that they are sensitive to the onset of ∆sc, in the same way
that a strict-BCS superconductor, which has a gapless normal
state, is acutely sensitive to the presence of order. By contrast,
the anti-nodal points are not as affected by passing through Tc
because they already possess a substantial pairing gap in the
normal phase.

Finally, Fig. A.2 shows the sharp collapse of the Fermi arcs
from above to below Tc; we plot the percentage of arc length
as a function of T/T ∗ex and for different doping concentra-
tions from the optimal to the underdoped regime. Here T ∗ex
reflects the temperature associated with the depletion of the
density of states on the Fermi surface at the antinodes, i.e., the
gap-closing temperature as determined by ARPES. The small
nonvanishing arc length at low T reflects the finite ARPES
resolution.

3. Notational differences between appendix and main text

A brief summary of the differences in notation between the
main text and this part of the appendix is now provided. In
the main text the subscript pg on the T matrix and other prop-
erties has been dropped, since only the normal state is ad-
dressed. In order to make our calculations tractable, we have
not added the Fermi-arc broadening effect, which enters via
the parameter η, in our transport calculations. This factor is
more important below Tc than above, as in this regime there
are two types of pairs which must be distinguished. It is pos-
sible, however, that this Fermi-arc effect (like the alternative
Fermi pockets [5]) may lead to better agreement with the hole-
concentration dependence of RH, which shows a rather dra-
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matic effect at the upper critical concentration p∗ for the onset
of the pseudogap. Note that the introduction of the broadening
parameter (η) reflects the deviation of the pseudogap self en-
ergy from the coherent BCS form caused by a finite lifetime of
non-condensed pairs. This parameter is a contribution to the
fermions arising from their interaction with non-condensed
pairs. It is presumed to be distinguished from the transport

lifetime (γ) [Eq. (4.4)], which may contain other processes
contributing to the electrical conductivity as well.

Appendix B: Gauge invariance of the bosonic three-particle EM
response

In Sec. III B, the bosonic three-particle EM response function was proved to be gauge invariant in the small-q limit. In this
appendix, a general proof of gauge invariance for arbitrary q is provided. The bosonic three-particle EM response function is

Kµνα(q) = (e∗)
3
∑

p

[
Λµ(i$m + iΩm,p+; i$m,p−)Λν(i$m,p+; i$m + iΩm,p+)Λα(i$m,p−; i$m,p+)

× t(i$m + iΩm,p+)t(i$m,p−)t(i$m,p+)

+ Λµ(i$m,p+; i$m − iΩm,p−)Λν(i$m − iΩm,p−; i$m,p−)Λα(i$m,p−; i$m,p+)

× t(i$m − iΩm,p−)t(i$m,p+)t(i$m,p−)

]

+
(e∗)

3

Mpair
δνα

∑

p

Λµ (i$m + iΩm,p+; i$m,p−) t(i$m + iΩm,p+)t(i$m,p−). (B.1)

Here, µ, ν, α ∈ {x, y} and the four-vector qµ = (iΩm,q). The Ward-Takahashi identity (WTI) relating the bosonic vertex to
the bosonic propagator is qµΛµ(i$+

m,p+; i$−m,p−) = t−1(i$+
m,p+)− t−1(i$−m,p−). By using the WTI, the contraction of

Eq. (B.1) with qα is

qαK
µνα(q) ∝

∑

p

[t(i$m,p−)− t(i$m,p+)]

{

Λµ(i$m + iΩm,p+; i$m,p−)Λν(i$m,p+; i$m + iΩm,p+)t(i$m + iΩm,p+)

+ Λµ(i$m,p+; i$m − iΩm,p−)Λν(i$m − iΩm,p−; i$m,p−)t(i$m − iΩm,p−)

}

− qν

Mpair

∑

p

Λµ (i$m + iΩm,p+; i$m,p−) t(i$m + iΩm,p+)t(i$m,p−). (B.2)

The spatial components of the vertices are Λν(i$m,p+; i$m + iΩm,p+) ∝ (p + q/2)ν/Mpair and similarly Λν(i$m −
iΩm,p−; i$m,p−) ∝ (p− q/2)ν/Mpair. Inserting this into Eq. (B.2) then gives

qαK
µνα(q) ∝

∑

p

[t(i$m,p−)− t(i$m,p+)]

{

Λµ(i$m + iΩm,p+; i$m,p−)(p + q/2)νt(i$m + iΩm,p+)

+ Λµ(i$m,p+; i$m − iΩm,p−)(p− q/2)νt(i$m − iΩm,p−)

}

− qν
∑

p

Λµ (i$m + iΩm,p+; i$m,p−) t(i$m + iΩm,p+)t(i$m,p−). (B.3)
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In the third line let $m → $m + Ωm and then simplify the resulting equation to obtain

qαK
µνα(q) ∝

∑

p

Λµ(i$m + iΩm,p+; i$m,p−)

{
t(i$m + iΩm,p+)t(i$m,p−) [(p + q/2)ν − (p− q/2)ν ]

− (p + q/2)νt(i$m,p+)t(i$m + iΩm,p+) + (p− q/2)νt(i$m,p−)t(i$m + iΩm,p−)

}

− qν
∑

p

Λµ (i$m + iΩm,p+; i$m,p−) t(i$m + iΩm,p+)t(i$m,p−),

=
∑

p

Λµ(i$m + iΩm,p+; i$m,p−)

{
(p− q/2)νt(i$m,p−)t(i$m + iΩm,p−)

− (p + q/2)νt(i$m,p+)t(i$m + iΩm,p+)

}
. (B.4)

In the first term substitute p→ p+ and in the second term substitute p→ p−; the contraction of the response function is then

qαK
µνα(q) ∝

∑

p

t(i$m,p)t(i$m + iΩm,p) ((p + q/2)µpν − (p− q/2)µpν) = 0. (B.5)

In the last step let p→ −p and use the fact the fluctuation propagator depends on p2. Therefore, the bosonic three-particle EM
response function is gauge-invariant.

Appendix C: Hall conductivity calculations

In this excursus, the derivation of Eq. (3.8) in the main text is presented. First consider the correlation functionKJJJ presented
in Eq. (3.6) of the main text. The first step is to perform the Matsubara frequency summation [10] and then perform the analytic
continuation to real frequencies: iΩm → Ω + i0+. The result that is obtained after this procedure is

Kµνα
JJJ(Ω,q) = (Ze∗)

3
∑

p

(
pµ

Mpair

pα

Mpair

)∫ ∞

−∞

d$

2π
coth

(
β$

2

)

×
{

pν+
Mpair

[
tR($ + Ω,p+)Im [tR($,p−)tR($,p+)] + tA($ − Ω,p+)tA($ − Ω,p−)Im [tR($,p+)]

]

+
pν−
Mpair

[
tA($ − Ω,p−)Im [tR($,p+)tR($,p−)] + tR($ + Ω,p−)tR($ + Ω,p+)Im [tR($,p−)]

]}
.

(C.1)

Taking the limits q→ 0 followed by Ω→ 0 in Eq. (C.1) then gives

ReKµνα
JJJ(Ω,q) = qν

Ω (Ze∗)
3

Mpair

∑

p

(
pµ

Mpair

pα

Mpair

)∫ ∞

−∞

d$

2π
coth

(
β$

2

)[
Re(∂$tR)Im(t2R)− Re(∂$t

2
R)Im(tR)

]
,

= qνδµα
Ω (Ze∗)

3

dMpair

∑

p

(
p

Mpair

)2 ∫ ∞

−∞

d$

2π
coth

(
β$

2

)[
Re(∂$tR)Im(t2R)− Re(∂$t

2
R)Im(tR)

]
. (C.2)

Now consider the correlation function KJρ presented in Eq. (3.6) of the main text. After performing the Matsubara frequency
summation and then the analytic continuation to real frequencies, the following result is obtained

Kµνα
Jρ (Ω,q) =

(Ze∗)
3

Mpair
δνα

∑

p

pµ

Mpair

∫ ∞

−∞

d$

2π
coth

(
β$

2

)[
tR($+Ω,p+)Im [tR($,p−)]+tA($−Ω,p−)Im [tR($,p+)]

]
.

(C.3)
Taking the limits q→ 0 followed by Ω→ 0 in Eq. (C.3) then gives

ReKµνα
Jρ (Ω,q) = qβδνα

Ω (Ze∗)
3

Mpair

∑

p

(
pµ

Mpair

pβ

Mpair

)∫ ∞

−∞

d$

2π
coth

(
β$

2

)[
Re(∂$t

2
R)Im(tR)− Re(∂$tR)Im(t2R)

]
,

= −qµδναΩ (Ze∗)
3

dMpair

∑

p

(
p

Mpair

)2 ∫ ∞

−∞

d$

2π
coth

(
β$

2

)[
Re(∂$tR)Im(t2R)− Re(∂$t

2
R)Im(tR)

]
. (C.4)
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Adding Eq. (C.2) and Eq. (C.4) then gives Eq. (3.8) in the main text:

ReKµνα (q) = (qνδµα − qµδνα)
Ω (Ze∗)

3

dMpair

∑

p

(
p

Mpair

)2 ∫ ∞

−∞

dx

2π
coth

(
β$

2

)[
Re(∂$tR)Im(t2R)− Re(∂$t

2
R)Im(tR)

]
.

(C.5)
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