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In this article, we use a many-body approach to study the absorption spectra of electron-doped
two-dimensional semiconductors. Optical absorption is modeled by a many-body scattering Hamil-
tonian which describes an exciton immersed in a Fermi sea. The interaction between electron and
exciton is approximated by an effective scattering potential, and optical spectra are calculated by
solving for the exciton Green’s function. From this approach, the trion can be assigned as a bound
state of an electron-exciton scattering process, and the doping-dependent phenomena observed in
the spectra can be attributed to several many-body effects induced by the interaction with the Fermi
sea. While the many-body scattering Hamiltonian cannot be solved exactly, we reduce the problem
to two limiting solvable situations. The first approach approximates the full many-body problem
by a simple scattering process between the electron and the exciton, with a self-energy obtained by
solving a Bethe-Salpeter equation (BSE). An alternate approach assumes an infinite mass for the ex-
citon, such that the many-body scattering Hamiltonian reduces to a Mahan-Noziéres-De Dominicis
(MND) model. The exciton Green’s function can then be solved numerically exactly by a determi-
nantal formulation, with an optical spectra that show signatures of the Fermi-edge singularity at
high doping densities. The full doping dependence and temperature dependence of the exciton and
trion lineshapes are simulated via these two approximate approaches, with the results compared to

each other and to experimental expectations.
I. INTRODUCTION

A trion is usually defined as a three-particle bound
state which is composed of two electrons and one hole or
two holes and one electron!. It can also be viewed as a
negatively or positively charged exciton, which is gener-
ated by optical absorption in doped semiconductors or
nanostructures. In the absorption or photoluminescence
spectra of such systems at low doping density, a peak
assigned to the trion is observed on the low energy side
of the exciton peak. The energy difference between the
trion and exciton peaks in the zero doping-density limit
is called the trion binding energy (denoted as Ar). For
semiconducting quantum wells, this binding energy is a
few meV'*. The trion binding energy rises to about
30 meV for monolayer transition metal dichalcogenides
(TMDCs)® 19 and about 100 meV for single-wall carbon
nanotubes!!+12,

While the nature of the trion in the limit of vanishing
doping density is well studied and well understood, the
physical description of what we will call the ”trion tran-
sition” as a function of doping remains unclear!>. A
trion transition is an optical process of trion creation by
photon absorption or trion annihilation via emission of
light. In this discussion we consider specifically the op-
tical absorption of electron-doped materials. Assuming
electron doping can be described by altering the Fermi
level in the conduction band, one can use the Fermi en-
ergy (denoted as er) to estimate the scale of the elec-
tron doping density. According to various experimen-
tal measurements! %719 the lineshapes and intensities
of exciton and trion transitions are notably affected by
the doping density. For example as e increases, the ex-
citon peak diminishes and the trion peak amplifies. The
exciton peak begins to be depleted as the Fermi energy

exceeds the trion binding energy (ep > Ar). The total
area of the combination of the two peaks in the absorp-
tion spectrum is relatively insensitive to the doping den-
sity variation. This behavior is connected to a sum rule
that conserves the total oscillator strength. In addition,
the energy splitting between the exciton peak and trion
peak grows with increasing doping density, and is roughly
given by Egplie ~ A1 + ep. Some experiments also show
that the exciton linewidth increases proportionally to the
Fermi energy, while the trion linewidth is relatively in-
sensitive to it>'°. Finally, in the high doping density
regime, the trion and exciton lineshapes are susceptible
to temperature, and may become strongly asymmetric?3.
This latter feature implies the possible existence of a
Fermi-edge singularity, which has been shown to exist in
doped two-dimensional semiconductors'®17. All of these
doping-dependent phenomena suggest the importance of
many-body effects for understanding the nature of the
trion.

Various theories have been proposed to study the trion
transition and simulate the doping-dependent optical
spectra in semiconductors!®1418726 hut many questions
remain. A common picture of the trion transition is
that of an electron-hole-pair generated in the presence
of a background doping electron, from which the bound
trion state forms. The transition amplitude connecting
the exciton, the background electron and the trion state
can be calculated by Fermi’s golden rule!318:19:24  This
method is useful in the extremely low doping-density
limit (e < Ar), but it fails to explain doping-dependent
phenomena for higher doping densities.

An improved approach proposed by Bronold2%23 sug-
gests a dynamical theory to explain the oscillator-
strength competition between the exciton and trion
peaks. Accordingly, the photogenerated valence hole



scatters and transfers momentum to excite a Fermi sea
electron-hole pair in the conduction band. The excited
electron interacts with the photogenerated electron-hole
pair to form a bound trion state. Along with the hole in
the Fermi sea, the trion transition is interpreted as a dy-
namical trion-hole generation process. Bronold employed
an exciton Green’s function formalism to simulate the ab-
sorption lineshape, and included the dynamical trion-hole
generation by means of diagrammatic self-energy correc-
tions. Within this formalism, the doping-dependent op-
tical spectrum can be simulated in low doping-density
regime (ep < Ar), and the sum rule and oscillator
strength transfer can be elucidated well. In addition
to this study, Esser et al. also proposed a similar dy-
namical theory based on the density-matrix approach?!.
They applied their theory to the optical spectra of one-
dimensional nanostructures. However, due to the diffi-
culty to compute the eigenspectrum of the trion in two
dimensions, a detailed discussion of the trion and exciton
lineshapes with respect to different doping densities and
temperatures in two dimensions has not been carried out
within these theoretical frameworks.

Other theories exist which describe the dynamical pro-
cess of trion-hole generation. One such theory is the T-
matrix model proposed by Suris et al.2?23. Based on this
approach, the trion binding energy can be obtained by
solving a Lippmann-Schwinger equation which describes
electron-exciton scattering. By assuming that only s-
wave scattering is important and parametrizing the T-
matrix phenomenologically, the authors found reason-
able doping-dependent lineshape variation without con-
cern for the details of the scattering potential. Recently,
Efimkin and MacDonald?% extended the T-matrix model
in their Fermi-polaron theory of trion transition. The
Fermi-polaron picture is normally employed in the study
of the quasiparticle properties of impurity atoms im-
mersed in, and strongly coupled to, an ultracold Fermi
gas?™ 30 In the present context, the impurity atom
is replaced by an exciton and the Fermi gas is repre-
sented by the electron gas, such that the quasiparticle is
given the name ”exciton-polaron.” In this framework, the
trion transition can be interpreted as the lower-energy
attractive exciton-polaron branch. A derivable scatter-
ing model has been built by approximating the electron-
exciton scattering potential by a contact interaction. The
trion binding energy (Ar) can then be calculated and the
optical spectrum in full doping-density regime can also
be obtained. However, the trion binding energy appears
to be overestimated and is found to be dependent on an
ultraviolet cut-off energy. Since the cut-off dependence
is abruptly distinguishable with a trion model described
by the three-particle Schrodinger-equation (presumably
valid in the limit of vanishing doping density), the differ-
ence between the exciton-polaron state and the standard
view of a trion state requires further investigation.

Based on concepts related to the Fermi-polaron ap-
proach, the Fermi-edge singularity associated with op-
tical transitions in doped materials in the large exci-

ton mass limit can also be studied. In particular, the
Mahan-Noziéres-De Dominicis (MND) theory provides a
framework to study the doping dependence of optical
lineshapes in a dense electron gas'®'6:3138  Tradition-
ally, the MND model is used to study an infinite-mass
hole immersed in a Fermi sea in conjunction with an
electron-hole scattering potential to explain the origin of
edge singularity behavior. In a recent work, Baeten and
Wouters2® applied an electron-exciton-scattering version
of MND theory to the study of trion-polaritons. A long-
range attractive Yukawa potential was used to simulate
the electron-exciton interaction, and a trion transition
can be obtained by numerically solving the model. The
calculated doping-dependent optical spectra show some
features coincident with behaviors observed in the optical
spectra of TMDCs. However, the use of a Yukawa form
of the scattering potential results in an overestimation of
the trion binding energy and a doping-independent ex-
citon linewidth. A better choice of model potential to
describe electron-exciton scattering would be helpful to
remedy these issues for applications in two-dimensional
semiconductors.

The goal of the present work is to unify our under-
standing of the doping-dependent optical spectra of two-
dimensional semiconductors via a systematic exploration
of these related approaches and to improve upon them.
An appropriate electron-exciton scattering potential is
derived, and a many-body scattering Hamiltonian which
describes an exciton immersed in Fermi sea interacting
with electrons through this potential is written down.
While the many-body Hamiltonian cannot be solved ex-
actly, we reduce the description to two limiting situations
which correspond to a particular type of electron-exciton
scattering problem and the MND problem. The electron-
exciton scattering problem can be solved by a Bethe-
Salpeter equation (BSE), whose eigenspectrum can be
included into the self-energy in a Green’s function for-
malism. We show how this approach, which we will call
the BSE formalism in the following discussions, is con-
ceptually related to Bronold’s dynamical theory of trion-
hole generation??, Suris’ T-matrix model??, and Efimkin-
MacDonald’s Fermi-polaron theory?®. However, our BSE
formalism improves upon their works via the use of a
physical and realistic electron-exciton potential. In addi-
tion, a direct connection between the dynamical trion-
hole viewpoint and the Fermi-polaron theory is made
explicit for the first time. The doping-dependent exci-
ton and trion lineshapes can be studied analytically in
low doping-density regime, and extended to higher dop-
ing densities numerically. In the other limiting situation
of infinite exciton mass the MND model is numerically
solved and the optical spectrum is obtained by propagat-
ing the Green’s function in the time domain. The doping-
dependent and temperature-dependent optical spectra of
two-dimensional materials can then be numerically stud-
ied and compared with calculated results of the BSE ap-
proach and experimental expectations.

This article is organized as follows. In Sec. II, we give



a heuristic review of the theories of optical transitions
in doped semiconductors by writing down the wavefunc-
tions associated with the optically-generated quasiparti-
cles. The concepts and relationship between the exciton
state, trion state, trion transition, electron-exciton scat-
tering, dynamical trion-hole generation, Fermi-polaron
and Fermi-edge singularity are introduced in a second-
quantization language. Building on these concepts, the
derivation of the electron-exciton scattering potential be-
comes manifest. In Sec. III, the electron-exciton scat-
tering potential is derived and the many-body scatter-
ing Hamiltonian is written down. Approximate methods
based on the BSE formalism and the MND theory to
solve the Hamiltonian are introduced. The connection
between the BSE formalism and Efimkin-MacDonald’s
Fermi-polaron theory?® is also discussed. By using the
self-energy from the BSE formalism, the exciton and
trion lineshapes are analyzed in Sec. IV. Numerical cal-
culations within both the BSE formalism and the MND
theory are provided in Sec. V to study the exciton and
trion lineshapes. The optical band-gap renormalization
and Pauli-blocking effects due to electron-doping in two-
dimensional materials are also discussed. Finally, our
conclusions are given in Sec. V1.

II. HEURISTIC WAVEFUNCTION THEORY

In the case of weak light-matter interaction, the optical
absorption of solid-state materials can be realized as a dy-
namical conduction process. The creation of an exciton
is associated with the electron-hole-pair generation pro-
cess, whereby the electron and hole become bound due to
the attractive Coulomb interaction between them. The
frequency-dependent transition spectral density of this
process is proportional to

Aw) ~ =S Xecljl0) Pole —ex), (1)

where |Xk) is an exciton state, |0) is the ground state,
ex.k = (Xk|H|Xk)—(0]#H|0) is the exciton transition en-
ergy, and 5 is the current operator3”. The ground state
can be described as one with the valence band fully occu-
pied and the conduction band completely empty. The ex-
citon state can then be written as |Xk) = )A(IT( |0), where

X = Uxpel gd (2)

p
is the exciton creation operator, éI) is the creation op-
erator of electron in the conduction band with quasi-
momentum p, cZ;f) is the creation operator of hole in the
valence band, and Wx , is the exciton wavefunction. For
a direct band-gap semiconductor, the electric current op-

erator is written as

§ S (Puevtldl + Pioyiine) (3)
k

where Pycy is the momentum matrix element. Therefore,
a vertical transition selection rule (Xo|7]0) # 0 can be
found.

On the other hand, the trion transition is more com-
plex. The trion state can be written as |Tq) = T(g |0},
where the trion creation operator is

Th=3 ‘I/TquCLJr;—;QCLJr e dipqur hQ’ (4)
pq

with Ut pq the trion wavefunction, m, the electron mass,
my the hole mass, and Mt = 2m, + my, the trion mass.
With these assumptions, it is found that the transition
amplitude (Tq|7]0) is zero. A commonly used modi-
fication is to employ a different initial state in calcu-
lating the transition rate. Assuming that the initial
state is |eq) = ég |0), such that the transition ampli-

tude (Tqljleq) is non-zero, then the transition spectral
density in the Fermi’s golden rule limit is!®19:24

Aw) ~ = (1= 3 na) | (XoljI0) % (@ — =x)
+2 3 nal(Taljleq) [*6 (w — 1.0 +2cq)
Q
(5)

where o is an adjustable parameter related to the
photon-electron scattering cross-section, nq is the elec-
tron density distribution of the |eq) state, erq =
(Tq|H|Tq) — (0]#]0) is the trion transition energy, and
ceq = (eqlH|eq) — (0|H|0) is the electron quasiparti-
cle energy. Although this is an ad hoc description, the
above formula is quite useful and physical in the extreme
low doping-density limit (ep < Ar). Particularly if
we assume (Xo|7]0) ~ (Tql|jleq), integration over the
rate constant [dw A(w) is roughly invariant to dop-
ing density, implying that the lowest-order sum rule is
fulfilled. However with higher doping density and thus
>_qnq % 1/0, the transition rate constant becomes neg-
ative and the formula becomes unphysical.

Another description of the trion transition is given by
Fermi-polaron approach?S. Based on this framework, the
ground state is described by the Fermi sea formed by the
electron gas that resides in the conduction band, in addi-
tion to the fully occupied valence band. When an exciton
is excited, the Coulomb interaction between the exciton
and the Fermi sea induces electron-hole polarization near
the Fermi surface. The Fermi-polaron state |P) can be
written as?”

[P) = X |FS) + Y 0qu X' el 1éq [FS), (6)
q,K

where @y, ®q k are superposition coefficients, and |FS)
is the Fermi sea conduction-band plus fully occupied
valence-band state. The coefficients ®y, ®4x can be
determined by treating |P) as variational wavefunction
via minimization of the variational energy. Since we are



not considering the Coulomb interaction among the elec-
trons in the Fermi sea, we can assume the Fermi sea is
composed of independent electrons and replace |FS) by
q |F'S), where |[FS) = éq |FS). Therefore, the Fermi-
polaron state becomes

P) = BoXich [FS) + > q X! yéh, « [FS). (7)
K

If we define the incoming state and outgoing state as
lin) = X{ch [FS), Jout) = X' yechy  [FS),  (8)

then solving for the variational coefficients reduces to an
electron-exciton scattering problem. If there is an attrac-
tive interaction between the electron and the exciton, an
extra bound state may exist, which can be interpreted as
a trion state.

Although the Fermi-polaron state and the trion state
appear to be different, the two pictures can be connected
if the electron-exciton bound state can be related to the
trion state by a linear transformation,

M ot At
Th=Y VaxX kg k- (9)
K

In this case, the Fermi-polaron state can be rewritten as

P) = @ X [FS) + > ®qléq|FS),  (10)
Q

with ®qx = ¥qkPq. Therefore, Fermi-polaron gen-
eration can be seen as the collective excitation of trion-
hole-pair states, where the hole is created by annihilating
an electron in the Fermi sea. If the trion-hole interaction
energy is small compared to the trion binding energy,
the excitation will show particle-like features, such that
the process can be interpreted as trion generation. The
collective nature of dynamical trion-hole generation and
the trion-hole interaction will however affect the trion
and exciton transition energies and lineshapes.

The problem of the Fermi-edge singularity is naturally
connected to that of the Fermi-polaron, since they both
describe an impurity immersed in, and interacting with,
the Fermi sea. In the case under consideration here,
the impurity is an exciton. While the scattering func-
tion formalism describes single electron-hole pair exci-
tation near the Fermi surface, the Fermi-edge singular-
ity is caused by multiple electron-hole pair excitation.
Based on the Fermi-polaron state wavefunction, if the
exciton mass is much larger than the electron mass and
the electron-density is sufficiently high, and ®q k is ap-
proximated by @k for a short-range electron-exciton in-
teraction, the edge singularity state will include multiple-

excitation terms as

[ES) = ®oX§ |FS) + ) ok X BL |FS)
K

+ Z (I)KviinKlng (BI(1BE(2) |FS> + -

K1 Ko

- 3 ety (T8 s
K; K, a’'=1

Yo, (11)

where BL =24 éL 4K Cq is the Fermi sea electron-hole
excitation operator. If the hole and electron are excited
within the energy scale of the Fermi surface, the Fermi
sea electron-hole excitation energy will be close to zero.
When the exciton mass is large, the exciton kinetic en-
ergy makes a vanishingly small contribution to the ex-
citation energy. Therefore, all multiple-excitation terms
can have an excitation energy coincident with the exciton
transition energy, producing a divergence in the oscillator
strength close to the exciton transition energy.

To describe all relevant transitions, the Fermi-polaron
state wavefunction in Eq. (6) or the edge-singularity state
wavefunction in Eq. (11) can act as variational wavefunc-
tions, and the wavefunction coefficients can be treated as
variational parameters. If the lowest-energy solution of
the variation problem has a lower energy than the exci-
ton transition energy, the state may be interpreted as a
trion bound state. Other solutions with energies higher
than the exciton transition energy can be interpreted as
electron-exciton scattering states. However, the varia-
tional problem is too difficult to solve in the electron-hole
basis due to the large number of degrees of freedom. Ap-
proximations are needed in order to reduce the numerical
effort. In the present work, one approximation we con-
sider is to reduce the electron-hole basis to an electron-
exciton basis. The exciton state is then presumed to be
a particle state that can not be decomposed, and the
exciton transition energy is taken as a parameter. Via
this approximation, the number of degrees of freedom is
greatly reduced. In Sec. III, we will give the formal the-
ory of this reduction and provide the methods of solution
of the resulting theory.

III. FORMAL THEORY

In this section, we give a formal theory of the ex-
citon Green’s function based on a many-body scatter-
ing Hamiltonian, which includes electron and exciton ki-
netic energies and an appropriate electron-exciton scat-
tering potential. We assume that, by solving the exci-
ton Green’s function of the many-body scattering Hamil-
tonian, a trion peak can be found and the doping de-
pendence of the exciton and trion lineshapes can be ex-
plained. In Sec. IIT A and Sec. III B the electron-exciton
scattering potential is derived and the many-body scat-
tering Hamiltonian is introduced. However the many-



body Hamiltonian is not exactly solvable, and some ap-
proximations must be employed. One avenue to approx-
imation is the reduction of the many-body problem to
a two-particle scattering problem between an electron
and an exciton. In Sec. III C, we introduce this method
and show that it is closely related to Efimkin and Mac-
Donald’s Fermi-polaron theory for optical absorption of
a two-dimensional doped semiconductor?®. While their
Fermi-polaron theory requires a cut-off energy-dependent
trion binding energy, our theory eliminates this short-
coming. In Sec. IIID, a BSE formalism that employs
Bronold’s dynamical theory of trion-hole generation?’
is derived. Finally, we consider another approximate
method valid in the limiting situation where the exciton
mass is infinitely large. Here, the many-body scattering
Hamiltonian is reduced to an electron-exciton version of
the MND model?®. In Sec. III E, the MND model and its

numerical method of solution are introduced.

A. Scattering potential

In order to find the scattering potential between elec-
tron and exciton, we consider the electron-hole Hamilto-
nian for electron-doped semiconductors*°

7:[ = Z (Ec,kélék + shykcif(cik)
k

+y

kk’q

A At 5t F A
(Ck—l—qck’ Ck/ Cx — 2Ck+qd—k’—qd*k' Ck) )

(12)
|

(tqurd—p-ripHeothd o gl o) ="

qa/n 7 Aol At
5 <CQ+Kd—P—KCPCk+qu’7q

where the Hamiltonian contains kinetic energy terms and
Coulomb interaction terms, ¢ k, €nk are the kinetic en-
ergies of electron and hole, and Uy = vq/LD, with vq
the Coulomb potential and LP the volume of the system.
The scattering transition amplitudes can be calculated by
using the electron-exciton basis states of Eq. (8). Note
that the Q of all basis states are equal in order to fulfill
momentum conservation. For the diagonal term of the
Hamiltonian matrix, we find

(<F~S| éQ+KX—K) 7:[ (XjKéQJrK |F~S>)
~ EF~S + EX,~K t+ €e,Q+K, (13)
where Ezq = (FS|H|FS) = (FS|H[FS) — ccq is the
Fermi sea ground state energy and ex k is the exciton

excitation energy. The nondiagonal terms of the Hamil-
tonian matrix give the scattering potential

Vkk'.Q = (<FS| éQ+KX,K) H (XiK,éIQ T |ﬁs>) .
(14)

The exciton creation operator is assumed to be X iK =

ZP \pré;f)dipr, WhGY.G \I/p. is the e;xciton Wfivefunction.
Since the electron-exciton interaction only involves the
electron and hole degrees of freedom contained in the
basis states, Eq. (14) becomes
VkK'.Q = Z VI
pp’
x (eqiképd_p-xHel,d' b ) (15)

Assuming that the conduction electron is sparse and thus
the scattering potential is unaffected by the electron den-
sity, the scattering matrix elements are given by

ék/ éké.‘-p/ dT_p/ K/ éTQ+K/ >

kk'q
~ 6p—p k-K(Uk'—k — Up—q-K'), (16)
and
. o gy At gt ot _ . N R RGN ot
<CQ+Kd7p7KCpHc—th/d_p/_K/ CQ+K,> = — Z Uq <CQ+Kd,p,chck+qd_k,_qd,k/ckcp/d_p,_K,cQ_i_K/>
Kk'q
= _( —Uq+k-p9p.Qtk’ — Up-q-KkdQikp + UK—K’5p,p’)- (17)

The scattering potential can thus be written as

di-ee ex-ee di- eh ex-eh

Vkk @ = Vkk' + Vkk @ + Vkk' + VkKk'.Q: (18)

with a direct electron-electron interaction VI%IKC,C an

exchange electron-electron interaction Vggiq, a di-
rect electron-hole interaction Vi3ik&P, and an exchange

ex-eh

electron-hole interaction Viki'q. The interactions are

VRS = Uk w¥i¥pik k, VK" = Uk K,
P
(19)

I?f{e;eq— ZU ‘I’p+Q+K"I’p+Q+K= (20)



and

(U374 1k Ypiaix
p

+Up¥5 1 qii PQiK)- (21)

It it important to note that the present derivation does
not consider the spin degree of freedom. Therefore the
electron and hole creation operators contained in the
trion creation operator can be seen to have the same
spin quantum number. In this case, the exchange inter-
action is of opposite sign to that of the direct interaction.
However, if the two electrons which comprise the electron
portion of the trion have different spin quantum numbers,
the exchange interaction can be zero or of the same sign
as the direct interaction, and will depend on the overall
spin state of the trion. The spin dependence of the trion
is beyond the scope of this work, and we will ignore all
exchange interactions in the following discussion. The
effect of spin and exchange interactions will be studied
in future work.

Assuming Uq = U and AK = K—K/’, the total direct
interaction can be written as

ex-eh
Vkkiq =

Vit = —Uak <1 - Z ‘I’;‘I’erAK) : (22)

P

The wavefunction overlap Zp VEWpiak is unity for
AK = 0 and tends to zero as AK — oo. Via Taylor
expansion with respect to |AK]|, the wavefunction over-
lap can be expressed as

* * . * . 6
S URUL Ak~ Y UETL —i|AK| Y U (1a_p) v,
P p 1

—3|AK|QZW* 9 2\1/ o
2 - P 18p P '
(23)

Assuming the exciton wavefunction is given by the
nodeless 1s-orbital wavefunction obtained from the two-
dimensional hydrogen atom problem, the wavefunction
overlap can be approximated as

. 1
Z UiWpiAK = exp <—§|AK|2§2) ) (24)
P

where £ = Y7 Wy (19/0p)* W, since it can be shown
that > Ve (10/0p) ¥p = 0 for a ls-orbital. The ex-
ponential form of the approximate wavefunction over-
lap reproduces the correct behavior as AK — 0. Given
that Wy is the 1s-orbital of an exciton, the characteristic
length & can be interpreted as the exciton radius.

B. Many-body scattering Hamiltonian

With exchange interactions ignored, the many-body
scattering Hamiltonian for an exciton immersed in an

electron gas can be written as
Hest = Z EX,KXIT(XK + Z Ee,kéLék
K k
+ ) VkktkiqiriX g X k. (25)
QKK’

where the exciton kinetic energy and electron kinetic en-

ergy can be written as

K[? k[*
ey —

2MX ) ek

EX,K = €X + (26)

T 2m,’
where ex = ex K=o is the exciton transition energy, Mx
is the exciton mass and m, is the electron mass. The
scattering potential is assumed to have the form

_ UK-K’ 1 249
Vkx = Iz {1 — exp <—§|K -K']%¢ )] ,(27)

where vg_k can be taken to be the screened Coulomb
potential and £ is the exciton radius.

The electric current operator for the electron-hole ex-
citation process is given by

j~e (PXJ, + P*Xo) : (28)

where P = Zp U Ppev is the transition momentum ma-
trix element. The absorption spectrum can be calculated
by the real part of the optical conductivity or the imagi-
nary part of the current-current response function3”

Aw) =2Re o(w) = —%Im /00 dt e*'7R(t), (29)

(1) = —10(1) (G [5(0),7] 16), (30)

where 6(t) is a step function. The ground state |G) =
|0) |[FS) is a direct product of the vacuum state of the ex-
citon (]0)) and the Fermi sea of electrons (|FS)). The re-
sponse function can be obtained from the exciton Green’s
function,

T (t) = e*|PPGR(Y), (31)

(1) = ~160(0) (Gl [%o(), XE]1G).  (32)

Then the absorption spectrum is expressed as

2¢2
Aw) = === [P[Im G7(). (33)

The commutator in the Green’s function written in
Eq. (32) implies that the exciton operators are presumed
to be bosonic particles. However, since the ground state
is an empty state for the exciton, and only the generation
of single exciton is considered, the type of the commuta-
tion relation chosen in Eq. (32) does not alter the final
results.



C. Scattering function and Fermi polaron theory

In the frequency domain, the exciton Green’s function
can be solved by the Dyson’s equation
1
w—ex — 2R(w)’

GRw) = (34)

where YR (w) is the exciton self-energy. Based on pertur-
bation theory, the lowest-order expression for the exciton

self-energy is given by
me o | nQ| Vg me |2
#eq) nQlVp+ = Q.qQ

1—n
P+
TR (w) = ( ,
. % YT prirQ T feptiiza T e 107
T
(35)

where Mt = Mx + m, is the trion mass. It is not dif-
ficult to show that the imaginary part of the self-energy
corresponds to the damping constant of electron-exciton
scattering derived from Fermi’s golden rule,

Nex = —2Im XR(ex). (36)

This confirms that the self-energy is simply the second-
Born approximation of the electron-exciton scattering
problem. However, one cannot find a bound-state solu-
tion via a simple perturbative self-energy approximation.
One needs to consider, in an exact or approximate way,
the complete Born series. We assume that at lowest-order
the two-particle scattering function can be written as

2
(1 ~ Mpt e ) Vot = q.ql

Fdqw) =) »

T X —piEQ T feptiinQ +10+
(37)
with a self-energy
ER(w) = Z nQI‘%Q(w +€e.Q)- (38)

Q

By including higher-order terms in the Born series, the
scattering function can be extended to the solution of a
two-particle Lippmann-Schwinger equation*! #3

I§q @ =Vaa +> Vap+pea
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X
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(39)

where we have used Vg, q = 0. By solving the Lippmann-
Schwinger equation, bound states can be found as the
poles of the scattering function.

If we assume that for s-wave scattering the scatter-
ing potential and the scattering function can be approx-
imated as

Voo =V, Tdqw) ~IMw,Q), (40)

then the Lippmann-Schwinger equation becomes

Mw, Q) =V +VER:w, Q' w,Q), (41)

where the scattering kernel is

ERw,Q) =)

1—ng, me
P35 Q
— e S0+
X,—p+35Q CeptizQ T i0

(42)
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The two energy terms that appear as poles of the kernel
function can be rewritten as

QP | Ipl?
—, (43
2M + QWT7 ( )

téeptpeq =ex T+

Mt
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where mr = (Mg' —i—m;l)_l is the electron-exciton
reduced mass. Eq. (41) and Eq. (42) are effectively
the starting point of Efimkin and MacDonald’s Fermi-
polaron theory?S. If the scattering process occurs in two
dimensions, the approximation in Eq. (40) introduces a
bound state with a binding energy depending on the ul-
traviolate cut-off momentum, kj, as?S

k2 2
A = —A exp (—_—ﬂ- > ,
2mr mrg

with the coupling constant g connected to V via V =
—g/L% Note that the cut-off energy can be related to
the bandwidth of the conduction band and is thus not
unphysical. However, a cut-off dependent bound state
is fundamentally inconsistent with the trion model, valid
in the limit of small doping, based on solving the three-
particle Schrodinger equation. The cut-off dependent
bound state originates from the contact potential ap-
proximation in Eq. (40), and the cut-off dependence is
known as the quantum anomaly in the two-dimensional
quantum scattering problem?*45. To avoid this problem,
an interaction with some spatial range must be retained,
such that a more sophisticated method of solution is re-
quired.

(44)

D. BSE and dynamical trion-hole generation

To avoid the brute force solution of an integral equa-
tion, the two-particle Lippmann-Schwinger equation can
be solved by an orthogonal polynomial expansion, with
basis functions given by the eigenstates of the cor-
responding two-particle Schrédinger equation®3.  The
connection between Lippmann-Schwinger equation and
Schrodinger equation can be derived by a BSE formal-
ism. The two-particle Lippmann-Schwinger equation in
Eq. (39) can be rewritten as

R
IS @) =Vaa +)_ Vapt meQ
pp’

ngp/ (w, Q)Vp/+ me Q,Q’ >

M

(45)



where the polarization is given by
PR (w, Q) = bp p 115 (w, Q)
+D TR (W, Q)Vp g Pap (w, Q). (46)
q

and the zeroth-order polarization is

M (w, Q) = e - - (47)
w — £X77p+%_¥Q T ) +1i0

Eq. (46) is known as the BSE. The BSE can be solved
by the spectral representation

Pr.Q%pin.@Ppin.q
Py =) P 48
p.p (W: Q) o —ex —Fng 107 (48)

n

where p, q is the distribution function of allowed tran-
sitions, and €, ,q and ®p.,,q are obtained from the two-
particle Schrodinger equation

QP  Ipl?
2 [5""” (2MT T oy

p/
Vot Qi+ Q] Ppiinq = EnQPpinq-  (49)

Note that Eq. (43) has been used to derive the kinetic-
energy part of the Schrodinger equation. The distribu-
tion function of allowed transitions is defined by

Pn,Q = <G|{Tn,Q; T;7Q}|G> ) (50)

where TJ-,Q =2 ‘I’P;"xQXipHMx/MT)QCLJr(me/MT>Q 15
the trion creation operator. Since the exciton state is
initially empty, we find <Xlei,) = 0k x’ and <XLXk) =
0. The distribution function of allowed transitions then
becomes

_ * A AT
Pn,Q = Z (I)p;n,Q(I)p;n,Q <FS|Cp+;}—;QCp+%¥Q|FS>
P

=1-> |Ppin.l*p+ 22 Q- (51)
P

This function introduces a Pauli-blocking effect to the
transition as the doping density increases. From Eq. (45)
and Eq. (48), the exciton self-energy can be solved as

nQPn,QBn.Q
SR) = § E Q 52
) Q n w—ex —&n,q +Ee,q + 10T (52

where the self-energy spectral density is
2
Buq = ‘ZVQP%_;Q@I,;H,Q . (53)
P

Therefore, the eigenvalues and eigenstates of Eq. (49)
contain all the information needed to construct the self-
energy. The eigenstates include the electron-exciton

bound states, which we interpret as the trion states, and
the electron-exciton scattering states.

The formalism described here is similar to Bronold’s
dynamical theory of trion-hole generation®?, except that
Bronold solved for the trion transition energy and the
trion state by using a three-particle Schrodinger equa-
tion. Note that the exact solutions of Eq. (49) can be
independent of the cut-off momentum. Since the BSE
formalism is equivalent to the two-particle Lippmann-
Schwinger equation formalism, our theory of dynamical
trion-hole generation is consistent with the Fermi-polaron
picture with a cut-off independent trion bound state.

E. MND theory and Fermi-edge singularity

To introduce Fermi-edge singularity behavior, one pos-
sible method is to include the self-energy corresponding
to the contributions of multiple electron-hole pair exci-
tations. However, this method is complicated and nu-
merically demanding. A simpler method is to reduce
the present formalism to an electron-exciton scattering
version of the MND theory, which was originally used
to describe the response of the Fermi sea to a core-hole
potential3' 36, The MND theory has a straightforward
and numerically exact solution for the response function
in terms of a time-dependent determinantal formulation.
In this section, we will derive the MND Hamiltonian and
introduce this solution.

By a change of variables, the effective Hamiltonian can
be reformulated as

'}qeff = Z EX,QX(SXQ + Zae)kélék
Q k
+ ) Vkkikin X ki Xq (54)
QKK'
Assuming that the exciton mass is infinitely large, the
excitonic states can be expressed as

Xb xiwXq~ X§Xq. (55)

Due to the infinite exciton mass, the exciton transition
energy becomes ex.q@ =~ €x, and the quasi-momentum
Q becomes irrelevant. The effective Hamiltonian can be
reduced to the MND Hamiltonian3!32

7:[MND = ExXTX + E Ec_,ké;f(ék + E Vkﬂk/élék/XTX,
k kk’
(56)

where X1 and X are creation and annihilation operators
of the immobile exciton.
Based on this Hamiltonian, the exciton Green’s func-

tion in the frequency-domain can be solved exactly
by25:34-36,39

G'w) = _i/o dt (7" det [Sk-,k’ (tﬂ k|, |k’ |<kp’
(57)



where kp is Fermi momentum, and det[Sk x (t)] k|, |x/|<kr
is the determinant of the matrix

Siae(t) =Y O exp[—i (En — e1) ] Prerp, (58)

with &,, Pk, given by the solution of the eigenvalue
problem

k[ 3
> ez + View | Prrn = EnPrcn. (59)
o 2me

The exciton Green’s function can be generalized to in-
clude the effect of finite temperatures and spectral line
broadening by including an electron distribution factor
(nx) and a line broadening parameter (vy)25:3

G () = = [ diestoexrin
0

xdet [51{71{/(1 —nx) + Sk (1) |- (60)

IV. EXCITON AND TRION LINESHAPES

In this section, we scrutinize the exciton Green’s func-
tion within the BSE formalism to investigate optical line-
shapes in two dimensions. Since the exciton self-energy
contributes to the line broadening of the exciton peak and
the emerging trion peak, an analytical study of the self-
energy can help us understand the effects of the electron-
exciton interaction on the doping dependence of the opti-
cal spectra. In Sec. IV A, the exciton self-energy and the
bound-state solution of the BSE are used to discuss the
emergence of the trion peak. In Sec. IV B, the scattering-
state solutions of the BSE are used to explain exciton line
broadening. In Sec. IV C, the oscillator strength trans-
fer from the exciton peak to the trion peak is studied by
analytically solving for the spectral weight of the exci-
ton transition. In Sec. V we follow up on our analytical
explorations with extensive numerical calculations.

A. Trion peak emergence

Based on the sign of the eigenvalues of the two-particle
Schrédinger equation at Q = 0, the exciton self-energy
can be separated into bound-state contributions, X% (w)
for £,0 < 0, and scattering-state contributions, ¥ (w),
for é,,0 > 0. In the following, we will illustrate that the
bound-state contribution is responsible for the emerging
trion peak and that the electron-exciton scattering states
contribute to exciton line broadening and an energy shift.

In the low-doping density regime, only |Q| — 0 needs
be considered. The self-energy spectral density B, q in
this regime is insensitive to Q and can be approximated
as a constant. Assuming that the the lowest eigenvalue
of the Schrodinger equation is

QP
2My”

fo,q=—Ar+ (61>

the self-energy contribution from the bound state can be
written as

SR (w) ~ / de D(e)f()poBo

w—sx—i-AT—i-(l—mC/MT)s—l—iO*’
(62)

where D(e) is the density of states, f(g) is the Fermi-
Dirac distribution function, py is the probability of al-
lowed transition to the bound state, By is the self-energy
spectral density of the bound state with |Q| — 0, and
A is the trion binding energy. For a two-dimensional
system, D(g) = 6(e)me/(27). In the zero-temperature
limit, f(g) = O(er — €), and the self-energy becomes

(1 — me/MT) EF
w—ex + At
—imagl (ex — A — w)

0 {w—aX—FAT—i— <1— ]T\ZT>EF] (63)

YR (w) ~ apln [1 +

where ag = poBome/ [27 (1 — me/Mrt)]. The self-energy
diverges at w = ex — Ap and w = ex — Ap —
(1 = me/Mr)ep withep > 0. The trion transition energy
(e1) can be solved from et — ex — Re ¥R¥(e1) = 0 and
turns out to be approximately ex —Ar—(1 — mo/Mr) eF.
The line broadening arises from the imaginary part of the
self-energy. The linewidth of the trion peak is

nr = —2Im YR (e1) < 2may. (64)

In this regime, the trion transition is a discrete
quasiparticle-like excitation as opposed to a collective ex-
citation, and the trion linewidth is basically independent
of the doping density.

B. Exciton line broadening

In addition to the bound-state solutions of the BSE,
the scattering-state solutions are also included in the ex-
citon self-energy. The transition energies of the scat-
tering states are close to, or larger than, the exci-
ton transition energy, and the associated wavefunctions
can be approximated as plane-wave functions. For
these scattering-state contributions, the second-Born
self-energy in Eq. (35) can be used as an approximation.
By a change of variables, Eq. (35) can be rewritten as

(1 —nptq) "01|VI>+<17<1|2

_ _ Ipl2 _ |ptal? lal? S0+
W —EX T 2% 2me gm; T 10

S w) =
Pa

Replacing the scattering potential by Vpiqq = Up/L?
and converting summation to integration, the self-energy
can be reformulated as

S w) = / drdq (1~ 7p1a) na%p
’ (2m)* w—sx—%—%—FiOJr

.(66)



In the integration, the range of quasi-momentum q is
confined by the electron-density distribution ng, and
the range of quasi-momentum p is determined by the
electron-exciton potential 0. Clearly, exciton line broad-
ening is dependent on the form of the electron-exciton
potential.

For example, consider the case of a contact potential,
Up = Up. Since the Fermi energy is generally smaller
than the bandwidth of conduction band, the range of
|g| is much smaller than the range of |p|, such that we
can ignore the term p - q/me in the denominator and
approximate np4q =~ np. The self-energy becomes

ER( )_nD’UQ/ dzp (1_np)
S O] @y e~ EE 1ot

where np = [ d2qnq/ (27)? is the doping density. The
exciton line broadening function is then given by

, (67)

mx(w) = —2Im X3 (w)

d 2
227rnD0/ pp5< EX — p_>
kp 2 2mT

o npﬁg 0 (w —ex — %EF) ) (68)
mr

Based on this approximate expression, the exciton
linewidth is proportional to the doping density, and the
lineshape is an asymmetric peak with a threshold en-
ergy wry = ex + (me/Mr)er. On the other hand, if
the electron-exciton potential diverges as |p| — 0, the
approximation in Eq. (67) is no longer valid. As an ex-
treme example, consider a case where the scattering po-
tential diverges at a quasi-momentum much smaller than
kr; here we can assume 0p ~ 27000p,0. The exciton line
broadening function becomes
(1 —ng)ng

—205 1
( 1)0 Hl/ w—ex + 10t

~ 2702 o (w — Ex) (69)

In this case exciton line broadening becomes independent
of doping density and proportional to the temperature.
The exciton peak is also fixed at the vertical transition
energy.

Based on the above considerations, the doping-
dependent exciton linewidth in Efimkin and MacDonald’s
work?% and the doping-independent exciton linewidth in
Baeten and Wouters” work can be explained, since the
former’s study uses a contact potential while the later
study uses a Yukawa potential?® which approaches sin-
gular behavior near zero quasi-momentum. Clearly the
form of the doping dependence is affected by the screen-
ing length of the Coulomb potential. A numerical cal-
culation is needed in realistic cases, as we will pursue in

Sec. VD.

10
C. Oscillator strength transfer

Based on standard Green’s function considerations, the
spectral weight of the exciton transition can be calculated
from3”

Zx = |1- Zre ER(W)‘

—1
Ow (sx):| . (70)

w=ex+XR

where SR (w) = ¥R (w) + SR (w). Since the scattering-
state self-energy only contributes to the exciton line
broadening and does not affect the total area of the line-
shape, we only need consider the bound-state self-energy
at the exciton transition energy, ex, to probe the spectral
weight shift. Thus the spectral weight can be approxi-
mated as

zZx

1

8 —1
_ R
[1 ~——Re 3 (“)L_EJ

@ (1 —me/Mr)ep
A1 At + (1 — me/MT) EF

1+

(71)

We find Zx = 1 at ep = 0. Assuming that Zx — 0 as
ep — 00, which implies ap/Ar — oo, the competition
between exciton and trion oscillator strengths are signif-
icant only at the scale of the Fermi energy ep ~ Ar.
This matches the observed scale where the exciton peak
is depleted.

We note that «g is a constant only for low doping-
density regime, and thus all statements of this section
are restricted by this consideration. A full numerical in-
vestigation will be carried out in Sec. V D.

V. NUMERICAL CALCULATIONS

In this section, numerical calculations employing both
the BSE formalism and the MND theory are performed
to compare the two methods and discuss the effects of a
broad range of doping densities as well as edge-singularity
effects. First, it is necessary to discuss the optical band-
gap renormalization due to doping, since it will affect
the positions of the trion and exciton peaks. In Sec. V A,
the parameters for two-dimensional materials are given,
and some energy-scale and momentum-scale parameters
of the two-dimensional electron gas model are introduced
for usage in the following discussions. In Sec. VB, the
scale of optical band-gap renormalization due to dop-
ing electrons is estimated. In Sec. V C, the differential
density of states is plotted by solving the Schrodinger
equation with the scattering potential. The calculated
bound-state behavior and the relationship between the
trion peak calculated via the BSE formalism and the
MND theory are discussed. In Sec. VD and Sec. V E, the
doping dependence and temperature dependence of the
optical spectra calculated by BSE formalism and MND
theory are presented and discussed.



A. 2D materials

The exciton transition energy of a doped material can
be defined by the optical band-gap in the absence of dop-
ing and the doping-induced energy shift,

ex = A+ 8A, (72)

where A is the optical band-gap and JA is the optical
band-gap renormalization due to electron doping. For
the BSE calculations, we assume that the electron mass
and hole mass are equivalent, m, = my,, such that the
exciton mass is Mx = 2me, the trion mass is M1 = 3me,,
and the electron-exciton reduced mass is mr = 2m,/3.
On the other hand, for the MND calculations, the hole
mass, exciton mass and trion mass are infinitely large.
The electron mass and electron-exciton reduced mass are
equal (me = m1). We assume that the screened Coulomb
potential in two dimensions is described by the Rytova-
Keldysh potential®#6:47. Via Eq. (27), the scattering po-
tential is written as

—2me? /L2

Vi =
Tk K[+ ok — K

(1 _ e—\k—k'|252/2) :
(73)

where L? is the dimensional area, 7 is the screening
length, and & is the exciton radius. We use a finite-size
square box with square-lattice points to approach the in-
finite two-dimensional limit. The lattice k-grid is given
by

27 2
k= (km,ky) = (fﬁ?m, TKJU> 5 (74)
where k;,ky = 0,1,---,N — 1 with N the number of
grid point in one direction. The box dimension length
is L = Nay, where ay is the cut-off length and also the
lattice constant. The cut-off momentum is ky = 27/ap
and cut-off energy is ep = k3 /(2me). In our calculations,
we use the parameters A = 2.0 eV, ey = 2.0 €V, rg =
36 A, and the effective electron mass is assumed to be

me = 0.045 eV IA™?. We will discuss the dependence
of electron mass on the trion binding energy in Sec V C.
The exciton radius £ is an adjustable parameter.
Electron doping in two-dimensional materials can be
modeled by a noninteracting two-dimensional electron
gas. The electron distribution is given by
-1

nk = [65(59*“7“) + 1] , (75)

where [ is the inverse temperature and ey is the Fermi
energy. The total doping density is given by

v o dk? 2 -
E : B(k*/(2me)—
B k ”k—l//o 4T [e( EF)+1}

1

- [ e (76)

— 00

where v is the degeneracy factor, D(e) = 0(e)vme/(2)
is the density of states and f(g) = 1/[efE757) +1] is
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the Fermi-Dirac distribution function. We can define the
Fermi momentum by

Meopdk vkd
= — = 7

"h=r /0 2m 4m (77)
The Fermi momentum is given by kr = \/4mnp/v. The

chemical potential is defined as

k2
p== (78)

T 2me

Note that the chemical potential can be different from
the Fermi energy at non-zero temperatures and becomes
equivalent to it, namely p = ep, at zero temperature.

B. Optical band-gap renormalization

The contributions to the optical band-gap renormal-
ization include a Pauli-blocking effect (0Apg), a vertical-
excitation shift (60Ayg), and a band-gap renormalization
factor (§Apg)*®49

0A = 0App + 0AvyE + 0Apg. (79)

There are two additional contributions which are often
mentioned in the literature that we do not consider here.
One is the exciton binding energy renormalization and
the other arises from dynamical screening. The former
increases the optical band-gap and the later reduces it.
According to some reports, the two terms are minor ef-
fects and roughly cancel with each other®®5!. It should
however be noted that these studies are performed in the
low doping density regime. In the remainder of this work,
we assume that these two contributions can be ignored.

The Pauli-blocking effect can be subsumed into dApp
as

0App = p, (80)

since the conduction band states lower than the chemical
potential are filled. The vertical excitation shift is accom-
panied by a Pauli-blocking effect as well, since the the
quasi-momentum of the excited electron must be larger
than the Fermi momentum kr when the excited hole has
the same quasi-momentum as the excited electron. The
energy shift is given by
2
5AVE = k—F = e . (81)

2mh mny

The band-gap renormalization factor due to electron-
electron interactions is

5ABG = Re Uk(w)‘k:o, w=0’ (82)

where ox(w) is the quasiparticle self-energy.  The
self-energy is given by the static screened-exchange
approximation®?®3 with a band-gap renormalization fac-
tor that can be written as

1
5ABG = _ﬁ E TLqu. (83)
q



The screened potential is given by Wq = (’U(; I Hq)_l,

where the Rytova-Keldysh potential vq can be approxi-
mated as Coulomb potential in long-wavelength regime

(¢ <kp)

2me?

q

(84)
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The polarization is given by the Stern’s formula®* ¢

UM
My =~ {1 —0(q—2kp)\/1— (2kp/q)2] . (85)
Since IIq = —vme/(27) when ¢ < kp, the screened po-

tential can be approximated as

2 2
Wy o~ — (86)
q+ qrF

where grp = vmee? is the Thomas-Fermi wavevector in

two dimensions. The band-gap renormalization factor in
the zero-temperature limit is given by

d’*q
6ABG = —/quwq

—e? [kp —grrln (1 + k—Fﬂ . (87

qTF
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Since kr < grr, we find

2 ke k@
0Apg ~ —€” |kp —qrr | — — 55—+
qTF 2qTF
ek k2 I

~ — — =, 88
2gtr 2ume v (88)

For a spin-degenerate electron gas, 0Apg ~ —u/2 as
found from the static screened-exchange approximation.
However, for the case where the spin-orbit coupling is
large enough to split the spin degeneracy and the split-
ting energy is larger than or close to the chemical poten-
tial, the degeneracy factor becomes v = 1. In this case
the value of the band-gap renormalization factor becomes
0Apg ~ —p. This is the situation that occurs in TMDC
monolayers and in most semiconducting quantum wells.
In the present calculations, we will consider this later
case.

In summary, within the approximations outlined
above, the total optical band-gap renormalization is ap-
proximately given by

f, (89)

which for our BSE calculations we take as 6 A = u, since
we choose equal electron and hole masses. The optical
band-gap renormalization for our MND calculations is
0A = 0, since the hole mass is infinitely large.
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FIG. 1. (a) Differential DOS; (b) Absorption spectrum from

the BSE formalism; (c¢) Absorption spectrum from the MND
theory with 87! = 0meV, er = 5 meV, v = 1 meV, N = 140.

C. Electron-exciton scattering and bound states

In this section, we study the bound-state solution of
the electron-exciton scattering problem by solving the
eigenvalue problem

|k|? -
Z Ok k' 5 + Vi ) P = €1 Pk - (90)

m
Kk’

The equation is identical to Eq. (59) in our discussion
of the MND theory for m = me. The equation with
m = T can also be used to find the eigenvalue and the
eigenvector of Eq. (49) since the center-of-mass momen-
tum can be decoupled as

QF
2Mr’

In order to describe the impurity-induced bound states

of the system, we define the differential density of states
(diff. DOS) as

én_’Q =én+ q)k;n,Q e q)k,n- (91)

Ap(w) = % Z&(w —&n) — Z&(w —ex)| . (92)

This quantity measures the spectral density shift from
the non-interacting Fermi gas to the reorganized Fermi



gas due to the electron-exciton interaction. In Fig. 1 (a),
the calculated diff. DOS with different values of the elec-
tron mass and exciton radius is shown. It is found that
a negative energy bound state exists for each parameter
set. In the language employed in this work, the bound
state is assigned as the trion state. The trion binding
energy depends on the mass and the exciton radius. It
is found that the trion binding energy increases as the
electron mass and exciton radius parameters increase.

In Fig. 1 (b), (c), the optical spectra given by (b) the
BSE formalism and (¢) the MND theory with electron
mass m. = m are shown for different exciton radius.
The peaks close to w — A ~ 0 are assigned as exciton
transitions and the additional peaks with lower ener-
gies are assigned as trion transitions. As can be seen,
the trion binding energies calculated with the same pa-
rameters but by different methods are quite different.
The binding energy calculated by the BSE formalism
is consistently smaller than the one calculated by the
MND theory. This occurs because that the binding en-
ergy given by the BSE formalism is calculated by di-
agonalizing Eq. (90) with m = mr = 2m./3, while
the binding energy given by the MND theory is cal-
culated from the same equation with m = m,. The
binding energy obtained from the BSE formalism with

me = 0.045 (eV)_lA_2 is close to the binding energy of

the MND theory with m, = 0.030 (eV)~*A ™. Since the
effective electron mass can be found computationally?,

and is about m, = 0.045 (eV)_lA_2 for MoSs (~ 0.34
mg, where mg is the bare electron mass), we choose dif-
ferent exciton radii for different methods (¢ = 22 A for
BSE and £ = 17 A for MND) to adjust the binding en-
ergies to similar values. Through this adjustment, we
can compare the optical spectra by the two methods and
exclude the binding energy difference, thus enabling con-
sideration of edge-singularity effects.

Note that we use an overestimate of the exciton radius
for each method and still find an underestimate of the
trion binding energy. For a monolayer TMDC, such as
MoS,, the exciton radius is about 10 A and the trion
binding energy is over 20 meV based on the calculation
of the three-particle Schrédinger equation model®. The
deviation results from some factors not considered in the
present theory. First, we do not include the exchange
energy in our model. The exchange energy can be de-
scribed as the indistinguishability between the doping
electron and the bound electron in the exciton. For the
Schrodinger equation model, the exchange energy can be
included by assuming that the variational wavefunction
is symmetric to the exchange of the two electron degrees
of freedom. Secondly, we do not consider the relaxation
of the exciton transition energy to lower values due to
its interaction with the doping electrons. Lastly, the
electron-exciton scattering potential has been written by
assuming that the exciton wavefunction is a 1s-orbital so-
lution of the two-dimensional hydrogen atom. However,
it is possible that there exist excited-state orbitals that
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FIG. 2. The doping-dependent optical spectra calculated by
the BSE formalism (upper panel) and the MND theory (lower
panel) with me = 0.045 (eV)flAﬁ7 7' =0.1meV,y=2
meV, N = 140. The inset in upper panel shows the spec-
tra calculated by the BSE formalism without the distribution
function of allowed transition pn,q for n = 0 (the trion bound
state) in Eq. (52).

hybridize with the exciton wavefunction when the exci-
ton interacts with doping electrons. All of these factors
contribute to the observed deviations and are beyond the
present discussion. We will leave these issues to a future
study.

D. Doping-dependent optical spectra

By altering the Fermi energy, the doping dependence
of the optical spectrum can be studied. Fig. 2 shows the
doping-dependent optical spectra calculated by both the
BSE formalism and the MND theory. As can be seen,
for both methods the trion peak emerges with positive
increases of the Fermi energy, and the energy splitting
between the exciton peak and the trion peak increases
upon doping. The oscillator strength transfer from exci-
ton peak to trion peak calculated by the BSE formalism
saturates with increasing ep. The saturation can only
be attributed partially to the Pauli-blocking effect dis-
cussed in Sec. IV C. Via performing the BSE calculation
without the distribution function of allowed transition
pn,q for n = 0 (the trion bound state) in Eq. (52), a
new doping-dependent spectra is shown in the inset of
Fig. 2 and a reduction of the saturation of the oscillator
strength transfer is observed. The heights of the trion
peaks in the high doping-density regime (ep > Ar) sur-
pass those of the exciton peaks. However, the peak area
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FIG. 3. The doping-dependent exciton-trion peak posi-

tions, peak areas, and peak widths calculated by the BSE
formalism (left) and the MND theory (right) with m. =
0.045 (eV)"'A7% 7! = 0.1 meV, v = 2 meV, N = 140.
The peak areas are calculated by integrating the imaginary
part of the exciton Green’s function, and are normalized to
the total area at er = 0 for each method.

transfer between the exciton and trion peaks remains sat-
urated. The result (the exceedance of the peak heights
and the saturation of the peak areas) is consistent with
the calculation of Ref?S, which also does not appear to
contain explicit Pauli-blocking term for the trion transi-
tion. On the other hand, the oscillator strength transfer
calculated by the MND theory shows no saturation.

Via simple curve fitting, the energy splitting between
exciton peak and trion peak, the peak areas, and the
peak widths of the two peaks calculated by the BSE for-
malism and the MND theory are estimated and shown
in Fig. 3. For calculations based on the BSE formalism,
the energy splitting is approximately proportional to the
Fermi energy, Eqplis ~ Ar+ew, and At is about 19 meV,
where the trion binding energy is equal to the peak po-
sition of the Diff. DOS calculation shown in Fig. 1 (a)

with € = 22 A and m = 0.030 eV 1A% The increasing
peak area of the trion transition and the decreasing peak
area of the exciton transition with respect to increasing
the Fermi energy are shown, and the total area is con-
served for different Fermi energies. As can be seen in
Fig. 3, the oscillator strength transfer is gradually sat-
urated. For the peak widths, the exciton linewidth is
roughly proportional to the Fermi energy, implying that
the scattering potential is more similar to a contact po-
tential at the relevant length scales. On the other hand,
the trion linewidth is basically invariant to changes in the
Fermi energy as found in Ref?6.
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For the calculations based on the MND theory, the
trion peak continues to grow as the Fermi energy in-
creases, and the energy splitting is given by FEgpit =~
AT + ep, with At about 19 meV, where the trion
binding energy is equal to the peak position of the
Diff. DOS calculated in Fig. 1 (a) with ¢ = 17 A and

m = 0.045 eV"'A7. Note that the doping density is
nonzero at ep = 0 eV due to the small but non-zero tem-
perature, such that the trion lineshape emerges and has
a finite oscillator strength even at ep = 0. Similar to
the BSE calculation, with increasing Fermi energy the
peak area of the trion transition increases and the peak
area of the exciton transition decreases, with the total
area conserved for different doping densities. The peak
areas of exciton and trion transitions intersect around 18
meV, which is also close to the trion binding energy. The
peak widths of exciton and trion transitions are found
to have a somewhat quantitatively different dependence
with the Fermi energy. The trion linewidth calculated
by the MND theory is roughly invariant to the Fermi
energy, and the exciton linewidth is proportional to the
Fermi energy, as in the BSE calculation.

In comparison with the results calculated by the BSE
formalism, the MND results show better correspondence
with at least some experiments which show an oscilla-
tor strength transfer that shows no sign of saturation
with increasing ep™%7. This implies that the Fermi sea
multiple-electron-hole excitations, which are responsible
for the creation of the Fermi-edge singularity, may also
contribute to the trion peak.

E. Temperature-dependent optical spectra

In this section, the temperature dependence of the op-
tical spectrum is discussed. In Fig. 4, the temperature-
dependent optical spectra calculated by both the BSE
formalism and the MND theory are given. For both spec-
tra, the linewidths are broadened and the peak-heights
become lower as the temperature increases. For the spec-
tra calculated by the MND theory in extremely low tem-
perature regime (below 1 meV), both the exciton and the
trion peaks exhibit asymmetric lineshapes near the tran-
sition energies (w — A ~ p for exciton and w — A ~ —Ap
for trion), and the peak heights are sensitive to the tem-
perature. Both of these features are signatures of the
Fermi-edge singularity. On the other hand, the spectra
calculated by the BSE formalism are relatively insensi-
tive to temperature variations in this low temperature
regime. As can be seen in Fig. 4, only very small varia-
tions of the trion and exciton lineshapes can be observed
when the temperature is on the order of 5% of the trion
binding energy.
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FIG. 4. The temperature-dependent optical spectra calcu-
lated by the BSE formalism (upper panel) and the MND the-
ory (lower panel) with me = 0.045 (eV)flAﬁ7 er = 10 meV,
v =1meV, N = 140.

VI. DISCUSSIONS AND CONCLUSION

In the present work, we have theoretically studied the
problem of an exciton immersed in a Fermi sea which
interacts with electrons through a scattering potential.
We have focused on two approximate methods, the BSE
formalism and the MND theory, to solve a many-body
Hamiltonian parametrized to describe two-dimensional
semiconductors. We find some results that are coincident
with experimental observations and expectations! %710,
Both the BSE formalism and the MND theory describe
the trion peak emergence, the oscillator strength trans-
fer, and the doping-independent lineshapes in a sensi-
ble manner in the low doping-density regime. When the
Fermi energy exceeds the trion binding energy, the BSE
formalism may not account completely for the oscillator
strength transfer from the exciton peak to the trion peak,
while the MND theory is found to describe this effect?.
This limitation of the BSE approach can only be altered
in part by the ad-hoc procedure of removing the Pauli-
blocking term.

Neither the BSE nor the MND theories are expected
to capture all experimental features over all parameter
regimes, since they only describe two limiting physical
situations of a simple model. Even if we could solve
the many-body scattering Hamiltonian exactly, there are
still many factors which are not included in our model
which could affect the results of the calculations. In
Sec. VC we have discussed three such factors that may
result in an underestimation of the trion binding energy.
The same missing physical ingredients may also cause
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errors in the prediction of the doping dependence and
temperature dependence of optical spectra. In addition
to the mentioned factors, a significant approximation of
the many-body scattering Hamiltonian is that the Fermi
sea is assumed to be composed of non-interacting elec-
trons. This is not a particularly realistic assumption,
since in two dimensions the long-range Coulomb interac-
tion is not fully screened and thus electron correlation ef-
fects may be important. A direct consequence of electron
correlation is that the electron mass, the exciton mass,
and the scattering potential should be renormalized by
doping and temperature3”:5%56 Electron correlation can
also affect the ratio between the electron mass and ex-
citon mass, and alter the effective scattering potential,
thus changing the trion binding energy and the absorp-
tion lineshapes. Without considering the renormaliza-
tion induced by electron correlation, precise predictions
are difficult to obtain. These issues are beyond the scope
of the present work, and we leave the topic of electron-
electron interactions in the optical spectra to a future
study.

Despite the physical factors which we do not in-
clude, the present model and its approximate solutions
still provide a physically clear picture of the doping-
dependent optical spectra in two-dimensional semicon-
ductors that captures non-trivial features seen in ex-
periments on TMDCs. In a nutshell, trion formation
can be realized as the dynamical generation of a trion
and a hole in the Fermi sea. The dynamical process
originates from the electron-hole polarization near the
Fermi sea induced by electron-exciton interaction, with
the trion state formed as the bound state of an electron-
exciton scattering process. From the fundamental (elec-
tron/hole) particle point of view, the scattering event
involves a four-particle generation process, with the par-
ticipation of two electrons plus one hole in the conduction
band, and one hole in the valence band. The wavefunc-
tion for the trion-hole state is coherently coupled with the
exciton wavefunction, as discussed in Sec. II. The cou-
pling strength can be connected to the electron-exciton
scattering potential. Recently, two-dimensional coherent
spectra in quantum wells®” and TMDCs"® %0 have been
studied, and the possible role of coherent exciton-trion
coupling has been invoked in the context of these experi-
ments. Coherent coupling has been attributed to exciton-
trion many-body interactions®®, but a microscopic the-
ory of these interactions has not been put forward. The
present theory supports the existence of such a coupling,
and may provide a theoretical foundation for the study
coherent multi-dimensional spectra in the future.

Note added - After this work was completed, we became
aware of Ref.®! which presents calculations related to,
and several conclusions similar to, those found in this
work.
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