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The existence of a quantum butterfly effect in the form of exponential sensitivity to small pertur-
bations has been under debate for a long time. Lately, this question gained increased interest due
to the proposal to probe chaotic dynamics and scrambling using out-of-time-order correlators. In
this work we study echo dynamics in the Sachdev-Ye-Kitaev model under effective time reversal in a
semiclassical approach using the truncated Wigner approximation, which accounts for non-vanishing
quantum fluctuations that are essential for the dynamics. We demonstrate that small imperfections
introduced in the time-reversal procedure result in an exponential divergence from the perfect echo,
which allows to identify a Lyapunov exponent Ar. In particular, we find that Ar is twice the Lya-
punov exponent of the semiclassical equations of motion. This behavior is attributed to the growth
of an out-of-time-order double commutator that resembles an out-of-time-order correlator.

I. INTRODUCTION

The question of chaos and the possibility of a butter-
fly effect in quantum systems is a long-standing problem
that received increased attention in recent years. In stud-
ies addressing the information paradox of black holes so-
called out-of-time-order correlators (OTOCs) of the form

(VOW @ VOW(D), (1)

were introduced to probe the sensitivity of the dynam-
ics to small perturbations and scrambling, i.e., the delo-
calization of initially local information®™. A semiclas-
sical analysis of the OTOC motivates that it can ex-
hibit exponential growth, allowing to identify a Lyapunov
exponent?. In fact, it was found that in a black hole the-
ory OTOCs grow exponentially with the maximal pos-
sible rate A\, = %.6 Remarkably, there exists a solv-
able model of interacting fermions, which also saturates
this bound at low temperatures, namely the Sachdev-Ye-
Kitaev (SYK) model™ which is a variant of a model
originally introduced by Sachdev and Ye?1U,

OTOCs as dynamical probe of chaos and scrambling
are also of interest in condensed matter systems beyond
the AdS/CFT paradigm™™&. Particularly intriguing is
the connection to the question how and in what sense
closed quantum many-body systems thermalize when ini-
tially prepared far from equilibrium, which has been
studied with great efforts in recent yearst?2%. The cor-
responding statistical description of the stationary state
is only justified if the information about the initial state
cannot be recovered in practice, i.e., the dynamics is ir-
reversible.

To assess the irreversibility of the dynamics a common
approach is to study imperfect effective time reversal. In
classical systems it is understood that the exponential

sensitivity of the dynamics to small perturbations pro-
hibits recovery of the initial state, because perfect time
reversal is impossible in practice?l2%, Under chaotic dy-
namics any imperfection occurring in the time reversal
operation leads to an exponential divergence from accu-
rate recovery of the initial state with a rate that is largely
independent of the perturbation, namely the Lyapunov
exponent. This renders the improvement of the protocol
prohibitively expensive.

Analogous approaches have been seized considering
quantum systems. In few-body systems the decay charac-
teristics of the Loschmidt echo £(7) = | (¢0|U%(7)[tb0) |?

with the echo operator Ug (1) = e(H+eV)Te=1HT \where
€V constitutes a small perturbation to the Hamiltonian,
were used as indicator of chaos and irreversibility22 2,
For many-body systems, however, overlaps lack exper-
imental significance. Instead, the decay of observable
echos under imperfect effective time reversal was studied
to investigate irreversibility® 92,

In the works mentioned above the focus was on de-
cay laws occurring in the echo dynamics at late times.
By contrast, imperfect effective time reversal in classi-
cal systems features initial dynamics that is governed by
the butterfly effect. The possibility of a butterfly effect
that occurs analogously in quantum systems is currently
under debate 728533537 Moreover, the realization of ef-
fective time reversal was recently reported from an exper-
iment with trapped ions, where OTOCs were measured
in the form of echo dynamics®%.

In this work we study the dynamics of the SYK model
under imperfect effective time reversal in a semiclassi-
cal approach using the truncated Wigner approximation.
We demonstrate that the small imperfection leads to an
exponential divergence from the perfect echo. This di-
vergence can be attributed to the exponential growth of
an out-of-time-order double commutator similar to an



OTOC and it allows to identify a Lyapunov exponent
based on the echo dynamics.

The structure of the paper is as follows: First, in Sec-
tions [[ and [IT]] we introduce the echo protocol under
consideration and the model of interest. Section [V] com-
prises an introduction to the truncated Wigner approx-
imation and a discussion of its applicability to the SYK
model. In Section [V] we present our results for the echo
dynamics in the semiclassical limit. Before the final dis-
cussion in Section [VIIl we include in Section [Vl an ex-
tended elaboration on the distinction between mean field
dynamics and the truncated Wigner approximation in
the context of the SYK model.

II. IMPERFECT EFFECTIVE TIME REVERSAL

In the following we will investigate the echo dynamics
of an observable O under imperfect effective time rever-
sal. The perturbation is introduced by the action of a
perturbation operator P. on the time-evolved state at
the point of time reversal. Here e denotes a parameter
for the smallness of the perturbation. A natural choice
for the perturbation operator is unitary time evolution
for a short interval 4t with a perturbation Hamiltonian
H,, ie., Ps, = e 20t The quantity of interest is the
echo signal

Eo (1) = (ol Ug (1) OUF (7)) (2)

with the echo operator Ugt(T) = eiHTpgte_iHT. This
constitutes an OTOC in the case that the initial state
is an eigenstate of the observable, (O — p) [1hg) = 05445,
Moreover, expanding the echo operator Ugt(T) in orders
of dt yields

AE4(T) = (¥0|O)o) — Ey(T)
= 16t (o|[Hy(7), Ol|tb0)
ot?

+ = (ol [y (7). [Hy (1), Oll[wo) + O(3%)  (3)

for the divergence from the perfect echo. In this expres-
sion the linear term corresponds to linear response and it
vanishes in the case that the initial state is an eigenstate
of the observable. Hence, the quadratic term constitutes
the leading contribution to the divergence from the per-
fect echo, accounting for the sensitivity of the dynamics
to small perturbations. Using the example of the SYK
Hamiltonian we will demonstrate in the following that
this double commutator in fact determines the initial de-
cay of the echo and that the corresponding divergence
grows exponentially in time, which allows to identify a
Lyapunov exponent.

III. MODEL HAMILTONIAN

The Hamiltonian of the fermionic SYK model is given
by

N 1 TN
H= W ZJij;leIC}C}CC[ 3 (4)
ijkl

where the J;;.1; are complex-valued Gaussian random
couplings with vanishing mean and variance o2 =
|Jij;ki|?. N denotes the number of fermionic modes. The
SYK model has a number of remarkable properties. Al-
though strongly interacting, it is exactly solvable in the
limit of large N. At low temperatures it exhibits an emer-
gent conformal symmetry indicating the existence of a
holographic dual®. In this regime it is maximally chaotic
in the sense that the Lyapunov exponent occurring in
OTOCs saturates the bound that was derived for AdS
black holes®.

IV. SEMICLASSICAL DYNAMICS IN THE SYK
MODEL

We will analyze echo dynamics using the fermionic
version of the truncated Wigner approximation (TWA),
which was recently developed in Refs 5240,

A. On the applicability of the truncated Wigner
approximation

The TWA is the saddle point approximation for the
Keldysh action describing the Heisenberg evolution of the
observables. It can be generally derived using standard
path integral methods®! Within the TWA time evolu-
tion of phase space variables is governed by the classical
Hamiltonian equations of motion, which have to be sup-
plemented by fluctuating initial conditions. In turn those
are encoded in the Wigner function describing the initial
state. Within the accuracy of the TWA one can generally
approximate this Wigner function by a Gaussian captur-
ing means and fluctuations of the phase space variables.
Note that while formally classical equations of motion
are identical to the Dirac mean field equations of motion
(see Section [VI), the TWA reduces to the mean field ap-
proximation only if fluctuations in initial conditions are
asymptotically vanishing with the saddle point parame-
ter. This is, e.g., the case for initial coherent states or for
polarized quantum spins in the large S-limit. But it is not
the case, e.g., for stationary states of a high energy par-
ticle in a confining potential where the Wigner function
approaches the broad in space micro canonical distribu-
tion rather than a single phase space point. In many
instances, in particular when we deal with Fermions or
spin one half degrees of freedom fluctuations are always
large such that the mean field approximation is generally
incorrect and moreover is not approached as the saddle



point parameter increases (see, e.g., Refs4243)  In the

SYK model the large N limit ensures validity of the sad-
dle point approximation®4¥ and, therefore, it is natural
that the fermionic version of TWA will be asymptotically
exact in the large N limit, which as we show in Section
[[V {is indeed the case. Hence, N serves as effective i~ .

B. Phase space approach for Fermions

Within the fermionic TWA a phase space represen-
tation is constructed for the fermionic bilinears, which
satisfy the commutation relations of so(2N)*4U; see
also Ref? for a general picture of classical represen-
tations of quantum models. The Weyl symbols of the
fermionic bilinears are 7,5 = (éaéﬁ)w = —(égég);v and
pap = 2(elés — égéL)W. The corresponding Weyl sym-
bol of the SYK Hamiltonian expressed in terms of pairing
operators is

1 *
H = W Z Jij;kl (TjiTkl + pjkéil —+ 01151@‘) . (5)
ijkl

_Generally, for phase space variables X, of operators
X, which obey some algebra

[XaaXﬁ] = ifaﬁ'yX’v (6)

with structure constants f,g~, the classical equations of
motion are determined by

X O(H ) w

a:a W
a e Xy (7)

where (I:I )w = H
Hamiltonian 32

is the Weyl symbol of the

For the phase space variables of the fermionic bilinears
and the Hamiltonian of the SYK model this yields

S VA SR /R N PN
dtpaﬁ ap'ya PyB aT’ya By aTay By ,
2 . .
- N32 Z Jijkido (TjiTBk + 5ikﬂj5) —(a+ B)
ijkl
O (TS T T N GO
it "\ Opay T 92T Or TP
2
= <3 Z Jijki0a;j <5il7'kﬁ - Tkl,oiﬁ) —(aeB). ®)
ijkl

In the following we will consider uncorrelated initial
states that are fully characterized by orbital occupation
numbers n, = (¢,é,). In that case the Wigner function
is well approximated by a multivariate Gaussian fixed by
the first and second moments??. We will be interested
in the expansion dynamics starting from an initially im-
balanced occupation similar to the situations studied in
different recent cold atom experiments*®“8, Given this
initial state a suited observable to consider in the view
of echo dynamics is the occupation imbalance

M—1N2012ATA 1 9
—N;(na—)(caca—) (9)

with Weyl symbol M = 2 Zgzl(Qnoa —1)paa, where nd
is the initial value of n,,.

C. Accuracy of the TWA

In order to assess the accuracy of the TWA we com-
pare the result for expansion dynamics from an uncor-
related initial state, where one quarter of the modes is
occupied and the rest is empty, with exact dynamics.
Fig. [T] displays the corresponding time evolution of the
occupation imbalance M (t) and the individual mode oc-
cupations n;(t) = ((t)|élé; [y (t)) for N = 20 and a dis-
order average involving 20 realizations. The dynamics
computed using TWA is in good agreement with the ex-
act dynamics. We find empirically that the accuracy of
TWA improves as N is increased. As demonstrated in
the inset of Fig. [I] the deviations from the exact result
are compatible with a power law scaling; N2 is shown
as orientation.
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FIG. 1. Comparison of TWA results to the exact dynamics.
The top panel shows the time evolution of the occupation
imbalance with N = 20 modes, whereas in the bottom panel
the individual mode occupation numbers are shown. In the
bottom panel dashed lines correspond to the exact result. The
inset shows the system size dependence of the time-averaged
squared deviation of the TWA from the exact result.

V. SEMICLASSICAL ECHO DYNAMICS

For our purposes we choose the perturbation Hamil-
tonian H, = > Ja (éLéaH + h.c.) with normally dis-
tributed random couplings J, (variance J? = J2) and
corresponding Weyl symbol H, = 23" Jopa,at+1. Note
that the dynamics under this Hamiltonian is captured
exactly by the TWA, because it is quadratic.

A. Echoes in finite systems

In Fig. [2f we compare the result for AE),(7) given in
Eq. obtained from TWA with the exact dynamics.
The presented data includes a disorder average over 80
realizations of both the SYK and the perturbation Hamil-
tonian. In the initial uncorrelated state one quarter of
the sites is filled and the rest is empty. We find with
both methods that the echo deviates increasingly from
the initial value as the waiting time 7 is increased and
the results are in good agreement at short times. At long
times, however, there is a clear discrepancy. In the result
obtained from TWA the echo signal ultimately vanishes
completely, meaning that AM (7 — oo) = 3/4. By con-
trast, the exact result saturates much earlier. The reason
for this is that for finite N the overlap (¢(7)|Ps¢|e(7))
is non-zero, resulting in an ever-persisting revival at the
echo timé32. The corresponding saturation value can be
determined in the exact simulation and it is indicated in
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FIG. 2. Echo dynamics computed with TWA in comparison
with exact results for Jd¢t = 0.1 and N = 16 at quarter filling.
The dashed line indicates the corresponding persistent echo
peak height derived in Appendix [A] The inset demonstrates
that the normalized difference at the echo time is reduced as
the system size is increased; the black line corresponds to an
exponential fit.

Fig. 2] by the dashed line; see Appendix [A] for details.
This persisting echo, however, vanishes for N — oo, be-
cause, typically, the Loschmidt echo is exponentially sup-
pressed by the system size, | (¢)(7)|Ps¢|tp (7)) |2 ~ e~ N7(00)
with an intensive rate function r(¢). Hence, the limits
N — oo and 6t — 0 do not commute. Correspondingly,
the normalized difference between exact and TWA data
at the echo time, Diff(AE; (7)), is reduced when the sys-
tem size is increased, as indicated in the inset of Fig.
In Appendix [A] we include further data supporting the
anticipated vanishing of the persistent echo in the exact
dynamics for N — oo. This disappearing of an intrinsic
difference between TWA and exact echo dynamics goes
along with a generally improved accuracy of the TWA as
discussed above. Therefore, we expect that in the limit
N — oo results from TWA and exact dynamics will con-
verge. Since we find in addition that the TWA result for
the echo dynamics is independent of N (see Appendix|Al),
we conclude that the TWA results obtained for large but
finite IV constitute a good approximation of the behavior
in the large N limit.

With our resources for the exact dynamics, however,
N = 20 is the largest value we can reach due to the
large number of nonvanishing matrix elements in the
SYK Hamiltonian and the disorder average necessary to
perform a meaningful finite size analysis. For these fi-
nite systems the persisting echo can be considered to be
a genuine quantum characteristic. The TWA, applicable
in the semiclassical limit, does not capture this feature,
because its origin is the non-vanishing overlap between
the quantum states before and after application of the
perturbation operator in combination with the unitarity
of quantum time evolution.
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FIG. 3. TWA results for the divergence from the perfect echo
computed for N = 20 modes. As the perturbation strength
0t is decreased the regime of exponential growth is extended,
allowing for the identification of a Lyapunov exponent. The
inset shows exact results for system sizes N = 8,12, 16, 20 for
Jdt = 0.1. These exact data are compatible with convergence
towards the TWA result as N — oo.

B. Signature of a butterfly effect in echo dynamics

In Fig. [3| we show TWA results for the divergence from
the perfect echo as defined in Eq. . After the short
time period the data exhibit a clear exponential growth of
the difference to the perfect echo although the observable
is bounded. We find that the parameter 6t that deter-
mines the smallness of the perturbation controls the ex-
tent of the regime, where the exponential law is observed.
In direct analogy to classical chaos the exponential diver-
gence of the perturbed echo from the perfect echo allows
to identify a Lyapunov exponent Ay. A fit to the data in
Fig. 3| yields A, = 0.870, which is in good quantitative
agreement with a result for the Lyapunov exponent in the
limit of high temperature obtained via a diagrammatic
large- N expansion and exact numerics4?*Y Note that our
convention for the coupling constants differs from Ref>*
by a factor v/2. In Appendix [B| we include results for
another observable, namely density-density correlations,
showing exponential divergence with the same rate. In
the following we will discuss the origin of this exponential
divergence in more detail.

C. Role of the double commutator

In the exact echo dynamics we observe that the
quadratic term of Eq. , in fact, is the only relevant
contribution for a large range of perturbation strengths
and irrespective of the waiting time. Fig. [fh shows exact
data for AE;(7) in comparison with the quadratic term
L (ol [Hy (1), [Hp (1), M]]|1ho) 6t? as function of the per-
turbation strength 6t for different waiting times 7. Both
coincide perfectly for Jét < 0.5.

Even though the TWA does not capture the persis-
tent echo, Fig. demonstrates that the semiclassical

echo dynamics exhibit the same quadratic dependence on
the perturbation strength ¢ in the regime of exponential
growth. Deviations from the quadratic scaling only occur
when AFE (1) begins to saturate. This supports the as-
sertion that in Eq. the second order term is the single
contribution responsible for the exponential sensitivity to
the imperfection in the time reversal protocol.

Similar to the OTOC , which is related to the square
of the commutator of both operators, |[V, W (t)]|?, ex-
panding the double commutator reveals an out-of-time-
order structure:

[Hp(T)a [I:Ip(T)a M“ = FIp(T)zM + J\Z];AIP(T)2
— 2H,(7) M Hy(7) (10)

In this expression the last term accounts for the butter-
fly effect. For an extensive perturbation Hamiltonian H,
the double commutator becomes extensive at late times.
In the thermodynamic limit the double commutator can
grow indefinetely such that it can govern the exponential
divergence from the perfect echo irrespective of the higher
order terms as long as (Yo|[H,(7), [Hp(7), M]]|tho) 0t* <
1. We deduce that only at late times higher order terms
become important resulting in the approach to a con-
stant.

The inference that the double commutator governs the
exponential divergence in the echo dynamics is supported
by the relation to the Lyapunov exponent of the classical
TWA equations, which is discussed next.

D. Classical Lyapunov exponent of the TWA
equations

The Lyapunov exponent occurring in the semiclassical
echo dynamics can be related to the largest Lyapunov
exponent of the dynamical system defined by the TWA
equations of motion. The largest classical Lyapunov ex-
ponent is defined as

. . 1. d(@(t), 7(t))
Al = ( lim 1 -1 7’ 11
! <tioo d(f(O),lfI'Igo))ﬁO ¢ d(Z(0),2(0)) > (11)

with coordinate vectors Z(t) and Z'(t) and d(Z, &) =
V2o (@i —x})? the Euclidian distance.  The time-
dependence of the coordinate vectors is given by the
equations of motion and (-) indicates the classical av-
erage over an ensemble of trajectories.

To estimate the Lyapunov exponent of the TWA equa-
tions of motion we average the divergence of an ensemble
of initially close-by trajectories on a fixed time interval;
details are given in Appendix [C] Fig. [dc displays the re-
sulting average (In |d(Z(t),(t))/d(Z(0),#(0))|), which
we computed for half and quarter filling with dg = 1078,
We find a clear linear dependence on time and a fit yields
the classical Lyapunov exponent A. =~ 0.34. The result
varies only weakly as the filling is changed.
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FIG. 4. (a) Echo divergence AM(7) for different fixed 7 as function of the perturbation strength §t. Comparison of data
obtained from exact full echo dynamics (dots) with the quadratic term in Eq. (3]) alone (dashed lines). The double commutator
is the single contribution to the echo divergence over a large range of 7 and §¢. (b) Corresponding TWA result. (c) Averaged
divergence of initially close-by trajectories in phase space under TWA dynamics. A linear fit yields the estimate for the classical

Lyapunov exponent.

This value of A\ is slightly less than half of Ap, which
we extracted before from the echo dynamics. In the fol-
lowing we will argue that a factor of two between both
is to be expected. We attribute the slight discrepancy
to the different orders of averaging and taking the loga-
rithm, resulting in a slightly smaller classical Lyapunov
exponent as reported in Ref=4.

The Weyl symbol of the double commutator in Eq.
can be written in the form

([ﬁp(7)7 [ﬁp(T)v M”)W =
Con(t) ., 03:(0) Dy (£) D,(0)
450 T B an,m T mf(o) axi(t)

(12)

with Z the vector of p and 7 coordinates of the TWA
equations (cf. Appendix @[) The modulus of all deriva-
tives occurring in this expression grows with the classi-
cal Lyapunov exponent. However, the sums of the single
derivatives in the first two terms will cancel, because they
correspond to linear response. Hence, if the terms in the
quadratic contribution do not cancel, at late times

([ (7). [Hy (7). M]])

The Weyl symbols of higher order commutators would
contain growth rates that are higher multiples of Ag.
Since we only observe the factor of two in the echo dy-

J

~ e2Aat (13)

namics, we conclude that the quadratic term in Eq.
is in fact the one that is relevant for the butterfly effect.

VI. ON THE IMPORTANCE OF INCLUDING
QUANTUM FLUCTUATIONS

It is worthwhile elaborating more on the importance
of quantum fluctuations for the dynamics of the SYK
model in the semiclassical limit. In the following we will
contrast mean field dynamics, which captures only fluctu-
ations on the Gaussian level of single Fermion operators,
against dynamics, which includes fluctuations that are
Gaussian on the level of Fermionic bilinears.

The TWA equations of motion presented in Section
[[VB] are essentially mean field equations of motion. In
the following we aim to outline the key difference between
TWA and the mean field approximation, namely the fact
that TWA captures fluctuations which are essential for
the dynamics of the SYK model. The importance of fluc-
tuations is due to the fact that the microscopic degrees of
freedom are fermions, which are always strongly fluctuat-
ing. This is, for example, in contrast to the semiclassical
limit of large spins, where the fluctuations vanish in the
limit of large spin.

The most general equations of motion for a mean field
approximation are

.d 2 " ¥

15 PeB = N > Jijribal (TjiTﬁk + 0ikpjp + 2Pj6pik) —(a < B)
ijkl

. d 2

1578 = 33 Z Jijki0ja (51'177«5 — PiBTkL — 2Pil7[3k> —(a < f) (14)
ijkl

These equations are obtained under the assumption that

(

the quantum state remains Gaussian for all times. In



that case a Wick theorem can be used to split all higher
order correlations into products of two-point functions,
which correspond to the resulting phase space variables.

The mean field Hamiltonian corresponding to Eq.
encorporates all possibilities, meaning that there are clas-
sical fields coupling to pairing terms as well as hopping
and local potentials. It turns out (see Fig. [6] below) that
to approximate the SYK dynamics it is sufficient to con-
sider a much simpler mean field Hamiltonian including
only pairing operators, given that the quantum fluctu-
ations in the initial state are taken into account. This
simpler mean field Hamiltonian takes the form

1

H= VeI > (Agt)efel + he) (15)

where the classical field
1 A 1
Aij (t) = ﬁ Ekl: Jijkl <CkCl>t = ﬁ zkl: Jijlekl(t) (16)

is determined self-consistently. The resulting equations
of motion constitute a reduction of Eq. :

-dpaﬂ _ 2 * _ *
ldt = M;Aka(t) TBk (Oé<—)ﬁ)

,dToé,g o 2

i -
dt V2N

> Aai(thpis = (a o B) (17)

In the mean field approximation the initial condition
of the phase space variables is fixed by the expectation
values in the initial state,

At da
pas(0) = (Eés)g — =5

7a8(0) = (Calp)y_y =0 (18)

This means, however, that mean field dynamics with Eq.
is trivial, because (¢;¢;),_, = 0; in the mean field ap-
proximation the system remains stationary at all times.
Non-trivial dynamics is only initiated by fluctuations of
the fermionic bilinears in the initial state. These fluctua-
tions can be included by stochastic sampling of the initial
condition as we will discuss below.

Within the mean field approximation non-trivial dy-
namics is obtained when considering the equations of
motion given in Eq. . These equations account for
Gaussian fluctuations on the level of single fermion op-
erators. Fig. [5| shows a result for relaxation dynamics
obtained in the mean field approximation using Eq.
starting with an uncorrelated state with occupation im-
balance just as in the main text. Although the general
shape of the decay is captured quite well, the decay time
scale differs from the corresponding exact result. In the
mean field approximation the relaxation turns out to be
too slow. This discrepancy between mean field dynam-
ics and exact dynamics was already observed in Ref3,
where, however, different mean field approximations were
considered.
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FIG. 5. Expansion dynamics from the uncorrelated initial
stated as observed in the single mode occupation numbers
ni(t) = (éjé,)t The solid lines correspond to mean field dy-
namics based on the most general equations of motion, Eq.
(14). The dashed lines were obtained by computing the full
quantum dynamics. The data shown are for N = 20 at quar-
ter filling.
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FIG. 6. Expansion dynamics from the uncorrelated initial
stated as observed in the single mode occupation numbers
ni(t) = (ele;) .- The solid lines correspond to dynamics ob-
tained based on the reduced mean field equations of motion,
Eq. , including fluctuations in the initial state by stochas-
tic sampling of the initial conditions. The dashed lines were
obtained by computing the full quantum dynamics. The data
shown are for N = 20 at quarter filling.

In order to accurately describe the relaxation dynam-
ics it is essential to capture fluctuations of the fermionic
bilinears correctly. This can be achieved by including
Gaussian fluctuations of the phase space variables®! by
stochastic sampling and an averaging of the resulting
trajectories. This approach is essentially equivalent to
stochastic sampling from the Wigner function of the ini-
tial state as it is done in the TWA. Fig. [] displays the
result for relaxation dynamics obtained in this approxi-
mation using the equations of motion of the simple mean
field Hamiltonian, Eq. , supplemented with fluctua-
tions of the initial conditions. The comparison with the
exact result shows very good agreement. Hence, we con-
clude that the relaxation dynamics is mainly driven by
two-particle fluctuations, which are included in the TWA,



but not in the mean field approximation.

A similar approach to incorporate quantum fluctua-
tions in phase space dynamics has already been intro-
duced in Ref®2. However, as it is evident from the discus-
sion above, there are various ambiguities, for which there
is no a-priori resolution. Nevertheless, the correspond-
ing choices might affect the resulting physical quantities.
For example, the additional terms occurring in Eq. ,
which are irrelevant for the dynamics in our case, might
be important under different circumstances*t The TWA
provides a consistent mathematical framework to set up
the equations of motion and to incorporate fluctuations.
The remaining ambiguity in choosing the bilinears based
on which the phase space is constructed corresponds to
finding the decoupling scheme where the saddle point ap-
proximation becomes asymptotically exact (cf. Section
v A).

As a final remark we would like to mention that the
shortcomings of the mean field approximation are also
reflected in the fact that with mean field only a sub-
extensive part of the spectrum can be captured®® and
only fluctuations as included in TWA render the energies
extensive.

VII. DISCUSSION

We found that the exponential divergence from the
perfect echo in the semiclassical dynamics is due to the
growth of an out-of-time-order double commutator of the
form [V (1), [V (7), W(0)]]. This assertion is based on the
small perturbation expansion in Eq. , which does not
rely on any semiclassical approximation. In future work
the structure and characteristic behavior of these objects
should be further explored, in particular with regard to
the sensitivity of genuine quantum dynamics far from a
classical limit to small perturbations.

Regarding irreversibility our result implies that the dy-
namics of the SYK model is irreversible in the same sense
as a chaotic classical system: Any imperfection in the
time reversal procedure leads to an exponential diver-
gence from the perfect echo and substantial improvement
is prohibitively expensive, because the Lyapunov expo-
nent is perturbation-independent.
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Appendix A: Finite size analysis

For finite mode number N the perturbed state will
always have a nonvanishing overlap with the unper-
turbed state, | (¢(7)|Psi|¢(7))| > 0. Accordingly, we
can decompose Py, [1(7)) = cos(ast) [1(7)) + sin(as) |6)
by introducing the “orthogonal component” |¢) with
(¥(7)|¢) = 0. Considering this decomposition it becomes
evident that the remaining “parallel component” of the
perturbed state leads to an ever persisting echo at time
t=2T:

(6 ()| Plye 7 N Pygfap(m))
= cos”(agt) (10| M[to) + sin® (ase) (@le 17 NI 7| g)
+ sin(2ase)Re( (Yol 17 |9)) (A1)
For finite N there is a time-independent contribu-
tion proportional to the initial value of the observable,

<1/)0\M|1/10>, and the overlap of the perturbed and un-

perturbed state, cos?(as;) = | (1(7)| Ps[0(7)) |2. At late
times the expectation value in the second term will attain
an equilibrium value M$° = lim, o <¢|e_iHTMeiHT\¢>
and the overlap in the third term will vanish. Therefore,
the persistent echo peak height at large 7 is given by

Tli_)rr;o E (1) = cos®(ast) (1ho| M o) + sinQ(a(;t)Mg" .
(A2)

Exemplary results for the dynamics including effective
time reversal are shown in Fig. [7l In the thermodynamic

1.0

0.8

0.6

M(t)

0.4

0.2

0.0

FIG. 7. Full time evolution under imperfect effective time
reversal as obtained by TWA in comparison with exact dy-
namics for different forward times 7 with system size N = 20
at quarter filling and Jdt = 0.25. The exact dynamics show
a persistent echo signal, whereas the TWA echo vanishes at
long forward times. The dashed line indicates the persistent
peak height as given by Eq. .
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FIG. 8. Finite size analysis of exact results for the echo
dynamics. The dashed lines indicate the saturation values
obtained from the overlap of the perturbed with the unper-
turbed state. Here, Jot = 0.1.

limit, N — oo, we will have a5 = 7/2, i.e. the contribu-
tion given by the initial expectation value of M vanishes

and we obtain

lim lim Ey (1) = Mg .

N —o00 T—00

(A3)

Moreover, the window for possible exponential diver-
gence from the perfect echo has a fixed size for a given fi-
nite V. This window cannot be increased by reducing dt,
which is evident from Eq. of the main text. In a finite
system the expectation value of the double commutator is
bounded for all times 7, | (¢o|[Hp(7), [Hp(7), O]|t0) | <
C(N). Therefore, in the limit of small §t

1< SRl cw) (Ad)

O(O) ‘ - | <¢0|[FIP’ [I:Ipa O]]|1/)0> | .

In the following we present data for the variation of
the echo signal E;(7) with changing system sizes, which
supports our assertion that the persistent echo vanishes
in exact quantum dynamics. For a faithful investigation
of finite size effects disorder averaging is essential, be-
cause fluctuations introduced by adding new randomly
coupled degrees of freedom can otherwise spoil the anal-
ysis.

In Fig. [8| we show exact results for the divergence from
the perfect echo for different system sizes, including a dis-
order average over 80 realizations. The dashed lines indi-
cate the saturation value of the persistent echo computed
directly according to Eq. , where at quarter filling
Mgr =1 /4. We find very good agreement of the echo at
late times with this value. As discussed in the main text
and earlier in this section the saturation value increases
as the system size is increased. This corresponds to the
vanishing of the persistent echo in the thermodynamic
limit.

Fig. [0 displays TWA results for the divergence from
the perfect echo for different system sizes. In this case
we find that the results are almost identical despite a
doubling of the system size.

103 T T T T T T
a 102 F 4
w
=
LS
=
< 10! E E
e TWA, N =20 -=
“ TWA, N =28
ol TWA, N = 40
100 1 1 1

1 1 1
1.0 2.0 3.0 4.0 5.0 6.0 7.0

Waiting time o1

FIG. 9. Finite size analysis of results for the echo dynamics
obtained using TWA.

Combining both results with the expectation that
TWA becomes exact in the thermodynamic limit we con-
clude that the TWA result gives already at finite system
sizes a good approximation of the result in the thermo-
dynamic limit and with increasing N the exact results
will converge to this.

Appendix B: Echo in density-density correlation

In addition to the occupation imbalance M presented
in the main text we investigated echos in density-density
correlations. We consider the average correlation

€0 = =y 2| (i), = (. (), ] (B

i<j
with ; = &/ ¢;.

Fig. [10] shows the dynamics of the echo E¢(7) as de-
fined in Eq. . With increasing waiting time 7 we find
also for the correlation average C an exponential diver-
gence from the perfect echo. The exponential rate is the
same as in the case of the occupation imbalance.

10! T T T T —3
TWA, N =28 e
TWA, N =40 Lol
o 08707 .. Lo
o et
2 100 .
< .-
S PP
10-t F i
L L L L
1.0 2.0 3.0 4.0 5.0 6.0
Time o1

FIG. 10. Echo observed in the correlation average C (cf. Eq.
(B1)) as a function of waiting time 7. The exponential rate
is the same as in the case of the occupation imbalance.



Appendix C: Approach to determine the classical
Lyapunov exponent

A common numerical method to determine the largest
classical Lyapunov exponent

d(z(t), 7'(t))

4(#0),7(0)) ) ©

1
Ao = < lim im  -In
t—00 d(Z(0),2(0))—0 &

close-
small
ratio

is to integrate the equations of motion of two
by initial conditions #(0) and #'(0) with a
fixed d(Z(0),&(0)) dp and evaluate the
d(Z(t), 7' (t))/dp at a fixed time t. Then &’ is reini-
tialized such that d(Z(t),Z'(t)) dyp and the equa-
tions of motion are integrated for another interval t,
before the ratio of initial and final distances is evalu-
ated again. ThlS procedure is 1terated and the samples
of t711n ‘d Z'(t))/d(£(0), & ‘ are averaged to ob-
tain an estunate of the classical Lyapunov exponent (C1] .

To estimate the Lyapunov exponent of the TWA
equations of motion we employed a similar approach.
In this case & (Pa.p,Ta,p). During a sequence
of integration and reinitialization in turns we average
In |d(Z(t), @ (t))/d(£(0),4(0))| on the whole interval 0 <

J

10

t < tmax. Additionally, we average over many such se-
quences with initial conditions drawn from the Wigner
function of the initial state under consideration. In this
way we obtained the result shown in Fig. df in the main
text.

Appendix D: Structure of the Weyl symbol of the
double commutator

Let us denote the set of phase space variables by . In
our case both H, and M are linear in TWA variables,
which means that the Bopp operators take the form

= (@) + 3 ()5 (D1)
and
- 0
+ Z m; (Z) oz, (D2)

where h(Z), h;(Z), m(Z), m;(Z) are some functions of the
coordinates.

Plugging this into the double commutator yields the Weyl symbol

(i) + @5, ) (e + > h(elo) 5o M)
~2(1E0) + S n(E0) 7o) (@ + > )
= 3 h(E0)(E0) o G )+ > () T @
-2 X i) S ML) @ i o)
- S @) o s (D3)
Now we use the chain rule S} — 57 Foll) Seela) wherever applicable, yielding
(ZRUREACRT))
> (ha(@ o), (f(t))gzgi)) aif(’;) ajj(lt> 3 (ZZ-: (i) 2 x(ﬁ(())) omia 82%
-2 %;l (matz) 87;;2 a 8§:l(<t)) )> a?:f(kt) a;;] Z (Zml (@) 8x] :)) 6gx(k (( )))> ag;(f)
-2 (Z ma(@)h; (Z(1)) af: (}:sga(xtj 2:5)) 822(1« L (D4)
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Since in our case h(Z) and m(Z) are linear in #, the expression can be simplified to

([, (1), [Hy (), M)

=23 (@)

ikl

o Ohy Om N Oxy,
_ %: (Z hi(x(t))af%a*m> Oz, (t)

i

In this form the Weyl symbol corresponds to Eq.

in the main text.
sponse type terms, which are linear in

-

10
11

12

13

14

16

17

18

19

20

21

This expression involves linear re-
aazl(t)

52,(0) and terms
J

om; 87/1) Oxy, Oxy(t)
8xk al'l

_. Oh Oh;\ Oz (t)
+Z(z]:ml(x)ax]axi) oz,

(D5)

(

that are quadratic in these derivatives. The linear terms
should cancel such that they do not contribute to expo-
nential growth; otherwise, also the response of the form
{H,(1)?, M} = Hy(1)*M + M H,(7)* would grow expo-
nentially.
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