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We report an unusual enhancement of the magnetic induction in single crystals of the 
magnetic superconductor RbEuFe4As4 , highlighting the interplay between superconducting and 
magnetic subsystems in this material. Contrary to the conventional Meissner expulsion of magnetic 
flux below the superconducting transition temperature, we observe a substantial boost of the 
magnetic flux density upon approaching the magnetic transition temperature, Tm.  Direct imaging 
of the flux evolution with a magneto-optical technique, shows that the magnetic subsystem serves 
as an internal magnetic flux pump, drawing Abrikosov vortices from the surface, while the 
superconducting subsystem controls their conveyance into the bulk of the magnetic superconductor 
via a peculiar self-organized critical state. 
 
   
 

The co-existence of superconductivity and magnetism in the new family of rare-earth iron 

pnictides with high Tc and comparable magnetic Curie points [1-7], provides a rare glimpse into 

the interplay of these typically antithetical phases. Compared to the low-temperature magnetic 

superconductors, where weak magnetism accompany superconductivity only in a very narrow 

temperature window [8,9], in the new pnictides the superconducting and magnetic orders robustly 

coexist over a wide range of temperatures.  For example, in phosphorus-doped EuFe2As2, the 

superconductivity appears below Tc~24K, while at the Curie point, Tm~19K, the Eu-spins order 

ferromagnetically in layers separated by the superconducting FeAs-sheets and align parallel to the 

c-axis [10]. Recent MFM studies have found that in this material the Meissner state coexists with 

very fine ferromagnetic domains that are smaller than the penetration depth and at lower 

temperatures transforms into a vortex-domain state [11,12].  

 
 



In this Letter, we report observation of an intriguing magnetic flux behavior in the latest 

member of the stoichiometric iron-pnictide superconductor family, RbEuFe4As4, with a 

superconducting transition at Tc ~ 37 K and the onset of long-range magnetic order of the Eu 

moments near Tm ~15 K [3-5,13].  In this material, the Eu-moments order ferromagnetically within 

the ab-plane and have the in-plane orientation.  Even though the Eu-layers are separated by two 

superconducting FeAs-sheets, non-negligible antiferromagnetic exchange interactions occur along 

the c-axis. Resonant elastic x-ray scattering data revealed modulations along the c-axis with a 

period of 4 lattice parameters [14]. This corresponds to the helical ordering of Eu2+ spin layers 

coupled by a weak antiferromagnetic exchange along the c-direction (see e.g. [15]). Previous work 

has shown [13] that this magnetic state is rather fragile and is easily polarized in the ab-plane by 

modest fields of less than 1 kG. Temperature and field dependences of the specific heat point to 

Berzinskii-Kosterlitz-Thouless nature of the magnetic transition at Tm, as described by two-

dimensional anisotropic Heisenberg model, with fine features caused by the three-dimensional 

effects [16]. 

These remarkable materials characteristics afford access to the interplay between 

superconductivity and magnetism that is not easily realized in other magnetic superconductors. 

Using magnetization measurements and direct magneto-optical imaging of the distribution of 

magnetic flux, we discovered that at T≲Tm , Eu magnetic order enhances the magnetic induction 

and induces a self-generated critical state, which in turn is balanced by superconducting currents.  

The images reveal a highly non-uniform flux distribution with high concentrations near the edges 

of the sample, which we ascribe to anisotropic pinning and to feedback between magnetization and 

field-dependent critical currents.  The vortex dynamics associated with the self-generated critical 

state induces magnetization curves that resemble an apparent paramagnetic Meissner effect. 

 



 Single crystals of RbEuFe4As4 were grown by flux method [17]. Samples in the shape of 

rectangular platelets, few hundred micron lateral and few tens of micron thick, were previously 

characterized by magnetization, transport, specific heat, and X-ray techniques [13]. They revealed 

a sharp superconducting transition at Tc~37K with DT~0. 5K and a magnetic ordering transition at 

Tm~15K.   

We used SQUID magnetometry to characterize the temperature variation of the 

macroscopic magnetic moments, M(T), during cooling and warming cycles in constant magnetic 

fields parallel to the ab-plane. The magnetic flux distribution inside the samples during temperature 

cycling was obtained with the magneto-optic imaging (MOI) technique [18]. The edge face of 

several platelet crystals was polished perpendicular to the ab-plane after gluing the samples 

between two aluminum blocks. The assembly was placed in an optical cryostat, covered with a 

MOI indicator film, and imaged with a polarized light microscope. In field-cooling (FC) 

experiments, the magnetic field was applied perpendicular to the polished sample face (H|| ab-

plane) at temperatures T>Tc and MOI images of the magnetic flux distribution within the samples 

were recorded with decreasing T down to 5K and then with gradually increasing T back to above 

Tc. In zero-field-cooling (ZFC) experiments, the samples were cooled to 5K followed by field 

application, and flux images were recorded upon increasing T.  

The macroscopic magnetic response during field-cooling in different magnetic fields Ha || 

ab-plane is shown in Fig. 1a. At small Ha, the diamagnetic signal at Tc~37K is very weak and is 

followed by a rapid increase in magnetization at Tm ~15K and saturation at T<Tm. For fields larger 

than 10 Oe, the M(T) curves show clear paramagnetic response (M>0 at all temperatures) that 

increases with Ha. At Tc, the FC curves have a small downward kink (inset in Fig.1a) revealing the 

superconducting contribution.   



The ZFC temperature dependent magnetization curves in Fig.1b, measured during field-

warming, show mostly diamagnetic behavior at low temperatures and small Ha, and a M(T) 

maximum around Tm. M(T) crosses the M=0 line for Ha >150 Oe and the positive magnetization 

segment expands with further increasing field. This agrees with the behavior of M(H) loops for 

H||ab [13], which depict the positive growth of M at T<Tm due to the twist of Eu2+ spins towards 

H. The M(H) loops for H||c-axis [13] are strongly tilted showing a large magnetic anisotropy, which 

locks the Eu2+ moments in the ab-plane.  

FC flux patterns. The temperature variation in the MOI contrast around the samples is 

hardly visible during FC in small Ha. However, distinct features corresponding to the appearance 

of the ferromagnetic response in the macroscopic M(H) curves emerge in the MOI images at Ha ≳	

50 Oe. Figure 2 shows a set of images for one of the samples cooled in a field of 220 Oe. Above 

Tc, the contrast is homogeneous (Fig.2a) confirming that the sample’s  magnetization at T>Tc is 

small and does not perturb the uniformity of the applied field. With decreasing temperature, at 

T≲30K a bright contrast revealing the increased magnetic induction, B>Ha ,  appears around the 

sample (Fig.2b). This contrast, corresponding to the paramagnetic sample response, increases 

gradually upon further cooling (Fig.2c). Near the magnetic transition, Tm~15K , there is a sharp 

increase in the contrast at the narrow edges of the sample associated with considerably enhanced 

B (Fig.2d), which expands towards the interior of the crystal forming narrow channels along the 

crystal midsection.  At lower T, the contrast changes more gradually and saturates (Fig.2e-f). A 

detailed movie of the magnetic flux evolution during field-cooling is presented in the 

supplementary material [19].  

Subsequent warming of the sample after cooling to 5K, reproduces the described flux 

patterns in the reverse order, although with some temperature hysteresis. Similar hysteretic 



behavior is observed in the macroscopic M(T) curves measured during Field-Cooling-Warming 

cycles at H>50 Oe (see Ha=500 Oe curves in Fig.1a). 

At higher applied fields, the above scenario recurs with bright contrast emerging at higher 

temperatures, the enhanced flux regions penetrating deeper into the bulk, and larger maximum 

induction forming near the sample boundaries. Patterns similar to those in Fig.2 but with a different 

position of the narrow flux penetration channels were observed in all studied samples. A flux 

profile, B(x), across the sample illustrated in Fig.2 field-cooled to T=7K in Ha=330 Oe, is presented 

in Fig.3a. It shows that at the long edges, the flux density is enhanced by ~15% compared to Ha.  

At the narrow edges the enhancement is an order of magnitude larger.     

In Fig.3b we present temperature variations of the flux profile along the midsection for 

another sample measured during field cooling in Ha=440 Oe. The induction shows sharp peaks 

near the narrow sample edges that increase rapidly as T approaches the magnetic transition point, 

Tm. At T<Tm the B(x) profile changes only slightly and the maximum B saturates. It reaches a value 

more than twice larger than Ha, highlighting the strong enhancement of the sample magnetization 

upon transition into the ferromagnetic state.  

ZFC flux patterns. Induction patterns observed under ZFC conditions, are presented in Fig.4 

showing characteristic changes of the flux distribution upon warming the sample in a field of Ha= 

330 Oe applied at 5K. The fixed applied field appears as a bright contrast around the sample 

perimeter which does not vary with T. The dark contrast over the major portion of the crystal signals 

the screening of the field in the bulk of the sample. At T=5K (Fig.4a) the flux enters from the 

narrow sample edges and forms narrow channels that penetrate into the bulk, similar to those 

observed in the FC case at T<Tm.  At these edges, B is noticeably larger than Ha  already at 5K. 

There is also some enhancement of B along the long sides of the sample. With increasing T, the 

enhanced flux regions expand deeper into the bulk upon approaching Tm (Fig.4b). However, at T> 



Tm the induction in the flux occupied areas rapidly decreases, the flux disperses from the regions 

of maximum B into surrounding areas and exits the sample (Fig.4c). As the temperature approaches 

Tc the flux spreads even further into the bulk yielding the smooth light contrast over the entire 

sample (Fig. 4d). Meanwhile, the average induction in the sample remains smaller than Ha. This 

corresponds to the diamagnetic contribution to the macroscopic magnetization near Tc. 

 

The described changes in the induction patterns is a specific property of RbEuFe4As4 that 

is not observed in typical superconducting materials. The FC patterns shown in Fig.2 can be 

ascribed to a peculiar critical state generated by enhanced magnetic flux density and anisotropic 

vortex pinning. Upon approaching Tm, the magnetic subsystem tends to increase M due to increased 

susceptibility which results in an increase in B. In the superconducting state, B in the bulk can only 

be increased by entry of vortices from the sample surface. The vortices penetrate the sample against 

the pinning force causing the decay of B with distance x from the surface.  At T>Tm, the magnetic 

susceptibility c and the critical current Jc representing the vortex pinning are small, so that the 

enhancement of B near the sample surface and the slope of the decaying B(x) are small. With further 

cooling towards Tm, both c and Jc increase, resulting in a higher B(x) slope near the surface. Hence 

as the sample is cooled, the flux profile changes from being shallow in the bulk to sharp near the 

sample edges. As a result, the induction forms a nonlinear critical state profile B(x). In our case, 

due to the vortex pinning anisotropy arising from the layered crystal structure, the vortices 

penetrate preferentially from the narrow sample edges along the ab-planes, while their entry from 

the large ab-surfaces is delayed.  This explains the appearance of the enhanced magnetic flux near 

the narrow sample ends in Fig.2 as T approaches Tm. The anisotropic Jc resulting from the pinning 

anisotropy could explain the tapered flux penetration channels that may appear due to current flow 

instability in strongly anisotropic superconductors [20]. Flux channels can also result from the 



compositional variation in the layered crystal structure, typical for such crystals grown by the flux 

method. Although the Energy Dispersive X-ray Spectrometry (EDX) test of our samples did not 

reveal such variations within +/-3% accuracy, a smaller compositional change could yield a weak-

link channel for vortex entry. Qualitative analysis of the critical current from the M(H) loops shows 

that the critical current (i.e. pinning) drops rapidly at relatively small fields (see Fig.1S in [21]). 

Such a fast decay of Jc(H) can provide a positive feedback resulting in advanced flux penetration 

around the weak channels.  In this case, at a sufficient density of entering vortices the field 

suppressed pinning will allow their additional entry and thus enhance local B and extend the initial 

flux penetration region (see Fig.2S in [21]).  

 In all cases, during field-cooling, at T > Tm, B is slightly enhanced near the sample surface 

but does not form penetration channels.  However, in the vicinity of Tm  the flux density inside the 

magnetic superconductor becomes much larger than the applied magnetic field. The magnetic flux 

concentrates near the sample boundaries and decays towards the sample interior.  

At low T, vortex pinning which increases with cooling [21], prevents further penetration of 

vortices and the average induction in the flux occupied areas saturates. Subsequent warming of the 

sample reduces c and triggers the partial exit of vortices, which is delayed due to pinning. This 

results in the hysteresis, which we observe in the flux patterns and in the macroscopic M(T) curves 

during thermal cycling. The same behavior becomes more pronounced at higher Ha, where the 

entering flux is larger and penetrates deeper into the sample. Similar features of the FC flux 

evolution were observed in several samples with different width-to-thickness ratios.  

The described flux distributions are in striking contrast to the FC patterns in regular 

superconducting plates in parallel fields.  In the latter, the flux remains at the level of Ha in the 

interior of the sample and decays to a minimum at the sample surface.  Consequently, the FC 

induction profile B(x) across the SC plate has an inverted letter-M shape following the temperature 



evolution of Jc (see Fig.5a). This profile corresponds to the diamagnetic surface Meissner current 

JM precipitating the drop of B within the penetration depth l, and smaller critical currents Jc 

circulating in the opposite (paramagnetic) direction, restricting the exit of vortices. In our 

RbEuFe4As4 crystals, the FC B(x) profiles acquire a direct letter-M shape (Fig.3), which could be 

naively described by the above current pattern but with opposite current chirality (Fig.5b).  

A more plausible construction of B(x) consists of a strong enhancement of B=µ(T)Ha (with 

µ=1+4πc >> 1 at T≲Tm) in a thin surface layer and a diamagnetic JM  that induces a sharp drop of 

B in the l-layer, followed by a slow decay of induction due to the diamagnetic critical current Jc , 

which limits the additional flux penetration (Fig.5c). In the middle of the sample, screened from 

the entry of new vortices, the induction is trapped at the level of B(Tc)= µ(Tc )Ha . The nonlinear 

B(x) decaying towards the center of the sample will follow the variation of Jc (T) during cooling. 

In an infinitely wide plate perpendicular to x, if we admit that µ changes with temperature much 

faster than Jc and assume the linear magnetic response M=(c/µ)B , the induction profile B(x) across 

the sample, following from 𝑑𝐵𝑑𝑥 =
4𝜋
𝑐 𝐽𝑐(𝑇) + 4𝜋

𝑑𝑀
𝑑𝑥 	 , will be:  

𝐵(𝑥) = 𝜇(𝑇)𝐻 − ∆𝐵8 −
9:
;
𝜇(𝑇)𝐽;(𝑇)𝑥 (1) 

Here DBM is the surface step due to the diamagnetic JM. Note, that unlike in a nonmagnetic 

superconductor, the linear decay of B(x) is defined not by Jc but by µ Jc  which can be regarded as 

an apparent enhancement of pinning. However, flux pinning and hence Jc are not enhanced by the 

factor of µ and only the gradient of B(x) increases.  Within the above approximations, the depth of 

the vortex penetration xc following from the condition B(xc)= µ(Tc)H can be estimated as:   

  𝑥; =
[>(?)@>(?A)]C@∆DE

FG
A >(?)HA(?)

   (2) 
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This simple model gives a rough estimate of the effect of the magnetic subsystem on the 

flux entry in the magnetic superconductor. 

In the ZFC case, the sample cooled with Ha=0 is devoid of vortices. When the field is 

applied at low T, the induction is enhanced in the sample surface layer due to the large c but the 

flux does not propagate far inside due to the high Jc.  With increasing T, the critical current 

decreases and vortices enter and move towards the interior, forming flux patterns similar to those 

observed in the FC case. At T>Tm ,  the susceptibility drops and the average flux density inside the 

sample rapidly reduces as vortices disperse from the maximum B areas. The reduction of Jc with 

temperature allows the flux to redistribute over the sample and partially exit along the ab-planes 

across the narrow edges. Both the decrease in c and Jc yield the observed decay of the macroscopic 

M(T) at T>Tm.  

Our results also provide a glimpse into an interesting scenario considered by Tachiki et al. 

[22,23] which can account for a large enhancement of B at the boundaries of ferromagnetic 

superconductors. Due to nonlocal magnetic response, in the vicinity of Tm the persistent JM can 

form interleaved dia- and paramagnetic layers near the surface, which results in the paramagnetic 

divergence of B in the l-layer. In the pure London approximation (the coherence length x=0 ) the 

oscillating JM on the very surface remains diamagnetic, but at a finite l/x  the surface JM reduces to 

zero, which expands the enhanced B region [23].  Although the calculations in [22,23] use a specific 

set of material parameters and do not account for vortex entry, the JM oscillations could cause the 

surface enhancement of B in our crystals near Tm . 

We note that the magnetic response illustrated in Figs.1-4 differs essentially from the 

paramagnetic Meissner effect in non-magnetic high-Tc and some low-Tc superconductors (see 

review [24] ), where the positive M signal was found in FC-curves only at very small fields and 

decreased with Ha. In these cases, the weak paramagnetic component, which was associated with 



Andreev bound states in d-wave superconductors [25] or with flux compression effects in low-Tc 

samples [26], was easily dominated by the regular diamagnetic response at larger Ha.  In contrast, 

we find robust enhancement of positive M (|| Ha) and B with field, confirming the concerted action 

of the supercurrents and magnetic spin system in RbEuFe4As4.  

 

In conclusion, we discovered a unique vortex matter behavior driven by the interplay 

between magnetism and superconductivity in the novel high-temperature magnetic 

superconductor, RbEuFe4As4.  The magnetic flux distributions imaged with the magneto-optical 

technique during field-cooling and warming of the samples are consistent with macroscopic 

magnetic measurements and reveal a noticeable enhancement of the magnetic induction in the 

sample due to self-generated vortex entry at temperatures near the magnetic transition point, Tm. 

The enhancement of B is especially strong at Tm and progressively increases with field in the 

studied field range. This evolution of B, unlike the flux expulsion observed in traditional 

superconductors, results from the collective response of the magnetic and superconducting 

subsystems in RbEuFe4As4. Here, the magnetic subsystem acts as an absorption pump, drawing 

magnetic flux in when the magnetic susceptibility increases in the vicinity of Tm, while the 

superconducting subsystem provides the delivery of magnetic flux into the sample through the 

generation of Abrikosov vortices at the sample surface and their pinning-controlled penetration 

into the bulk.  The enhancement of B inside the samples, produced by the entry of additional 

vortices and their propagation to distances limited by pinning, is strongly anisotropic in the layered 

1144 crystals and yields peculiar inhomogeneous vortex density patterns. Together, they reveal the 

unique self-organization of magnetic flux dynamics in magnetic superconductor RbEuFe4As4.   

This work was supported by the U.S. Department of Energy, Office of Science, Materials 

Sciences and Engineering Division.   
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Fig. 1 (a) Field-cooled (FC) and (b) zero-field-cooled (ZFC) M(T) curves at different fields Ha|| 
ab-plane. In (a) the field-cooling-warming hysteresis is shown for Ha=500 Oe. The insert in (a) 
presents the expanded region of the FC curves near Tc . The magnetization is referenced to Ha. 
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Fig. 2 a-f Magneto-optical images of the flux evolution in a 
RbEuFe4As4 crystal during field-cooling in Ha=220 Oe. The 
experimental geometry is shown in (g). The contrast brightness 
corresponds to the strength of B||H .  Scale bar in (a) is 100 µm. 



  
 
Fig.3 (a) Induction profile B (x) across the sample shown in Fig.2 after field-cooling to 7K in 
Ha=330 Oe. (b) Temperature evolution of the B profile along another sample during field-cooling 
in Ha=440 Oe. B is averaged over the width of the bands shown by yellow lines in the inserts. The 
scale bar in the insert of (b) is 100 µm. The field is decreased outside the sample in (b) due to the 
stray fields of the enhanced B inside the plate.  
  
 

   
 
Fig. 4 Magnetic flux patterns in the sample shown in Fig.2 during warming in Ha=330 Oe after 
zero-field-cooling to 5K. 
 



 
 
Fig. 5 Sketch of the induction distribution in a usual field-cooled superconducting plate (a) , in our 
ferromagnetic superconductor (b), and in FM-SC with temperature independent Jc (c). 
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