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The conventional Landau-Lifshitz-Gilbert (LLG) equation is a widely used tool to describe dy-
namics of local magnetic moments, viewed as classical vectors of fixed length, with their change
assumed to take place simultaneously with the cause. Here we demonstrate that recently devel-
oped [M. D. Petrović et al., Phys. Rev. Applied 10, 054038 (2018)] self-consistent coupling of
the LLG equation to time-dependent quantum-mechanical description of electrons—where nonequi-
librium spin density from time-dependent nonequilibrium Green function (TDNEGF) calculations
is inserted within a torque term into the LLG equation while local magnetic moments evolved by
the LLG equation introduce time-dependent potential in the quantum Hamiltonian of electrons—
microscopically generates time-retarded damping in the LLG equation described by a memory kernel
which is also spatially dependent. For sufficiently slow dynamics of local magnetic moments on the
memory time scale, the kernel can be expanded into power series to extract the Gilbert damping
(proportional to first time derivative of magnetization) and magnetic inertia (proportional to second
time derivative of magnetization) terms whose parameters, however, are time-dependent in contrast
to time-independent parameters used in the conventional LLG equation. We use examples of single
or multiple local magnetic moments precessing in an external magnetic field, as well as field-driven
motion of a magnetic domain wall (DW), to quantify the difference in their time evolution computed
from conventional LLG equation vs. TDNEGF+LLG quantum-classical hybrid approach. The faster
DW motion predicted by TDNEGF+LLG approach reveals that important quantum effects, stem-
ming essentially from a finite amount of time which it takes for conduction electron spin to react
to the motion of classical local magnetic moments, are missing from conventional classical micro-
magnetics simulations. We also demonstrate large discrepancy between TDNEGF+LLG-computed
numerically exact and, therefore, nonperturbative result for charge current pumped by a moving
DW and the same quantity computed by perturbative spin motive force formula combined with the
conventional LLG equation.

I. INTRODUCTION

The conventional Landau-Lifshitz-Gilbert (LLG)
equation [1–3] is the cornerstone of numerical micro-
magnetics [4] and atomistic spin dynamics [5] where one
simulates the classical time evolution of many magnetic
units coupled by exchange or magnetostatic interactions.
The LLG equation

∂m(r, t)
∂t

= −gm(r, t)×Beff(r, t)+λGm(r, t)× ∂m(r, t)
∂t

,

(1)
describes time evolution of m(r, t) as the unit vector
|m| = 1 of constant length representing the direction
of the local magnetization. Here g is the gyromag-
netic ratio and Beff is the sum of an external mag-
netic field and effective magnetic fields due to magnetic
anisotropy and exchange coupling (additional stochastic
magnetic field can contribute to Beff to take into ac-
count finite temperature effects [6]). The second term
on the right-hand side of Eq. (1) is introduced phe-
nomenologically to break the time-inversion symmetry,
thereby generating a damping mechanism. The conven-
tional intrinsic Gilbert damping λG is assumed to be ma-
terials specific and, therefore, time-independent parame-
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ter. It is typically computed using the so-called breath-
ing Fermi surface [7] or torque-torque correlation formu-
las [8] within single-particle quantum-mechanical frame-
work (additional many-body processes have to be taken
into account to make λG finite in the clean limit at low
temperatures [9]). In the original form, Eq. (1) is written
for a bulk material as a highly nonlinear partial differen-
tial equation. It can also be re-written for a macrospin or
a lattice of atomic spins leading to a system of nonlinear
ordinary differential equations [5].

In the case of conducting ferromagnets, LLG equation
has to be extended by including additional terms, such as:
(i) spin-transfer torque [10] T ∝ 〈ŝ〉 ×m due to injected
electrons generating nonequilibrium spin density 〈ŝ〉 that
is noncollinear to local magnetization; (ii) additional
Gilbert damping, (g↑↓/4π)m × ∂m/∂t, due to pumping
of spin currents by the dynamics of m(t) where g↑↓ is the
so-called spin-mixing conductance [11]; (iii) additional
nonlocal Gilbert damping [12–18], m× (D · ∂m/∂t), due
to spin pumping by noncollinear magnetic textures where
Dαβ = η

∑
i(m× ∂im)α(m× ∂im)β is the 3×3 damping

tensor, ∂i = ∂/∂i and α, β, i ∈ {x, y, z}; and (iv) mag-
netic inertia [19–25], Im × ∂2m/∂t2, of relevance to ul-
trafast magnetization dynamics. Like the original Gilbert
damping parameter λG in Eq. (1), T, g↑↓, D and I require
microscopic quantum-mechanical calculations which are
often combined [8, 9, 26–31] with first-principles Hamil-
tonians of realistic materials.

Furthermore, generalizations of LLG equation have
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been considered to take into account the retardation ef-
fects [32, 33]

∂m(r, t)
∂t

=
ˆ t

0
dt′
ˆ
d3r′Γ(r, t; r′, t′)m(r′, t′)

×
[
−gBeff(r′, t′) + λG

∂m(r′, t′)
∂t′

]
, (2)

by introducing a memory kernel Γ(r, t; r′, t′). The mem-
ory kernel models space-time correlation between local
magnetic moments, i.e., the fact that the cause for the
change of local magnetization occurs at time t − t′ and
at position r − r′ while the effect at position r is vis-
ible at the later time t. It has been specified phe-
nomenologically, such as the sum of an instantaneous
and time-dependent part which exponentially decays on
a characteristic time scale defining the strength of mem-
ory [32, 33]. It is also often simplified [33] by considering
time-retardation only, Γ(r, t; r′, t′)→ Γ(t, t′), so that any
space-retardation effects are included only through the
effective field Beff(r, t′).

The time-retardation described by Γ(t, t′) is a damping
mechanism in addition to well-established mechanisms—
the combined effects of spin-orbit coupling and electron-
phonon interaction [7, 8]—which govern λG in Eq. (1).
However, the magnitude of Γ(t, t′) cannot be deduced
from purely phenomenological considerations [32, 33].
Instead, the introduction of the memory kernel Γ(t, t′)
can be justified microscopically [6, 22, 34–37] by us-
ing quantum-classical hybrid approaches, where time-
dependent quantum formalism is used to compute 〈ŝ〉(t)
which is then fed into the LLG equation, while in turn, lo-
cal magnetization from the LLG equation generates time-
dependent field in the quantum Hamiltonian of electrons.
Although electron dynamics is assumed to be much faster
than that of local magnetic moments, it still takes fi-
nite time for electron spin to react to new position of
m(r, t). This is the fundamental reason for time-retarded
damping effects encoded by Eq. (2), which are present
even if the intrinsic Gilbert damping in Eq. (1) is van-
ishingly small due to small spin-orbit coupling (nonzero
λG requires spin-orbit coupling [7–9] and scales quadrati-
cally with it [38]). Since classical micromagnetics simula-
tions typically use only the conventional intrinsic Gilbert
damping term in Eq. (1), while not considering explicitly
the flow of conduction electrons in the presence of mag-
netization dynamics, the question arises about the mag-
nitude of neglected effects like time-retarded damping in
standard simulations of magnetic-field- or current-driven
dynamics of noncollinear magnetic textures such as mag-
netic domain walls (DWs) [39–47] and skyrmions [48, 49].

Although quantum-classical approaches which auto-
matically include time-retardation effects have been dis-
cussed previously [6, 22, 34–37], they have been focused
on the simple examples where one or two local magnetic
moments (pertinent to, e.g., magnetic molecules) inter-
act with either closed electronic quantum system [22, 35]
(i.e., not attached to macroscopic reservoirs to allow elec-
tron spin and charge currents to flow into and from an

FIG. 1. Schematic view of two-terminal devices where an infi-
nite 1D TB chain, describing electrons quantum-mechanically,
is attached to two macroscopic reservoirs while its middle part
hosts: (a) single local magnetic moment, initially oriented in
the +x-direction, placed in an external magnetic field point-
ing along the +z-direction; (b) 11 local magnetic moments
(illustration shows 7 of them), initially oriented in the +x-
direction, placed in an external magnetic field pointing along
the +z-direction; (c) three-site-wide head-to-head magnetic
DW whose motion is driven by an external magnetic field
pointing in the +x-direction. Electrons within 1D TB chain
and classical local magnetic moments interact via the s-d ex-
change coupling of strength Jsd, and classical local magnetic
moments within the DW in (c) additionally interact with each
other via the Heisenberg exchange coupling of strength J .

external circuit), or open electronic quantum system but
employing approximations [6, 34, 36, 37] to obtain analyt-
ical solution. Thus, these approaches are not suitable for
simulations of spintronic devices containing large number
of noncollinear local magnetic moments.

Here we employ recently developed [50] numerically
exact and, therefore, nonperturbative algorithm combin-
ing time-dependent nonequilibrium Green function for-
malism [51, 52] with the conventional LLG Eq. (1) (TD-
NEGF+LLG) to demonstrate how it effectively generates
time-retardation effects, whose memory kernel can be ex-
plicitly extracted in terms of TDNEGFs only in some lim-
its (such as weak electron-spin/local-magnetic-moment
interaction and weak coupling of the active region to
macroscopic reservoirs). The paper is organized as fol-
lows. Section II A introduces model quantum Hamilto-
nian for electronic subsystem and classical Hamiltonian
for the subsystem comprised of local magnetic moments.
In Sec. II B, we show how the nonequilibrium expectation
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value of spin density

〈ŝ〉i(t) = ~
2 Tr [(ρneq(t)− ρeq) |i〉 〈i| ⊗ σ], (3)

inserted into the LLG Eq. (1) generates a memory ker-
nel because of the structure of the nonequilibrium time-
dependent density matrix ρneq(t) obtained from TD-
NEGF calculations. Here ρeq is the grand canonical
equilibrium density matrix; σ = (σ̂x, σ̂y, σ̂z) is the vec-
tor of the Pauli matrices; |i〉 electron orbital centered
on site i; and the operator |i〉 〈i| ⊗ σ acts in the com-
posite Hilbert space H = Horb ⊗ Hspin of electronic
orbital and spin degrees of freedom. In this Section, we
also discuss how in the limit of slow magnetization dy-
namics the memory kernel can be expanded in a Taylor
series in order to extract conventional Gilbert damping
and magnetic inertia terms, but with time- and spatially-
dependent parameters λD

i (t) and ID
i (t). In Sec. II C we

introduce the theory for calculating Gilbert damping (λS)
using the S-matrix theory which describes dynamics of
local magnetic moments using collective coordinates and
later compare it with our dynamical Gilbert damping.
In Secs. III A–III C we compare the dynamics of local
magnetic moments driven by an external magnetic field
as computed by TDNEGF+LLG vs. conventional LLG
simulations for three one-dimensional (1D) examples de-
picted in Fig. 1(a)–(c), respectively. Sec. III C also com-
pares pumped charge current due to the DW motion as
computed by TDNEGF+LLG vs. the widely-used spin
motive force (SMF) theory [12, 53] combined [54–56] with
the conventional LLG equation. We conclude in Sec. IV.

II. MODELS AND METHODS

A. Coupled quantum and classical Hamiltonians

The conduction electron subsystem is modeled by a
quantum Hamiltonian

H(t) = −γ
∑
〈ij〉

ĉ†i ĉj − Jsd
∑
i

ĉ†iσ ·Mi(t)ĉi, (4)

which is (assumed to be 1D for simplicity) tight-binding
(TB) model where electron interacts with magnetic mo-
ments localized at sites i and described by the classical
vector Mi(t) of unit length. Here ĉ†i = (ĉ†i↑, ĉ

†
i↓) is a row

vector containing operators ĉ†iσ which create an electron
of spin σ =↑, ↓ at site i; ĉi is a column vector that con-
tains the corresponding annihilation operators; γ = 1 eV
is the nearest neighbor hopping; and Jsd is the s-d ex-
change coupling parameter between conduction electrons
and local magnetic moments. The active region of de-
vices depicted in Fig. 1(a)–(c) consists of 1, 11 and 21
TB sites, respectively. These are attached to the left (L)
and right (R) semi-infinite ideal leads modeled by the
same Hamiltonian in Eq. (4) but with Jsd = 0 eV. The

leads are assumed to terminate into macroscopic reser-
voirs kept at the same chemical potential since we do not
apply any bias voltage to the devices in Fig. 1(a)–(c).

The classical Hamiltonian describing the local mag-
netic moments is given by

H = −J
∑
ij

Mi ·Mj −µM
∑
i

Mi ·Bi
ext−K

∑
i

(Mx
i )2

− Jsd
∑
i

〈̂s〉i ·Mi, (5)

where J is the Heisenberg exchange coupling parameter;
Bi

ext is the applied external magnetic field; K is the mag-
netic anisotropy (in the x-direction), µM is the magni-
tude of the local magnetic moment [5] and 〈ŝ〉i is the
nonequilibrium electronic spin density computed from
Eq. (3).

B. Time-retarded damping and magnetic inertia in
the LLG equation self-consistently coupled to

TDNEGF

The quantum equation of motion for the nonequilib-
rium density matrix of electrons [57, 58]

i~
∂ ρneq(t)

∂t
= [H(t),ρneq(t)] +

∑
p=L,R

i[Πp(t) + Π†p(t)].

(6)
is an example of a master equation for an open (i.e., con-
nected to macroscopic reservoirs) quantum system [59]
due to the presence of the second term on the right hand
side, in addition to standard terms of the von Neumann
equation. This term and the density matrix itself can be
expressed using TDNEGF formalism [51, 52] as

ρneq(t) = 1
i
G<(t, t′)|t=t′ , (7)

Πp(t′) =
ˆ t′

−∞
dt1[G>(t′, t1)Σ<

p (t1, t′)−

G<(t′, t1)Σ>
p (t1, t′)]. (8)

The central quantities of the TDNEGF formalism are
the retarded Gr,σσ

′

ii′ (t, t′) = −iΘ(t− t′) 〈{ĉiσ(t), ĉi′σ′(t)}〉
and the lesser G<,σσ

′

ii′ (t, t′) = i 〈ĉ†i′σ′(t′)ĉiσ(t)〉 Green
functions (GFs) which describe the available density of
states and how electrons occupy those states, respec-
tively. In addition, it is also useful to introduce the
greater GF, G>(t, t′) = [G<(t′, t)]†, and the advanced
GF, Ga(t, t′) = [Gr(t, t′)]†. The current matrices Πp(t)
make it possible to compute directly [57, 58] charge cur-
rent

Ip(t) = e

~
Tr[Πp(t)], (9)
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and spin current

ISαp (t) = e

~
Tr[σ̂αΠp(t)], (10)

in the L and R semi-infinite leads. The equation of mo-
tion for the lesser and greater GFs is given by

i~
∂G>,<(t, t1)

∂t
= H(t)G>,<(t, t1)+

+∞ˆ

−∞

dt2

[
Σr

tot(t, t2)G>,<(t2, t) + Σ>,<
tot (t, t2)Ga(t2, t)

]
,

(11)

where Σr,>,<
tot (t, t2) =

∑
p=L,R Σr,>,<

p (t, t2) and
Σr,>,<
p (t, t2) are the lead self-energy matrices [52, 57, 58].
The classical equation of motion for the magnetic mo-

ment localized at site i is the Landau-Lifshitz equation

∂Mi(t)
∂t

= −gMi(t)×Beff
i (t), (12)

where the effective magnetic field is
Beff
i (t) = − 1

µM
∂H/∂Mi.

The full TDNEGF+LLG framework [50], which
we also denote as TDNEGF�LLG, consists of self-
consistent combination of Eqs.(6) and (12) where one
first solves for the nonequilibrium electronic spin den-
sity in Eq.(3), which is then fed into Eq. (12) to prop-
agate local magnetic moments Mi(t) in the next time
step. Evolving ρneq(t) via Eq. (6) requires time step
δt = 0.01 fs for numerical stability, and we use the same
time step to evolve LLG or Landau-Lifshitz equations
for Mi(t). These updated local magnetic moments are
fed back into the quantum Hamiltonian of conduction
electron subsystem in Eq. (4). Thus obtained solutions
for Mi(t), 〈ŝ〉i(t), Ip(t) and ISαp (t) are numerically ex-
act. For testing the importance of the self-consistent
feedback loop, we also use TDNEGF←LLG where TD-
NEGF is utilized to obtain Ip(t) and ISαp (t) while the
local magnetic moments are evolved solely by the con-
ventional LLG Eq. (1), i.e., by using Jsd ≡ 0 in Eq. (5)
but Jsd 6= 0 is used in Eq. (4).

In the weak-coupling limit [34, 60] (i.e., small Jsd)
for electron-spin/local-magnetic-moment interaction it is
possible to extract explicitly the generalized LLG equa-
tion with a memory kernel. For this purpose we use the
following expansions in the powers of small Jsd

ρneq(t) =
∞∑
n=0

ρn(t)Jnsd, (13)

Πp(t′) =
∞∑
n=0

Π(n)
p (t′)Jnsd, (14)

Gr,a,>,<(t′, t1) =
∞∑
n=0

Gr,a,>,<
n (t′, t1)Jnsd. (15)

In Appendix A, we show how to combine Eqs.(6), (11),
(13), (14) and (15) to obtain the perturbative equation

∂Mi(t)
∂t

= −g
[
Mi(t)×Beff,0

i (t)+

J2
sd

µM

∑
p=L,R

Mi(t)×
+∞ˆ

−∞

dt′′Mi(t′′){Kp
i (t
′′, t)+Kp∗

i (t′′, t)}
]
,

(16)

for the dynamics of each local magnetic moment at site i,
by retaining only the terms linear in Jsd in Eqs. (13)–(15).
Here Beff,0

i ≡− 1
µM

∂H0/∂Mi, H0 is the classical Hamil-
tonian in Eq. (5) with Jsd ≡ 0 and Kp

i (t′′, t) is defined in
Appendix A. The physical origin [35] of time-retardation
effects described by the second term in Eq. (16) is that,
even though electron dynamics is much faster than the
dynamics of local magnetic moments, the nonequilibrium
spin density in Eq. (3) is always behind Mi(t) and, there-
fore, never parallel to it which introduces spin torque
term into the Landau-Lifshitz Eq. (12). In other words it
takes finite amount of time for conduction electron spin to
react to the motion of classical local magnetic moments,
so that nonequilibrium electrons effectively mediate in-
teraction of Mi(t) with the same local magnetic moment
at an earlier time t′ < t. In the full TDNEGF+LLG
scheme, such retardation effects are mediated by the
nonequilibrium electrons starting at site i at time t′ and
returning back to the same site at time t > t′, while
in the perturbative limit the same effect is captured by
the second term in Eq. (16). The perturbative formula
Eq. (16) is expected [35] to breakdown after propagation
over time t ∼ ~/Jsd.

Further approximation to Eq. (16) can be made by
considering sufficiently slow dynamics of local magnetic
moments so that higher order terms in the Taylor series

Mi(t′′) ≈Mi(t)+
∂Mi(t)
∂t

(t′′−t)+1
2
∂2Mi(t)
∂t2

(t′′−t)2+. . . ,
(17)

can be neglected. By defining the following quantities

λD
p,i(t) ≡

+∞ˆ

−∞

dt′′(t′′ − t)[Kp
i (t
′′, t) + K∗pi (t′′, t)], (18)

and

ID
p,i(t) ≡

1
2

+∞ˆ

−∞

dt′′(t′′ − t)2[Kp
i (t
′′, t) + K∗pi (t′′, t)], (19)

and by retaining terms up to the second order in Eq. (17)
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we obtain the conventionally looking LLG equation

∂Mi(t)
∂t

= −g
[
Mi(t)×Beff,0

i (t)+

J2
sd

µM

{ ∑
p=L,R

λD
p,n(t)

}
Mi(t)×

∂Mi(t)
∂t

+

J2
sd

µM

{ ∑
p=L,R

ID
p,i(t)

}
Mi(t)×

∂2Mi(t)
∂t2

]
. (20)

However, the Gilbert damping term prefactor

λD
i (t) = −J

2
sd

µM

∑
p=L,R

λD
p,i(t), (21)

and the magnetic inertia term prefactor

ID
i (t) = −J

2
sd

µM

∑
p=L,R

ID
p,i(t), (22)

in Eq. (20) are now time- and position-dependent. This
is in sharp contrast to conventional LLG Eq. (1) em-
ployed in classical micromagnetics where Gilbert damp-
ing and magnetic inertia prefactors are material specific
constants.

C. Comparison with static Gilbert damping from
scattering matrix approach

Static Gilbert damping caused by coupling of electrons
to local magnetic moments in a two-terminal device [61]
can also be calculated using the scattering matrix ap-
proach [62]. The LLG equation with nonlocal damping
is given by

∂Mi(t)
∂t

= −gMi(t)×Beff
i (t) +

∑
k

Mi(t)× Ĝik
∂Mk(t)
∂t

,

(23)
where Ĝik is called the Gilbert damping tensor. One
then introduces collective coordinates that are used to
describe the dynamics of local magnetic moments, i.e., we
make the assumption that there exist generalized coor-
dinates ξ(t)≡[ξ1(t), ξ2(t), · · · , ξN (t)]T such that Mi(t) =
Mi(ξ(t)). Then Eq. (23) can be recast into

η̂ξ̇ + F − Γ̂ξ̇ = 0, (24)

where the elements of the matrices η̂ and Γ̂ are given by

(η̂)AB ≡
µM
g

∑
i

Mi ·
(
∂Mi

∂ξA
× ∂Mi

∂ξB

)
, (25)

(Γ̂)AB = µM
g

∑
ik

(
Ĝik

∂Mk

∂ξA

)
·
(
∂Mi

∂ξB

)
, (26)

respectively. The generalized force vector F is given by

F = −∂H
∂ξ

. (27)

The scattering matrix approach allows us to compute Γ̂
and F as

(Γ̂)AB = ~
4π

ˆ
dE

(
− ∂f

∂E

)
Tr
[
∂S(E)
∂ξA

∂S†(E)
∂ξB

]
, (28)

F = − 1
2πi

ˆ
dEf(E) Tr

[
S†(E)∂S(E)

∂ξ

]
, (29)

where S(E) is the scattering matrix of the device which
is frozen at time t, while f(E) is the Fermi function of
the left and right reservoirs which are held at an identical
chemical potential.

For the case of a single local magnetic moment the col-
lective coordinates that describe the dynamics are given
by the polar angle θ(t) and the azimuthal angle φ(t),
so that M(t) = (sin θ cosφ, sin θ sinφ, cos θ). Further-
more, we can assume an isotropic system and, therefore,
in Eq. (23) we have

Gαβ = λSδ
αβ , (30)

where λS represents the static Gilbert damping. Using
Eq. (26) and Eq. (28), and assuming zero temperature,
we obtain

λS = g~
4πµM

Tr
[
∂S
∂φ

∂S†

∂φ

](
1

sin2 θ

)
. (31)

Equation (31) is evaluated for the case of a single lo-
cal magnetic moment shown in Fig. 1(a) and plotted in
Fig. 2(b).

III. RESULTS AND DISCUSSION

A. Single local magnetic moment in an external
magnetic field

To compare the dynamics of local magnetic moments
in full TDNEGF+LLG quantum-classical simulations vs.
conventional LLG classical simulations, we first consider
a well-known example [5] for which the conventional LLG
equation can be analytically solved—a single local mag-
netic moment which at t = 0 points along the +x-
direction and then starts to precesse due to an external
magnetic field pointing in the +z-direction. Its trajectory
is given by [5]

Mx(t) = sech
(
gλGB

1 + λ2
G
t

)
cos
(

gB

1 + λ2
G
t

)
, (32a)

My(t) = sech
(
gλGB

1 + λ2
G
t

)
sin
(

gB

1 + λ2
G
t

)
, (32b)
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FIG. 2. (a) Time dependence of tanh−1(Mz) for a sin-
gle local magnetic moment in Fig. 1(a) obtained from TD-
NEGF+LLG simulations. Colors red to blue indicate increas-
ing s-d exchange coupling in steps of 0.1 eV, ranging from
Jsd = 0 eV to Jsd = 1.9 eV. (b) The dynamical Gilbert damp-
ing parameter in Eq. (21) (blue curve with circles) extracted
from panel (a) as a function of Jsd and the Gilbert damping
parameter obtained from the scattering (or S) matrix formula
in Eq. (31) (solid green curve). (c) Time dependence of Mz

component for a single local magnetic moment in Fig. 1(a)
at large Jsd = 2.0 eV exhibits nutation as a signature of mag-
netic inertia. To generate fast magnetization dynamics and
reduce simulation time, we use an unrealistically large exter-
nal magnetic field of strength B = 1000 T. The conventional
intrinsic Gilbert damping parameter is set to zero, λG = 0,
and the Fermi energy is EF = 0 eV.

Mz(t) = tanh
(
gλGB

1 + λ2
G
t

)
, (32c)

where B = (0, 0, B) is the applied external mag-
netic field. Thus, if the conventional intrinsic Gilbert
damping parameter is set to zero, λG = 0, then
the local magnetic moment precesses steadily around
the z-axis with Mz ≡ 0. On the other hand,
for nonzero λG > 0, the local magnetic moment
will relax towards the direction of magnetic field,
i.e., lim

t→∞
(Mx(t),My(t),Mz(t)) = (0, 0, 1). Thus, such

damped dynamics is signified by a linear tanh−1(Mz)
vs. time dependence. Figure 2 plots results of TD-
NEGF+LLG simulations for the same problem. Even
though we set conventional intrinsic Gilbert damping
to zero, λG = 0, Fig. 2(a) shows linear tanh−1(Mz) vs.
time, independently of the strength of s-d exchange cou-
pling as long as Jsd . 2 eV. This means that the lo-
cal magnetic moment is experiencing (time-independent)
dynamical Gilbert damping λD ∝ J2

sd, in accord with
Eq. (21) and as shown in Fig. 2(b) (blue curve with cir-
cles), which is generated solely by the TDNEGF part of

the self-consistent loop within the full TDNEGF+LLG
scheme.

We also show in Fig. 2(b) that the Gilbert damping
λS, calculated using the scattering matrix formula in
Eq. (31), agrees well with our dynamical Gilbert damp-
ing in the limit of weak strength of s-d exchange cou-
pling (Jsd . 0.2 eV). However, there is a disagreement
between the two, at larger strengths of s-d exchange cou-
pling. We attribute this result to the fast dynamics of
local magnetic moments, in which case the dynamics be-
comes nonadiabatic and the scattering matrix approach
is no longer applicable. We also emphasize that our dy-
namical Gilbert damping will become time and spatially
dependent for more than one local magnetic moments
studied in Sec. III B, so that it cannot be mimicked by a
single time-independent parameter λS obtained from the
scattering matrix formula in Eq. (31).

For Jsd & 2 eV, the dynamics of the local magnetic mo-
ment also exhibits nutation [35], as shown in Fig. 2(c),
which is the signature of the magnetic inertia [19–24]
term ∝Mi × ∂2Mi/∂t

2 in Eq. (20). Thus, nutation be-
comes conspicuous when the dynamics of the local mag-
netic moments is sufficiently fast, so that ∂2Mi/∂t

2 is
large, as well as when the interaction between the itiner-
ant and localized spins is sufficiently large.

B. Multiple exchange-uncoupled local magnetic
moments in an external magnetic field

In order to examine possible spatial dependence of the
dynamical Gilbert damping parameter or emergence of
dynamical exchange coupling [63, 64] between local mag-
netic moments, we consider a chain of N = 11 magnetic
moments which do not interact with each other (J = 0)
but interact with conduction electron spin (Jsd 6= 0), as
illustrated in Fig. 1(b). At t = 0, all magnetic moments
point in the +x-direction while the external magnetic
field is in the +z direction, and the conventional intrin-
sic Gilbert damping is set to zero, λG = 0.

Figures 3(a) and 3(c) show the trajectory of selected
local magnetic moments (i = 1 and 6) on the Bloch
sphere for Jsd = 0.1 eV. In contrast to single local mag-
netic moment in Fig. 2(a), for which tanh−1(Mz) vs.
time is linear using Jsd = 0.1 eV, we find that in case of
multiple exchange-uncoupled magnetic moments this is
no longer the case, as demonstrated by Figs. 3(b) and
3(d). Hence, the trajectory followed by these local mag-
netic moments cannot be described by Eq. (32) so that
the conventional-like Gilbert damping parameter cannot
be extracted anymore. Thus, such a nonstandard damp-
ing of the dynamics of local magnetic moments originates
from time-dependence of the dynamical damping param-
eter λD

i in Eq. (21).
Figure 4(a) shows tanh−1(Mz) vs. time for selected

local magnetic moments (i = 1, 3 and 6) and smaller
Jsd = 0.01 eV. Although all local magnetic moments fol-
low linear tanh−1(Mz) vs. time, as predicted by the
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FIG. 3. TDNEGF+LLG-computed trajectories
(Mx(t),My(t),Mz(t)) on the Bloch sphere of local magnetic
moment in the setup of Fig. 1(b) at: (a) site 1; and (c) site
6. The total number of local magnetic moments is N = 11,
and they do not interact with each other via exchange
coupling [i.e., J = 0 eV in Eq. (5)]. Panels (b) and (d) show
the corresponding time dependence of Mz component from
panels (a) and (c), respectively. The external magnetic
field is B = 1000 T, and the s-d exchange coupling strength
Jsd = 0.1 eV is nonperturbative in this setup, therefore,
not allowing us to extract explicitly the dynamical Gilbert
damping parameter from Eq. (21). The conventional intrinsic
Gilbert damping parameter is set to zero, λG = 0, and the
Fermi energy is EF = 0 eV.

solution in Eq. (32c) of the conventional LLG equation,
the dynamical Gilbert damping extracted from Eq. (32)
changes from site to site as shown in Fig. 4(b). Further-
more, the linear tanh−1(Mz) vs. time relation breaks
down for times t & 50 ps at specific sites, which then pre-
vents extracting time-independent λD

i at those sites.

C. Magnetic field-driven motion of a domain wall
composed of multiple exchange-coupled local

magnetic moments

In order to examine difference in predicted dynam-
ics of exchange-coupled local magnetic moments by TD-
NEGF+LLG framework vs. conventional LLG equa-
tion, we consider the simplest example of 1D head-to-
head magnetic DW depicted in Fig. 1(c). Its motion is
driven by applying an external magnetic field in the +x-
direction. Some type of damping mechanism is crucial
for the DW to move, as demonstrated by solid lines in
Fig. 5(e)–(h), obtained by solving the conventional LLG
equation with λG = 0, which show how local magnetic

FIG. 4. (a) TDNEGF+LLG-computed time dependence of
Mz component of local magnetic moment on sites 1, 3 and 6 in
the setup of Fig. 1(b) with a total ofN = 11 moments. (b) Po-
sition dependence of the dynamical Gilbert damping param-
eter in Eq. (21). The external magnetic field is B = 1000 T,
and the s-d exchange coupling strength Jsd = 0.01 eV is per-
turbative in this setup, therefore, allowing us to extract the
dynamical Gilbert damping explicitly from Eq. (21). The con-
ventional intrinsic Gilbert damping parameter is set to zero,
λG = 0, and the Fermi energy is EF = 0 eV.

moments precess around the magnetic field but without
net displacement of the center of the DW.

On the other hand, even though we set λG = 0 in TD-
NEGF+LLG simulations in Fig. 5(a)–(d), the center of
the DW moves to the right due to dynamically generated
time-retarded damping encoded by the memory kernel
in Eq. (16). Including the conventional intrinsic Gilbert
damping, λG = 0.01 as often used in micromagnetic sim-
ulations of DW along magnetic nanowires [43, 44, 65],
changes only slightly the result of TDNEGF+LLG sim-
ulations which demonstrates that the effective dynam-
ical Gilbert damping (which is also time-dependent) is
about an order of magnitude larger than λG. This is also
reflected in the DW velocity being much larger in TD-
NEGF+LLG simulations with λG = 0 in Fig. 5(a)–(d)
than in the conventional LLG equation simulations with
λG = 0.01 in Fig. 5(e)–(h).

It has been predicted theoretically [12, 53, 66–70] and
confirmed experimentally [71] that a moving DW will
pump charge current even in the absence of any applied
bias voltage. The corresponding open circuit pumping
voltage in the so-called spin motive force (SMF) the-
ory [12, 53] is given by

VSMF = 1
G0

ˆ
jxdx, (33a)

jα(r) = Pσ0~
2e [∂tm(r, t)× ∂αm(r, t)] ·m(r, t), (33b)

where jx is the pumped local charge current along the
x-axis. Here σ0 = σ↑ + σ↓ is the total conductivity;
P = (σ↑ − σ↓)/(σ↑ + σ↓) is the spin polarization of the
ferromagnet; and ∂t = ∂/∂t. Equation (33) is typically
combined [54–56] with classical micromagnetics which
supplies Mi(t) that is then plugged into the discretized
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FIG. 5. (a)–(d) TDNEGF+LLG-computed snapshots of head-to-head DW in the setup of Fig. 1(c) driven by an external
magnetic field of strength B = 100 T pointing in the +x-direction, in the absence (λG = 0) or presence (λG = 0.01) of the
conventional intrinsic Gilbert damping. Panels (e)–(h) show the corresponding snapshots computed solely by the conventional
LLG Eq. (1) where in the absence (λG = 0) of the conventional intrinsic Gilbert damping the DW does not move at all. The
Heisenberg exchange coupling between local magnetic moments is J = 0.01 eV; s-d exchange coupling between electrons and
local magnetic moments is Jsd = 0.1 eV; magnetic anisotropy (in the x-direction) is K = 0.01 eV; and the Fermi energy of
electrons is EF = −1.9 eV. The magnetic field is applied at t = 2 ps, while prior to that we evolve the conduction electron
subsystem with TDNEGF until it reaches the thermodynamic equilibrium where all transient spin and charge currents have
decayed to zero.

version [50]

jx(i) ∝ 1
a

[∂tMi(t)× (Mi+1(t)−Mi(t))] ·Mi(t)

∝ 1
a

[∂tMi(t)×Mi+1(t)] ·Mi(t). (34)

of Eq. (33b). We denote this approach as SMF←LLG,
which is perturbative in nature [69? ] since it considers
only the lowest temporal and spatial derivatives.

On the other hand, the same pumping voltage can be
computed nonperturbatively

VTDNEGF = Ip(t)
G(t) , (35)

using TDNEGF expression for charge current in lead
p in Eq. 9, where TDNEGF calculations are coupled
to LLG calculations either self-consistently (i.e., by us-
ing TDNEGF�LLG) or non-self-consistently (i.e., by
using TDNEGF←LLG). Here, G(t) is the conductance
computed using the Landauer formula applied to two-
terminal devices with a frozen at time t texture of local
magnetic moments.

Figures 6(a) and 6(b) plot the pumping voltage cal-
culated by TDNEGF�LLG for DW motion shown in
Fig. 5(a)–(d) in the absence or presence of conventional
Gilbert damping, respectively. The two cases are vir-
tually identical due to an order of magnitude larger dy-
namical Gilbert damping that is automatically generated

by TDNEGF�LLG in both Figs. 6(a) and 6(b). The
nonperturbative results in Figs. 6(a) and Fig. 6(b) are
quite different from SMF←LLG predictions in Figs. 6(c)
and Fig. 6(d), respectively. This is due to both failure
of Eqs. (33) and (34) to describe noncoplanar and non-
collinear magnetic textures with neighboring local mag-
netic moments tilted by more than 10◦ [50] and lack
of dynamical Gilbert damping in SMF←LLG simula-
tions [54–56]. The latter effect is also emphasized by the
inability of TDNEGF←LLG in Figs. 6(c) and Fig. 6(d) to
reproduce the results of self-consistent TDNEGF�LLG
in Figs. 6(a) and Fig. 6(b), respectively.

IV. CONCLUSIONS

In conclusion, we delineated a hierarchy of theoret-
ical descriptions of a nonequilibrium quantum many-
body system in which conduction electron spins inter-
act with local magnetic moments within a ferromagnetic
layer sandwiched between normal metal electrodes. On
the top of the hierarchy is a fully quantum approach,
for both electrons and local magnetic moments, whose
computational complexity (using either original spin op-
erators [72? ] for local magnetic moments, or their
mapping to bosonic operators in order to enable ap-
plication of many-body perturbation theory within the
NEGF formalism [73]) makes it impractical for systems
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FIG. 6. Time dependence of pumping voltage generated by
the DW motion depicted in Fig. 5(a)–(d) for: (a) λG = 0;
(b) λG = 0.01. In panels (a) and (b) local magnetic mo-
ments evolve in time by the full TDNEGF+LLG framework
where the arrows indicate how TDNEGF sends nonequilib-
rium electronic spin density into the LLG equation which, in
turn, sends trajectories of local magnetic moments into TD-
NEGF. Time dependence of pumping voltage generated by
DW motion depicted in Fig. 5(e)–(h) for: (c) λG = 0; (d)
λG = 0.01. In panels (c) and (d) local magnetic moments
evolve in time using the conventional LLG equation which
sends their trajectories into either TDNEGF (green) or SMF
formulas (blue) in Eq. (35) or Eq. (33), respectively, to obtain
the corresponding pumping voltage.

containing large number of local magnetic moments.
The next approach in the hierarchy is computation-
ally much less expensive quantum-classical hybrid [74]
based on self-consistent coupling [50] of TDNEGF (which
can be implemented using algorithms that scale linearly
with both system size and simulation time [52, 58, 75])
with classical LLG equation for local magnetic moments.
Such TDNEGF+LLG approach is numerically exact and,
therefore, nonperturbative in the strength of electron-
spin/local-magnetic-moment interaction, speed of local
magnetic moment dynamics and degree of noncollinearity
between them. Even though electron dynamics is much
faster than localized spin dynamics, the most general sit-
uation cannot be handled by integrating out [6, 34] the
conduction electron degrees of freedom and by focusing
only on the LLG-type equation where a much larger time
step can be used to propagate spins only.

Nevertheless, in the limit [34, 60] of weak electron-
spin/local-magnetic-moment interaction [i.e., small Jsd

in Eqs. (4) and (5)] one can derive analytically a type
of generalized LLG equation [34–37] for each local mag-
netic moment which is next approach in the hierarchy
that sheds light onto different effects included in the nu-
merically exact TDNEGF+LLG scheme. Instead of the
conventional Gilbert damping term in Eq. (1), the gen-
eralized LLG equation we derive as Eq. (16) contains
a microscopically determined memory kernel which de-
scribes time-retardation effects generated by the coupling
to TDNEGF. Fundamentally, the memory kernel is due
to the fact that electron spin can never follow instanta-
neously change in the orientation of the local magnetic
moments [35]. In the limit of slow dynamics of local
magnetic moments, one can further expand the memory
kernel into a Taylor series to obtain the final approach
within the hierarchy whose LLG Eq. (20) is akin to the
conventional one, but which contains both Gilbert damp-
ing (proportional to first time derivative of local mag-
netization) and magnetic inertia terms (proportional to
second time derivative of local magnetization) with time-
dependent parameters instead of usually assumed mate-
rials specific constants.

Using three simple examples—single or multiple local
magnetic moments precessing in an external magnetic
field or magnetic-field-driven magnetic DW motion—
we demonstrate the importance of dynamically induced
damping which operates even if conventional static
Gilbert damping is set to zero. We also show that our
dynamical Gilbert damping is approximately equal to
the Gilbert damping predicted by the adiabatic S-matrix
theory for weak electron-spin/local-magnetic-moment in-
teraction. In the case of field-driven magnetic DW mo-
tion, we can estimate that the strength of dynamical
damping is effectively an order of magnitude larger than
typically assumed [43, 44, 65] conventional static Gilbert
damping λG ' 0.01 in classical micromagnetic simula-
tions of magnetic nanowires. In addition, we show that
charge pumping by the dynamics of noncoplanar and
noncollinear magnetic textures, which is outside of the
scope of pure micromagnetic simulations but it is often
described by combining [54–56] them with the SMF the-
ory formula [12, 53], requires to take into account both
the dynamical Gilbert damping and possibly large angle
between neighboring local magnetic moments in order to
reproduce numerically exact results of TDNEGF+LLG
scheme.
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Appendix A: Derivation of Memory Kernel in LLG equation self-consistently coupled to TDNEGF

In this Appendix, we provide a detailed derivation of the memory kernel in Eq. (16). To obtain the perturbative
equation of motion for local magnetic moments we start from Landau-Lifshitz Eq. (12) where the effective magnetic
field can be written as

Beff
i (t) = Beff,0

i (t) + Jsd〈ŝ〉i(t). (A.1)

The nonequilibrium spin density is expanded up to terms linear in Jsd using Eq. (13)

〈ŝ〉i(t) = ~
2 Tr[ρneq(t) |i〉 〈i|⊗σ]−〈ŝ〉ieq ≈

~
2 Tr

[
{ρ0(t)+Jsd ρ1(t)} |i〉 〈i|⊗σ

]
−〈ŝ〉ieq = Jsd

~
2 Tr[ρ1(t) |i〉 〈i|⊗σ]−〈ŝ〉ieq.

(A.2)
Here 〈ŝ〉ieq is the equilibrium electronic spin density i.e., 〈ŝ〉ieq = (~/2) Tr [ρeq |i〉 〈i| ⊗ σ]. Furthermore, the electronic
spin density in the zeroth order must vanish, i.e., Tr [ρ0(t) |i〉 〈i| ⊗ σ] = 0 since for Jsd = 0 electrons are not spin-
polarized. Hence, we can write Eq. (12) as

∂Mi(t)
∂t

= −gMi(t)×
[
Beff,0
i (t) + J2

sd

~
2 Tr[ρ1(t) |i〉 〈i| ⊗ σ]− Jsd〈ŝ〉ieq

]
. (A.3)

To obtain analytical results, we assume that the equilibrium spin density follows the direction of local magnetic
moments, so that Mi(t)× 〈ŝ〉ieq = 0. By expanding Eq. (6) we obtain

i~
∂ ρ0(t)
∂t

= [H0(t),ρ0(t)] +
∑
p=L,R

i[Π(0)
p (t) + Π(0)†

p (t)], (A.4)

and

i~
∂ ρ1(t)
∂t

= [H1(t),ρ0(t)] + i
∑
p=L,R

[Π(1)
p (t) + Π(1)†

p (t)], (A.5)

where H1(t) = −
∑
i |i〉 〈i| ⊗ σ ·Mi(t). One can formally integrate Eq. (A.5) which leads to

~
2 Tr[ρ1(t) |i〉 〈i| ⊗ σ] =

∑
p=L,R

1
2

tˆ

−∞

dt′ Tr
[
{Π(1)

p (t′) + Π(1)†
p (t′)} |i〉 〈i| ⊗ σ

]
. (A.6)

which requires to find an expression for Π(1)
p (t′). Using Eq. (8) and the fact that lead self-energy matrices do not

depend on Jsd leads to

Π(1)
p (t′) =

t′ˆ

−∞

dt1[G>
1 (t′, t1)Σ<

p (t1, t′)−G<
1 (t′, t1)Σ>

p (t1, t′)]. (A.7)

Equations (11) and (15) can be formally integrated to yield lesser and greater GFs in Eq. (A.7)

G>,<
1 (t′, t1) = 1

i~

( t′ˆ

−∞

dt′′H1(t′′)G>,<
0 (t′′, t1) +

t′ˆ

−∞

dt′′
+∞ˆ

−∞

dt2

[
Σr

tot(t′′, t2)G>,<
1 (t2, t′′) + Σ>,<

tot (t′′, t2)Ga
1(t2, t′′)

])
.

(A.8)
We further assume that the active region in Fig. 1 is weakly coupled with semi-infinite leads and, therefore, macroscopic
reservoirs into which they terminate. This means that after we substitute Eq. (A.8) into Eq. (A.7) we can keep only
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those terms that are linear in the self-energy

Π(1)
p (t′) = 1

2i

t′ˆ

−∞

dt′′H1(t′′)
t′ˆ

−∞

dt1

[
G>

0 (t′′, t1)Σ<
p (t1, t′)−G<

0 (t′′, t1)Σ>
p (t1, t′)

]
(A.9)

= i

2
∑
i

t′ˆ

−∞

dt′′ |i〉 〈i| ⊗ σ ·Mi(t′′)
t′ˆ

−∞

dt1

[
G>

0 (t′′, t1)Σ<
p (t1, t′)−G<

0 (t′′, t1)Σ>
p (t1, t′)

]
(A.10)

= i
∑
i

t′ˆ

−∞

dt′′ |i〉 〈i| ⊗ σ ·Mi(t′′)A0
p(t′′, t′), (A.11)

where A0
p(t′′, t′) is an operator constructed out of the zeroth order terms in the expansion of GFs shown in Eq. (15)

A0
p(t′′, t′) ≡

i

2

t′ˆ

−∞

dt1

[
G>

0 (t′′, t1)Σ<
p (t1, t′)−G<

0 (t′′, t1)Σ>
p (t1, t′)

]
. (A.12)

By plugging in Eqs. (A.11) and (A.12) into Eq. (A.6) we obtain

~
2 Tr[ρ1(t) |i〉 〈i|⊗σ̂µ] =

∑
p=L,R

∑
j

∑
ν

tˆ

−∞

dt′
t′ˆ

−∞

dt′′Mν
j (t′′) Tr

[
|j〉 〈j|⊗σ̂ν{A0

p(t′′, t′)+A0†
p (t′′, t′)} |i〉 〈i|⊗σµ

]
. (A.13)

Since A0
p(t′′, t′) is an operator constructed from the zeroth order GFs, it can be written in the followin form

A0
p(t′′, t′) = 1

2
∑
mn

Ap
mn(t′′, t′) |m〉 〈n| ⊗ 12, (A.14)

where 12 is a 2× 2 identity matrix. Using this it is easy to show that

~
2 Tr[ρ1(t) |i〉 〈i| ⊗ σ] =

∑
p=L,R

+∞ˆ

−∞

Θ(t− t′)dt′
+∞ˆ

−∞

dt′′Mi(t′′){Ap
ii(t
′′, t′) + Ap∗

ii (t′′, t′)}Θ(t′ − t′′), (A.15)

and

Kp
i (t
′′, t) =

+∞ˆ

−∞

dt′Θ(t− t′)Θ(t′ − t′′)Ap
ii(t
′′, t′). (A.16)

By plugging in Eq. (A.15) into the second term on the right hand side of Eq. (A.3), we finally obtain Eq. (16) of the
main text.
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T. Markussen, and K. Stokbro, arXiv:1801.05793
(2018).

[31] D. Thonig, O. Eriksson, and M. Pereiro, Scientific Re-
ports 7, 931 (2017).

[32] T. Bose and S. Trimper, Phys. Rev. B 83, 134434 (2011).
[33] D. Thonig, J. Henk, and O. Eriksson, Phys. Rev. B 92,

104403 (2015).
[34] M. Onoda and N. Nagaosa, Phys. Rev. Lett. 96, 066603

(2006).
[35] M. Sayad and M. Potthoff, New Journal of Physics 17,

113058 (2015).
[36] H. Hammar and J. Fransson, Phys. Rev. B 94, 054311

(2016).
[37] H. Hammar and J. Fransson, Phys. Rev. B 96, 214401

(2017).
[38] P. He, X. Ma, J. W. Zhang, H. B. Zhao, G. Lüpke, Z. Shi,
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