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We report on the ultrafast dynamics of charge order and structural response during the photoin-
duced suppression of charge and orbital order in a mixed-valence manganite. Employing femtosecond
time-resolved resonant x-ray diffraction below and at the Mn K absorption edge, we present a method
to disentangle the transient charge order and structural dynamics in thin films of Pr0.5Ca0.5MnO3.
Based on the static resonant scattering spectra, we extract the dispersion correction of charge or-
dered Mn3+ and Mn4+ ions, allowing us to separate the transient contributions of purely charge
order from structural contributions to the scattering amplitude after optical excitation. Our finding
of a coherent structural mode at around 2.3 THz, which primarily modulates the lattice, but does
not strongly affect the charge order, supports the picture of the charge order being the driving force
of the combined charge, orbital and structural transition.

PACS numbers: 64.60.A-, 61.05.cp, 71.27.+a, 78.47.J-

I. INTRODUCTION

The coupling between the crystal and the electronic
structure is of great importance for the physical proper-
ties of materials. A particular interest lies in materials,
which have strong correlation between the electronic, or-
bital, magnetic and structural degrees of freedom. These
interactions often can lead to new ground states of the
materials, which are characterized by induced orders in
one or various of the subsystems, such as e.g. super-
conducting states, structural phase transitions or charge-
density waves. Often, several orders coexist in a material,
and their cooperative or competing character is funda-
mental for the material properties. In particular, it is
of great interest to identify the primary instability that
drives the phase transition, and a possible parasitic order.
One example for such a state is the structural-nematic
phase transition in the Fe pnictide parent compounds,
where electronic nematic order is considered to drive a
concomitant structural phase transition1.

To understand these couplings, a promising route is to
manipulate e.g. the crystal structure and investigate the
corresponding changes of the other degrees of freedom.
A widely used way is to use epitaxial strain to modify
the crystal structure or to apply high pressure. Though
these approaches are very useful and have led to very
interesting observations, they both are rather limited in
their applicability and might change also the microstruc-
ture of the materials. In addition, strongly coupled phase
transitions show in equilibrium often identical behavior

as function of temperature or pressure, and understand-
ing their hierarchy is therefore very challenging.

These limitations can be overcome by studying the ma-
terial response to an ultrafast stimulus, which is faster
than the fundamental interaction timescale between the
degrees of freedom. There have been many studies along
these lines. Here we are in particular interested using
x-rays as a probe of either magnetic, electronic or crystal
structure, as X-rays are excellent probes for these (see
e.g. Buzzi et al. 2). A very powerful way to study
the coupling between electronic and structural order is
to excite the structure directly by THz or mid-infrared
radiation and test the ultrafast electronic or magnetic re-
sponses to the excitation. This approach has led to very
interesting variation of the electronic or magnetic proper-
ties of materials in several correlated electron systems3–9.
Another approach, though less direct, is to electronically
excite a material by an optical excitation and determine
the structural and electronic changes in the time domain.
As an example, x-rays have been used to quantify the
structural motion of a coherent phonon and photoemis-
sion to determine the changes of the electronic structure
in Fe-pnictides10–13. This allows, e.g. to determine the
mode-dependent electron phonon coupling.

Manganites are another class of interesting materi-
als, in which the correlation between electronic order-
ing, and the associated structural distortions have been
intensively studied in the time domain8,14–19. The half
doped simple perovskite Pr0.5Ca0.5MnO3 (PCMO) shows
a charge and orbital order (CO/OO) phase transition
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around 240 K concomitant with a structural distortion,
characterized by an alternating pattern of Mn3+ and
Mn4+ ions, schematically shown in Fig. 1(b). This tran-
sition is followed in temperature by an antiferromagnetic
order of the Mn3+ spins around 150 K20. The correlation
between electronic and crystal structure has been stud-
ied by ultrafast time-resolved resonant and non-resonant
x-ray diffraction17. In particular, reflections that are se-
lectively sensitive to electronic order, the orbital order
or the structural distortions have been investigated. The
coherent dynamics of all of these reflections and the op-
tically driven phase transition could be well described
by an ultrafast quench of the charge order with a time-
dependent order parameter that triggers the structural
phase transition and launches several coupled coherent
phonon modes17.

However, an important open question remained
whether the coherent modes also couple back onto the
charge order and coherently modulate the charge dispro-
portionation between neighboring Mn sites. Although
the mode amplitude for the (0 3 0) reflection, which is
primarily sensitive to the electronic ordering, has been
found to be much weaker as compared to that of reflec-
tions sensitive to the structural distortion alone, a clear
separation of electronic and structural components was
beyond the scope of that study. To clarify this point
and to better understand the hierarchy of coupled phase
transitions in Pr0.5Ca0.5MnO3, we address here how the
electronic states are modified during the coherent motion
of the ions involved in the long-lived low frequency co-
herent phonon oscillation. Resonant x-ray diffraction has
been used to disentangle electronic and lattice degrees of
freedom statically in complex oxides21–28. The use of fs
x-ray pulses allows us to disentangle these degrees of free-
dom in a single experiment by simply tuning the x-ray
energy on and off the resonance. With this intrinsically
combined spectroscopic and diffraction approach we can
determine the role of this mode in relation to the elec-
tronic ordering.

II. EXPERIMENTAL DETAILS

Resonant x-ray diffraction experiments were performed
on a thin film of Pr0.5Ca0.5MnO3 of approximately
40 nm thickness grown on (011)-oriented (LaAlO3)0.3
- (SrAl0.5Ta0.5O3)0.7 (LSAT) substrate using a pulsed
laser deposition technique with a laser pulse frequency of
2 Hz at 850◦ C in an oxygen pressure of 1.5 mTorr (for
details see Ref.29).

Static energy-dependent x-ray diffraction experiments
were performed at the X04SA beam line at the Swiss
Light Source, Paul Scherrer Institute using the surface
science scattering end station30 equipped with a Pila-
tus 200k pixel detector31, and time-resolved on- and off-
resonant diffraction experiments were performed at the
X-ray Pump-Probe (XPP) instrument32 at the Linac Co-
herent Light Source (LCLS)33 at the SLAC National Ac-
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FIG. 1. Experimental scheme and static x-ray diffraction
results. (a) Schematic of the time-resolved resonant x-ray
diffraction experiment. (b) Sketch of the charge and orbitally
ordered phase of alternating Mn3+ and Mn4+ ions in the a/b
plane. (c) Static rocking curves of the (0 3 0) reflection mea-
sured by a sample rotation about the surface normal, be-
low (red circles, 6.530 keV) and at resonance (blue triangles,
6.555 keV) with the Mn K-absorption edge. (c) Tempera-
ture dependence of the normalized integrated on- and off-
resonant peak intensity. The solid black line is a power law
fit. In good agreement with transport measurements we find
TCOO ≈ 220 K.

celerator Laboratory. In both experiments, an asymmet-
ric diffraction configuration34 as sketched in Fig. 1(a) was
used, where the horizontally polarized x-ray probe pulses
entered the film at 8◦ grazing incidence. The x-ray en-
ergy was tuned in the vicinity of the Mn K edge using a
silicon (111) monochromator, with an energy resolution
of ≈ 1.1 eV. During energy scans, the sample was held
in diffraction condition (constant q scans). The sam-
ple temperature was controlled between 100 K and the
charge ordering temperature of TCOO ≈ 220 K using a
cryogenic nitrogen blower.

For time-resolved x-ray diffraction experiments per-
formed at the LCLS, a weakly focused (230× 230 µm2)
55 fs optical pulse with a wavelength of 800 nm excited
the sample with a repetition rate of 120 Hz at an inci-
dence angle of 14◦ (p-polarization), synchronized to the
≈ 50 fs x-ray probe pulses from the LCLS, and diffracted
x-ray pulses were detected at the full repetition rate us-
ing the Cornell-SLAC Pixel Array Detector (CSPAD)35.
The timing jitter between pump and probe pulses was
measured and corrected shot-by-shot using the spectral
encoding correlation technique36, with an accuracy of
≈ 15 fs, yielding an overall temporal resolution of ≈ 85 fs.
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III. RESULTS AND DISCUSSION

The charge ordering manifests in a lowering of crys-
tal symmetry that is accompanied by a structural dis-
tortion and a staggered configuration of the Mn3+ or-
bitals. This results in the occurrence of additional,
symmetry forbidden reflections in the x-ray diffraction
signal. The diffraction intensity of some of these re-
flections becomes strongly modulated in the vicinity of
the Mn K-absorption edge due to the charge dispropor-
tionation of neighboring Mn sites. Fig. 1(c) shows x-
ray rocking curves of the high-temperature symmetry-
forbidden (0 3 0) reflection, measured by rotating the
sample about the surface normal, below (red) and at
the Mn K-absorption edge (blue). Here, the strong reso-
nant enhancement of the intensity by > ×3 at resonance
arises due to the charge ordering pattern, while the in-
tensity off-resonance originates from the accompanying
structural distortion. The temperature dependence of
the integrated peak intensity of this reflection below and
at resonance is shown in Fig. 1(d), which represents a reg-
ular behavior of a reflection that follows the order param-
eter squared. The equivalent temperature dependence
of the on- and off-resonant diffraction intensity demon-
strates the strong coupling of the structural and charge
order transitions in thermal equilibrium in contrast to
results found in nickelates21.

A. Refinement of static resonant x-ray diffraction
data

The resonant enhancement of the x-ray diffraction sig-
nal of a charge order reflection arises due to the valence
charge inequality of neighboring ions, which gives rise to
a shift of the absorption edge, and therefore to a resonant
contribution from the x-ray dispersion correction close to
an absorption edge. As the film is very thin compared
to the x-ray penetration depth, an absorption correction,
which typically creates large uncertainties on such data of
single crystals, is negligible in our study. In addition, as
the peaks are broad due to the finite size of the film, also
refraction effects can be ignored when changing the x-ray
energy. Note that we consider here only the electronic dif-
ference (labeled as charge order/disproportionation) on
the Mn sites as seen by the dipole transition at the Mn
K-edge that probes the Mn 4p states. This analysis re-
mains valid independently of the microscopic origin of
the resonant behavior e.g. due to orbital contributions
or phenomena such as bond valence order22–28. Distin-
guishing such models would require non trivial first prin-
ciple calculations of the spectral shape of the scatter-

ing factors at resonance that go beyond to goal of this
study. The charge disproportionation and the respec-
tive dispersion corrections in such an electronic ordered
system can directly be determined from resonant x-ray
diffraction data of selected symmetry forbidden charge
order peaks of type (0 k 0) with k odd21,37,38. For the
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FIG. 2. Energy dependence of resonant x-ray diffraction. (a)
X-ray fluorescence signal (red) and (b) resonant diffraction
intensity of the (0 1 0) (blue) and (0 3 0) (green) peaks across
the Mn K-absorption edge. The solid red, blue and green lines
are the results of a refinement of the data (see text). The
extracted real (imaginary) part of the anomalous dispersion
corrections of Mn3+ and Mn4+ sites is shown in (a) as green
and yellow dashed (solid) lines, respectively.

case of Pr0.5Ca0.5MnO3, their resonant structure factor
near the Mn K-edge can be written to first order as

F(0k0) = APr/Ca,O(Q,E)︸ ︷︷ ︸
structure σ

+ 4∆f0Mn(Q) + 4∆f ′Mn(E) + 4i∆f ′′Mn(E)︸ ︷︷ ︸
charge order η

. (1)
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Here, the first term corresponds to the structural con-
tributions from the displacements of Pr, Ca and O
ions. The contribution from the charge disproportiona-
tion is determined by the form factor differences ∆fMn =
fMn3+ − fMn4+ , and consists of three parts, which repre-
sent the change in Thompson scattering amplitude and
the difference in the real and imaginary part of the
dispersion correction between the charge ordered ions,
respectively. With knowledge of the low-temperature
structure39 this expression for the structure factor can
be used to describe the resonant diffraction intensity
I ∝ |F (Q,E) ·F ∗(Q,E)|, and to determine the disper-
sion corrections fMn3+ and fMn4+ . Additionally, accord-
ing to the optical theorem the x-ray absorption spectrum
is proportional to the average imaginary part of the dis-
persion correction f

′′

Mn3+ + f
′′

Mn4+ , which is fitted simul-
taneously.

We adopt the following iterative global fit procedure
to determine the dispersion corrections fMn3+ and fMn4+

from the x-ray fluorescence spectrum (Fig. 2(a)) and the
resonant x-ray diffraction spectra for the (0 1 0) and
(0 3 0) reflections (Fig. 2(b)): In each iteration, the imag-

inary parts of the dispersion corrections f
′′

Mn3+ + f
′′

Mn4+

are varied, and the real parts f
′

Mn3+ + f
′

Mn4+ are deter-
mined by Kramers-Kronig transformation, using tabu-
lated atomic scattering factor values outside the exper-
imental region40. From these, the resonant diffraction
intensities for the two peaks are calculated, and together
with the absorption spectrum fitted to the experimental
data. Additionally, a regularization term of the form

λ
(
f

′′

Mn3+(E)− f
′′

Mn4+(E + δE)
)2

, (2)

that favors resemblance of the individual f
′′

curves with
an energy shift δE is introduced, where λ controls the
importance of this condition.

Results of this iterative fitting procedure are shown as
solid lines in Fig. 2 and reproduce all data reasonably
well. In particular, the shifted maxima of the resonant
diffraction curves are well captured by the model. Addi-
tionally, Fig. 2(a) shows the determined real and imag-
inary parts of the dispersion correction for Mn3+ and
Mn4+. The fit yields an energy shift of the absorption
edge of δE ≈ 2.2 eV, which in comparison to the single-
valence compounds CaMnO3 and LaMnO3 would corre-
spond to a valence state of Mn3.2+ and Mn3.8+ in the
approximation of spherical scattering factors22. These
extracted dispersion corrections can now be used to dis-
entangle the time-dependence of structural and charge
order dynamics from measurements taken at two differ-
ent energies.

B. Time-dependent structural and charge order
dynamics

Fig. 3(a) shows the time-resolved diffraction intensities
of the (0 3 0) reflection at two different x-ray energies be-
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FIG. 3. Time-dependent resonant x-ray diffraction. (a) Nor-
malized time-dependent diffraction intensity of the (0 3 0)
peak measured off-resonant (red, 6.530 keV) and resonant
(blue, 6.550 keV, same data as shown in figure 2c of Ref.17)
with the Mn K-absorption edge, respectively. Error bars rep-
resent standard errors of the FEL shot distribution, corrected
for FEL drifts (see text). (b) Time-dependent structural (σ,
yellow) and charge (η, green) order parameters determined
by applying the solution of eqs. (3) and (4) to the data of a).
Dashed lines are single-exponential fits (see text).

low resonance (red) and at the maximum of the resonant
intensity (blue), with an incident excitation fluence of
F = 1.8 mJ/cm2. The experimental error bars are de-
termined as the standard errors of the FEL shot distri-
bution of the diffraction signal, rescaled to the standard
deviation of the signal before excitation to account for
possible drifts. Both curves show a fast drop within the
time-resolution of the experiment, followed by a weak re-
covery on a picosecond timescale, overlaid by weak coher-
ent oscillations. Apart from a slightly larger suppression
at resonance, the two curves look very similar.

In order to separate the dynamics of charge order and
structural distortion, we rewrite equation (1) introducing
time-dependent structural and charge order parameters
σ(t) and η(t), respectively:

FE
(030)

(t) = σ(t) ·CE1 + η(t) ·CE2 , (3)

with CE1 = APr/Ca,O(E) and CE2 = 4∆f0Mn+4∆f ′Mn(E)+
4i∆f ′′Mn(E), and E = 6.530 keV and 6.555 keV. This ex-
pression allows us to investigate the sensitivity of the
diffraction intensity to the structural distortion and to
the charge ordering. The corresponding diffraction in-
tensities normalized to the value at σ = η = 1 are shown
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FIG. 4. Determination of the transient order parameters. De-
pendence of the normalized diffraction intensity on the struc-
tural (yellow) and charge order parameters (green) (a) off-
resonant and (b) on resonance with the Mn K-absorption
edge. Dashed lines mark the values of the order parame-
ters obtained at the minimum of the diffraction intensity time
traces. The respective other order parameter is kept fix at this
value.

in Fig. 4(a) and (b) as a function of the size of the cor-
responding order parameters for the two investigated en-
ergies, respectively. Here, green curves show the depen-
dence on η, while yellow curves show the dependence on
σ, and the respective other order parameter is held at
the value indicated by the dashed green and yellow lines.
Due to the fact that the charge ordering mostly influ-
ences the diffraction signal at resonance, the off-resonant
diffraction intensity is, as expected, mostly sensitive to
the structural distortion, and only shows a weak varia-
tion with the charge order parameter η. In contrast, at
the resonance energy, both structural and charge order
parameters show a similar influence on the diffraction in-
tensity, demonstrating the necessity of a proper descrip-
tion of the energy-dependent x-ray intensity to disentan-
gle charge and structural order dynamics.

This is achieved by inverting the expressions for the
normalized diffraction intensities(

I(t)

I0

)E
(030)

=

∣∣∣∣∣
(
F (t)

F0

)E
(030)

∣∣∣∣∣
2

(4)

evaluated at the two measured energies to yield the
corresponding structural and charge order parameters
σ(t) and η(t), respectively. The disentangled normalized
time-dependent structural and charge order parameters
are shown in Fig. 3(b). Both order parameters show a
very fast drop within the temporal resolution of ∼ 80 fs,
followed by a slow recovery on a picosecond timescale.
The charge order parameter η(t) shows a significantly
stronger suppression, with a minimum of ∼ 0.65 at 100 fs,
than the structural order parameter σ(t), which shows a
minimum of ∼ 0.76 at the same time. As a crosscheck,
we can calculate the diffraction intensities for the two
energies from our diffraction model for this time delay
(Fig. 4). The values of ∼ 0.6 for the non-resonant and
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the single-exponential background shown in fig 3. Data are
vertically offset, and lines are damped cosine fits (see text).
(b) Fast Fourier transform power density of the data shown
in (a).

∼ 0.5 for the resonant normalized diffraction intensity
agree well with the observed intensities at t = 100 fs, in
particular their ratio matches very well, demonstrating
the consistency of our evaluation.

The stronger response of the charge order parameter
suggests the suppression of charge order as the driving
force for the structural dynamics, in agreement with our
previous description of the coupled charge, orbital and
structural dynamics by a time-dependent charge order
parameter17. However, how strongly the structural dy-
namics could also influence the charge order dynamics on
the ultrafast timescale is still an open question. Apart
from the strong suppression around t0, weak coherent os-
cillations from coherently excited phonon modes are vis-
ible in the raw diffraction data. Interestingly, however,
these oscillations predominantly show up in the struc-
tural order parameters. For a more quantitative anal-
ysis, a smooth exponential background function is sub-
tracted from the curves in Fig. 3(b), and the residual
coherent signal is shown in Fig. 5(a) for the two order
parameters. Oscillation amplitudes are extracted by fit-
ting a damped sinusoidal function to the data, where the
damping time constant is fixed to the value determined
in our previous refinement of the structural dynamics17.
The fit for σ(t) yield a reasonable description (adjusted
R2 = 0.66) of the data with an initial oscillation ampli-
tude of 4.8± 0.8% at a frequency of 2.2± 0.1 THz (black
solid line). A similar fit of η(t) with the same (fixed)
oscillation frequency yields a significantly worse descrip-
tion of the data (dashed black line, adjusted R2 = 0.07)
and a much smaller initial amplitude of 2.5± 1.7%. The
much weaker coherent response of η is corroborated by
the Fast Fourier transform (FFT) of the two order pa-
rameters shown in Fig. 5(b). Here, σ(t) shows a strong
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spectral peak at ∼ 2.3 THz, very close to the dominat-
ing coherent phonon frequency of in-plane motion of the
Pr/Ca ions17. In contrast, the spectrum of η(t) shows a
much smaller and broader response in a larger spectral
region, which is close to the noise limit. Therefore we
conclude, that the coherent phonon mode that governs
the structural transition does not or only weakly couple
back on the charge order parameter.

The observed coherent mode around 2.3 THz
agrees well with the coherent modes observed in
Pr0.5Ca0.5MnO3 and similar manganites16,17,41–43,
which have been identified as coherent oscillations of
the Pr and Ca cations coupled to lateral motions of
the Mn-O cages42, driven by the suppression of charge
order and Jahn-Teller distortion17. This mode does not
soften significantly for increasing temperatures when
approaching the charge and orbital ordering transition41,
suggesting that this mode is not a true soft mode of
the transition and is therefore not relevant for the
electronic ordering. The amplitude mode of the charge
order is expected to be linked to a change of the volume
of the oxygen octahedra as a change in ionic charge
impacts the ionic radii of the Mn ions. Consequently,
a difference in charge does expand and shrink the
size of the octahedra alternatingly along the ordering
wave vector, as has been observed by the structural
determination in the ground state39. Candidates for
the relevant modes for the charge and orbital order are
the asymmetric stretch and Jahn-Teller modes of the
distorted octahedra, respectively, which occur at much
faster frequencies of around 16 THz17,18. The initial
dynamics of those oscillations occur within the first
∼ 100 fs after excitation and are not accessible with
our current temporal resolution. However, due to the
strongly coupled nature of the various modes in the sys-
tem, the slow coherent cation oscillation dominates the
dynamics at later times also of those faster modes, and
leads to a coherent modulation of their coordinates17.
In an intuitive picture, this can be seen as a harmonic
oscillator driven off-resonantly, which also oscillates with
the driving frequency. This implies that the coherent
oscillations found in the structural dynamics indeed
correspond to a modulation of the octahedra volume
along the charge order coordinate. Our observation
of absence of a clear coherent response in the charge
order itself thus strongly suggests that those coherent
structural modulations of the octahedral volumes do not
lead to a transient charge transfer between neighboring
Mn sites.

This brings us back to our initial question about the hi-
erarchy of coupled phase transitions in this system. The
absence of charge order response to a structural mod-
ulation demonstrates that the charge and orbital order
is the driving force of the coupled phase transition, and
the structural distortion can be regarded as a secondary
order, which stabilizes the electronic order but is not suf-

ficient to drive the transition alone. This is an analogous
behavior to the coupled structural/nematic transition in
the Fe pnictide parent compounds, where also strong ev-
idence for an electronically driven phase transition and
a secondary structural transition exists1,13. The iden-
tification of the hierarchy of coupled phase transitions
in complex materials as demonstrated in our experiment
does not only provide an important benchmark for the-
ory, but could also allow identifying the appropriate han-
dle for precise control of phase transitions with compet-
ing orders, such as the charge-density wave or stripe order
ground state present in superconducting cuprates. Our
approach of separating structural and electronic contri-
butions from on- and off-resonant x-ray diffraction data
can also be extended to such incommensurate or bond-
centered ordered systems, provided that the equilibrium
structure is known.

IV. CONCLUSION

In conclusion, we investigated the transient coupling
between charge order and structural response in charge
and orbitally ordered Pr0.5Ca0.5MnO3. Using time-
resolved x-ray diffraction both below and at the Mn K
absorption edge, we were able to separate contributions
of purely charge order from structural contributions to
the scattering amplitude. We find a coherent structural
mode, which primarily modulates the lattice, but does
not strongly affect the charge order. Our findings con-
firm the charge order to be the driving force for the com-
bined charge, orbital and structural transition, where the
structural transition is a secondary effect induced by the
electronic order.
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