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Systems that break transport reciprocity have recently opened exciting possibilities for wave
manipulation. Here we report non-reciprocal acoustic transmission in cascaded resonators that
are modulated in space and time. An analytic approach is developed and the design strategy is
discussed for realizing a physical system based on this approach. The theory is verified numerically
by finite-difference time-domain (FDTD) simulations, with one-way isolation factor greater than 25
dB out of just two resonators. Our work provides a feasible route to achieve non-reciprocal acoustic
transmission in a compact manner.

I. INTRODUCTION

Reciprocity is a fundamental constraint in wave dy-
namics: the transmission from one point to another re-
mains unchanged when the positions of the two points are
switched. Breaking reciprocity offers rich possibilities in
controlling wave transport and wave-matter interaction,
and is highly desired in a number of applications, such as
sensing and communication, imaging and signal process-
ing. In electromagnetism and optics, nonreciprocity has
been demonstrated through a number of means, includ-
ing use of magnetic materials1, breaking time-reversal
symmetry2, and creating topological effects3,4. While re-
cent years have witnessed a growing research interest of
non-reciprocal photonics, nonreciprocity within the field
of acoustics is largely unexplored5.

One possible approach to achieve acoustic nonreciproc-
ity is to use passive or active nonlinearity that con-
verts the energy of fundamental frequency component to
higher harmonics6–9. Although the isolation factor in
principle can be very high, such approaches typically re-
quire complicated systems, can be challenging to model
accurately, and will inevitably induce signal distortion.
Moreover, the intensity of the input signals often needs
to be strong to induce nonlinear effects. Other successful
strategies include use of topological insulators that break
time-reversal symmetry10–12. However, these systems are
often realizable only with complex and relatively bulky
structures.

Recently, non-reciprocal devices based on spatiotem-
poral modulation have gained significant research interest
in different physical systems2,13–23. Time reversal sym-
metry is broken in time-modulated systems and therefore
nonreciprocity can be achieved. In principle, time mod-
ulated devices can be compact and still exhibit strong
nonreciprocity. The modulation frequency, modulation
depth, geometry of the unit cells and other parameters
provide many degrees of freedom to realize a range of
functionalities and performance.

In this paper, we propose and analyze non-reciprocal
acoustic transmission based on cascaded, spatiotempo-
rally modulated resonators. Although the basic approach

is general, we consider here a one-dimensional (1D) prop-
agation scenario, in which Helmholtz resonators are con-
nected to a host waveguide and, through dynamic mod-
ulation of the volume of the cavities, one-way transport
of acoustic waves can be achieved. An analytic model
is developed to characterize the transmission behavior
of the system. It is shown that by applying a spatially
varying phase difference between the resonators, strong
non-reciprocity can be created. The isolation factor can
reach more than 25 dB with easily realizable modulation
parameters using only two resonators. The relative pa-
rameters are discussed and a practical realization of the
system is proposed, with its size being approximately a
quarter wavelength. FDTD simulations with actual ge-
ometrical parameters and time-varying boundary condi-
tions are provided to verify the non-reciprocal effect.

II. THEORY

We begin by considering a simple modulated resonator
system, namely a 1D acoustic waveguide with two cas-
caded Helmholtz resonators loaded on the side, as shown
in Fig. 1. The propagation direction of the acoustic
waves is along the x direction. The background medium
is a linear isotropic fluid (i.e. air or water) with density
ρ0 and speed of sound c0. The incident, reflected and
transmitted acoustic waves are denoted as pi, pr and pt,
respectively. For an incident wave with pressure p0 and
wave vector k, the acoustic waves inside the waveguide
can be expressed as summation of different orders:

pi(x) = p0e
j(ωt−kx)

pr(x) =
∑
n

rnp0e
j(ωnt+knx) (1)

pt(x) =
∑
n

tnp0e
j[ωnt−kn(x−d)]

where rn and tn are the reflection and transmission asso-
ciated with the nth mode, d is the distance between the
two resonators. Under time modulation, the harmonics
ωn are given as ωn = ω + nΩ with Ω being the mod-
ulation frequency. The wave vector with the nth mode
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FIG. 1. Sketch of the transmission through a two cascaded
resonator system with spatiotemporal modulation. The dis-
tance between the resonators is d and only 1D wave propaga-
tion is considered.

can therefore be expressed as kn = ωn/c0. The pressure
field in between the two resonators is also a summation of
various harmonics of forward and backward waves with
coefficients an and bn:

pa(x) =
∑
n

anp0e
j(ωnt−knx)

pb(x) =
∑
n

bnp0e
j(ωnt+knx) (2)

The resonators loaded on the side of the waveguide
can be characterized by resonance frequency ω0 = 2πf0.
We do not restrict ourselves to a specific type of res-
onators but instead introduce a quality factor Q to de-
scribe the overall performance by considering the effect
of the waveguide. It will be shown that the overall
quality factor of the entire system, i.e., side-loaded res-
onators together with the host waveguide, is a more im-
portant metric to characterize the scattering parameters
of the system. Its renormalized impedance, when loaded
in the waveguide, is written as Z = jωM0 + 1/jωC0,
with M0 = Z0Q/2ω0 and C0 = 2/Z0Qω0. In prac-
tice, for a side-loaded Helmholtz resonator, the renor-
malized impedance can be computed by considering the
cross-sectional areas of the waveguide and the neck of
the resonator24. Both resonators are subject to tempo-
ral modulation in a fashion that the capacitance can be
written as:

1

jωC1,2(t)
=

1

jωC0
[1 +m cos(Ωt− φ1,2)] (3)

Here m is modulation depth, φ1,2 is the initial phase

of the modulation. By recognizing that ρ0
∂v
∂t = −∇p,

the corresponding acoustic velocity fields can be obtained

(note that only 1D wave propagation is considered):

vi(x) =
kx
ωρ0

p0x̂e
j(ωt−kx)

vr(x) = −
∑
n

kn
ωnρ0

rnp0x̂e
j(ωnt+knx)

vt(x) =
∑
n

kn
ωnρ0

tnp0x̂e
j[ωnt−kn(x−d)] (4)

va(x) =
∑
n

kn
ωnρ0

anp0x̂e
j(ωnt−knx)

vb(x) = −
∑
n

kn
ωnρ0

bnp0x̂e
j(ωnt+knx)

At x = 0, continuity of pressure yields:

p0e
jωt +

∑
n

rnp0e
jωnt =

∑
n

anp0e
jωnt +

∑
n

bnp0e
jωnt

(5)
Eq. (5) holds for arbitrary t, and can be simplified as:

δn + rn = an + bn (6)

where δn is the Kronecker delta. On the other hand,
the velocity field and the acoustic pressure at x = 0
can be related by the surface acoustic impedance, i.e.,
Za(vi + vr − va − vb)Sw/SH = p |x=0, where Sw and SH
are the cross-sectional areas of the waveguide and the
neck of the Helmholtz resonator, respectively. Again,
we note that the term Sw/SH is absorbed in the renor-
malized impedance Z for convenience. Under dynamic
modulation outlined by Eq. (3), the impedance at the
site of the first resonator Z1(t) at ωn is written as:

Z1(t) = Zn +
mZcn

2
[ej(Ωt−φ1) + e−j(Ωt−φ1)] (7)

where Zn = jωnM0 +1/jωnC0 and Zcn = 1/jωnC0. The
following equation can be obtained by inserting Eqs. (6)
and (7) into the impedance relation:

2δn
Zn
z0
ejωnt + (mδn−1

Zcn−1

z0
e−jφ1 +mδn+1

Zcn+1

z0
ejφ1)ejωnt

−2
Zn
z0
ane

jωnt −mZcn−1

z0
e−jφ1an−1e

jωnt

−mZcn+1

z0
ejφ1an+1e

jωnt = ane
jωnt + bne

jωnt

(8)

where z0 = ρ0c0 is the free space impedance. Let An =
2Zn/z0 + 1 and Bn = Zcn/z0, Eq. (8) can be further
simplified as:

Anan +mBn−1an−1e
−jφ1 +mBn+1an+1e

jφ1 − 2δn
Zn
z0

−mδn−1Bn−1e
−jφ1 −mδn+1Bn+1e

jφ1 + bn = 0

(9)
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Following the same procedure, another difference equa-
tion can be established at x = d:

Anbne
jknd +mBn−1bn−1e

jkn−1de−jφ2

+mBn+1bn+1e
jkn+1dejφ2 + ane

−jknd = 0
(10)

Under the condition of weak modulation, i.e., m is much
smaller than 1, the coupling from fundamental mode
to higher order harmonics (|n| ≥ 3) is low, and only
n = 0,±1,±2 needs to be considered in Eq. (10). A
series of difference equations can be established and the
coefficients of an and bn can be calculated. Finally, the
transmission of the system can be analyzed by using the
continuity of pressure at x = d, which yields:

tn = ane
−jknd + bne

jknd (11)

We first study the transmission characteristics of the
cascaded resonator system. Choosing physically reason-
able parameters, we assume the resonators are charac-
terized by a resonance frequency of f0 = 2000 Hz and
quality factor Q = 3.6. In practice, the quality factor
of the resonators can be conveniently tuned by adjusting
the height of the waveguide while keeping the size of the
resonator unchanged. The distance d between the two
resonators is 4.29 cm, which is a quarter wavelength at
the frequency of 2000 Hz. This distance is selected for the
sake of compactness of the system. In general, the mod-
ulation strategy can be optimized at different distances
to display non-reciprocal effects. Since the initial phase
difference creates a temporal bias that breaks the time in-
variance of the system, we choose ∆φ = |φ1−φ2| = 0.4π
to induce a sufficiently large asymmetry in opposite di-
rections. The temporal modulation frequency is chosen
to be Ω = 0.125ω0, where ω0 = 2πf0, so that different
harmonics can be easily separated in the frequency do-
main.

Here we are interested in the scattering properties of
the fundamental mode. In the positive direction (cor-
responds to high transmission), the transmission is de-
fined as S21 = t0. Similarly, the scattering parameter
S12 (corresponds to the transmission in the negative di-
rection) is computed by switching the initial phase of
the two resonators, i.e., φ1 ↔ φ2. Two key parameters
are analyzed to evaluate the performance of the system:
the isolation factor 20 log |S21/S12| and the insertion loss
IL = −20 logS21, where the isolation factor measures
the efficiency of one-way isolation of the acoustic waves
and the insertion loss calculates the attenuation of the
transmission in the positive direction.

Figure 2 shows contour plots of the two key perfor-
mance parameters as a function of incident frequency
f and modulation depth m obtained from the analytic
model. It can be seen that the isolation factor can be
as high as 50 dB, and two bands with large isolation
are created by applying spatiotemporal modulation on
the system. The separation of the two bands are larger
by increasing the modulation depth, with smaller inser-
tion loss. On the other hand, higher isolation factor is

FIG. 2. (a) Isolation factor and (b) insertion loss of the
cascaded resonator system under spatiotemporal modulation.
The inset shows the zoom-in view of the dotted region. The
points A and B mark the parameters implemented in numer-
ical simulations.

FIG. 3. Effect of modulation frequency (Ω) and initial phase
difference (∆φ) on the performance of the system. The ranges
of Ω and ∆φ are set to be [0 0.5ω0] and [0 π], respectively.
The marked points A and B are consistent with those shown
in Fig. 2.

achieved with small m near resonance frequency, but is
accompanied by larger insertion loss. This indicates that
efficient non-reciprocal transmission can be obtained by
suitably choosing the modulation depth and incident fre-
quency. To realize non-reciprocal transmission, the mod-
ulation depth m is chosen to be 0.235, marked by points
A and B, to yield a relatively small insertion loss. The
incident frequency, isolation factor and insertion loss at
points A and B are 1.84 kHz, 35.1 dB, 11.7 dB and 2.14
kHz, 23.5 dB, 13.3 dB, respectively. This performance
incorporates the balance of isolation factor and insertion
loss, and larger isolation can be achieved by choosing a
smaller m but at the expense of higher reflection.

To study the effect of modulation frequency and initial
phase difference, we also plot the isolation factor and in-
sertion loss by varying Ω and ∆φ from 0 to 0.5ω0 and 0
to π, respectively. Other modulation parameters are kept
constant and are m = 0.235 and d = 4.29 cm. The re-
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FIG. 4. Non-reciprocal transmission within two frequency
bands using time-modulated resonators. The shaded stripes
denote non-reciprocal transmission for the zeroth order wave
at points A and B.

sults are summarized in Fig. 3. It can be seen that their
effect on the performance of the system is more com-
plex than the modulation depth. Generally, since high
insertion loss is observed near the resonance frequency,
the strategy is to choose Ω and ∆φ such that the bands
with high nonreciprocity are away from the resonance
frequency. As illustrated by the marked points A and
B, the parameters implemented in numerical simulations
are carefully chosen by balancing isolation factor and in-
sertion loss. The transmission for the fundamental mode
with Ω = 0.125ω0 and ∆φ = 0.4π is shown in Fig. 4,
with strong non-reciprocal transmission region marked
by the shaded stripes. It can be seen that the 0th order
transmission is greatly suppressed in the negative direc-
tion within the two frequency bands, therefore yielding
strong one-way isolation.

III. SIMULATION

The analytic model is then verified with two-
dimensional (2D) FDTD simulations. The background
medium is assumed to be air with density ρ0 = 1.2 kg/m3

and velocity c0 = 343 m/s. The width and height of the
neck are 1.0 mm and 1.2 mm, respectively and the di-
mension of the cavity is 34 mm by 6.6 mm, yielding a
resonance frequency of 2000 Hz. The height of the waveg-
uide is 18 mm to give a quality factor of 3.6. It should
be pointed out that since the theory does not restrict
the dimensions of the resonators and the waveguide, the
actual geometry can be tuned as long as the resonance
frequency and quality factor of the entire system meet
the theoretical requirements.

The FDTD simulation directly reflects the physical
system given above, i.e., the actual geometry of the res-
onators and the waveguide is simulated without any ef-
fective property approximations. The simulation incor-

porates temporal modulation by updating the top bound-
ary position of the cavities in each time step. Since m
is small, the required modulation in Eq. (3) is approxi-
mated by h1,2(t) = h0 +m cos(Ωt− φ1,2), where h0 and
h1,2(t) are the heights of the cavities in the static case and
under dynamic modulation. A sine wave with targeted
frequency is incident on one end of the waveguide and
perfect matched layer (PML) is used on the other end
of the waveguide to minimize reflections25. The trans-
mitted signals at the end of the waveguide are recorded
and zero padding and a Hamming window are further ap-
plied. The transmission of different frequencies are then
obtained by performing an inverse Fourier transform of
the resulted signals.

First, we consider the case of a single time-modulated
resonator. The parameters are the same with the two-
resonator case. The schematic diagram of the system is
shown in Fig. 5(a), the corresponding transmission spec-
trum of different harmonics is shown in Fig. 5(b). It can
be seen that with the spatiotemporal modulation, the en-
ergy of the 0th mode is partially converted to the ±1st
and ±2nd modes near the resonance frequency. The cor-
responding FDTD simulation results are plotted in Fig.
6 at different frequencies. Good agreement between the
theory and simulations can be observed: the conversion
to the ±1st modes is clear and the transmission of each
individual mode matches well with each other at vari-
ous frequencies. The conversion from fundamental mode
to other harmonics is more efficient below the resonance
frequency and is consistent with the results in Fig. 6.
Moreover, the amplitude of the higher order harmonics
are much less than the 0th, ±1st and ±2nd modes and is
generally below 0.015, which validates the approximation
of truncation under weak modulation.

Next, we study nonreciprocity by performing two sets
of simulations by switching the order of the resonators.
The two resonators have an initial phase difference of
∆φ = 0.4π under modulation and the results are de-
picted in Fig. 7. In the positive direction, the transmis-
sion of the fundamental mode (1.84 kHz and 2.14 kHz)
is high, while in the negative direction, the 0th order
transmission is extremely low. A clear non-reciprocal
transmission is therefore observed, the isolation factor in
simulation is 27.7 dB and 16.4 dB for 1.84 kHz and 2.14
kHz, respectively. This isolation is smaller than theoret-
ical predictions and can be attributed to the neglect of
higher order harmonics in the analytic approach and lim-
ited spatial and temporal resolution in the FDTD simu-
lations. Remarkably, it can be observed from simulations
that the transmission at higher order harmonics (±2nd
modes) are more profound in the two-resonator system,
which is because of the interaction between the two res-
onators and conversion among different modes. Better
agreement may be achieved by taking the ±3rd modes
into consideration in the analytic approach.
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FIG. 5. Transmission through a single time-modulated resonator. (a) Sketch of the system. (b) Analytically calculated
transmission in the static case and under time modulation of different modes.

FIG. 6. Comparison of the transmission of different modes in theory and simulations at different frequencies. The harmonic
orders are labeled in the peaks. Blue curve: results obtained by FDTD simulations. Red curve: theoretically predicted
transmission at 0th, ±1st and ±2nd modes, higher order harmonics are truncated in derivation.

IV. DISCUSSION AND CONCLUSION

To conclude, we have demonstrated non-reciprocal
acoustic transmission in cascaded resonators based on
spatiotemporal modulation in theory and numerical sim-
ulations. An analytic approach based on mode expansion
is developed and strong nonreciprocity is manifested in
a two-resonator system with spatially biased modulation
phases. The time modulation and initial phase differ-
ence impart a directional bias to the system such that
for incoming waves in the negative direction, most of
the energy of the fundamental harmonic is converted to
the higher-order harmonics. On the other hand, some of
the energy of the higher-order harmonics generated by
the first resonator is converted back to the fundamental
mode at the second resonator in the positive direction
and therefore strong nonreciprocity is achieved.

The proposed approach for realizing nonreciprocity
features a high isolation factor and compact geometry,

with an overall size around a quarter wavelength. Our
FDTD simulations with physically realistic structures in-
dicate that the approach can be readily applied to real
scenarios with proper modulation techniques. For exam-
ple, the required dynamic modulation of the resonators
can be realized by connecting the back wall of the cav-
ities to mechanical vibrators. To optimize performance,
the geometries of the resonators and the waveguide can
be tuned since the theory does not pose any restrictions
on the real system. For example, the height of the cavi-
ties can be adjusted to larger values for better accuracy
or smaller values for higher modulation depth. We also
note that the analytic approach outlined here can be ex-
tended to systems consisting more than two resonators.
With more degrees of freedom offered by additional res-
onators, nonreciprocity may be more profound and other
functionalities may be achieved. Higher order harmonics
can also be included in the theory to yield a more accu-
rate result. Such compact systems may also be integrated
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FIG. 7. Simulated results of non-reciprocal transmission in the two time-modulated resonators system. The harmonic orders
are labeled in the peaks. Top and bottom panels show the results at 1.84 kHz and 2.14 kHz, respectively. Blue curve and red
curve represent results from simulations and theory, respectively. The transmission of the fundamental mode is vastly different
in opposite directions.

into larger scales to form topological insulators11,12,26. It
is hoped that this work can be useful for the realization of
compact non-reciprocal acoustic devices and will benefit
areas including imaging, sensing, and noise control.
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